Properties

Label 539.4.a.f.1.2
Level $539$
Weight $4$
Character 539.1
Self dual yes
Analytic conductor $31.802$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,4,Mod(1,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.8020294931\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.11082\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.65527 q^{2} -5.17115 q^{3} +5.36103 q^{4} +10.0822 q^{5} +18.9020 q^{6} +9.64616 q^{8} -0.259212 q^{9} +O(q^{10})\) \(q-3.65527 q^{2} -5.17115 q^{3} +5.36103 q^{4} +10.0822 q^{5} +18.9020 q^{6} +9.64616 q^{8} -0.259212 q^{9} -36.8533 q^{10} +11.0000 q^{11} -27.7227 q^{12} +84.5724 q^{13} -52.1367 q^{15} -78.1476 q^{16} +38.2525 q^{17} +0.947489 q^{18} +127.283 q^{19} +54.0511 q^{20} -40.2080 q^{22} +140.378 q^{23} -49.8817 q^{24} -23.3486 q^{25} -309.135 q^{26} +140.961 q^{27} -116.806 q^{29} +190.574 q^{30} -338.709 q^{31} +208.482 q^{32} -56.8826 q^{33} -139.823 q^{34} -1.38964 q^{36} -75.3416 q^{37} -465.256 q^{38} -437.337 q^{39} +97.2548 q^{40} +22.4446 q^{41} +181.844 q^{43} +58.9713 q^{44} -2.61343 q^{45} -513.121 q^{46} -300.530 q^{47} +404.113 q^{48} +85.3455 q^{50} -197.810 q^{51} +453.395 q^{52} -31.8596 q^{53} -515.253 q^{54} +110.905 q^{55} -658.201 q^{57} +426.958 q^{58} +68.3030 q^{59} -279.507 q^{60} +145.315 q^{61} +1238.07 q^{62} -136.877 q^{64} +852.679 q^{65} +207.922 q^{66} -668.020 q^{67} +205.073 q^{68} -725.916 q^{69} +727.608 q^{71} -2.50040 q^{72} +416.982 q^{73} +275.394 q^{74} +120.739 q^{75} +682.370 q^{76} +1598.59 q^{78} +458.805 q^{79} -787.902 q^{80} -721.934 q^{81} -82.0412 q^{82} -355.737 q^{83} +385.671 q^{85} -664.690 q^{86} +604.022 q^{87} +106.108 q^{88} +1245.97 q^{89} +9.55281 q^{90} +752.571 q^{92} +1751.51 q^{93} +1098.52 q^{94} +1283.30 q^{95} -1078.09 q^{96} +935.338 q^{97} -2.85133 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 12 q^{3} + 22 q^{4} + 18 q^{5} - 2 q^{6} - 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 12 q^{3} + 22 q^{4} + 18 q^{5} - 2 q^{6} - 60 q^{8} + 66 q^{9} + 92 q^{10} + 44 q^{11} + 186 q^{12} + 134 q^{13} - 62 q^{15} - 6 q^{16} + 74 q^{17} - 256 q^{18} + 164 q^{19} - 116 q^{20} - 44 q^{22} + 194 q^{23} - 570 q^{24} + 38 q^{25} - 734 q^{26} + 510 q^{27} - 108 q^{29} + 1252 q^{30} + 412 q^{31} - 4 q^{32} + 132 q^{33} + 346 q^{34} + 1518 q^{36} + 286 q^{37} - 224 q^{38} - 256 q^{39} + 540 q^{40} + 18 q^{41} - 496 q^{43} + 242 q^{44} - 580 q^{45} - 284 q^{46} - 62 q^{47} + 862 q^{48} + 212 q^{50} - 508 q^{51} + 822 q^{52} - 828 q^{53} - 2420 q^{54} + 198 q^{55} + 700 q^{57} + 1388 q^{58} + 1224 q^{59} - 1776 q^{60} + 350 q^{61} + 878 q^{62} - 718 q^{64} - 396 q^{65} - 22 q^{66} - 1498 q^{67} - 1058 q^{68} + 386 q^{69} + 2326 q^{71} - 3000 q^{72} + 1630 q^{73} - 1156 q^{74} + 1362 q^{75} + 3152 q^{76} - 2464 q^{78} - 1020 q^{79} - 3072 q^{80} + 1128 q^{81} - 2118 q^{82} + 1920 q^{83} + 2008 q^{85} + 1056 q^{86} - 1640 q^{87} - 660 q^{88} - 1550 q^{89} + 5780 q^{90} + 2592 q^{92} + 6046 q^{93} + 1042 q^{94} + 2332 q^{95} - 4082 q^{96} + 2202 q^{97} + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.65527 −1.29233 −0.646167 0.763196i \(-0.723629\pi\)
−0.646167 + 0.763196i \(0.723629\pi\)
\(3\) −5.17115 −0.995188 −0.497594 0.867410i \(-0.665783\pi\)
−0.497594 + 0.867410i \(0.665783\pi\)
\(4\) 5.36103 0.670129
\(5\) 10.0822 0.901782 0.450891 0.892579i \(-0.351106\pi\)
0.450891 + 0.892579i \(0.351106\pi\)
\(6\) 18.9020 1.28612
\(7\) 0 0
\(8\) 9.64616 0.426304
\(9\) −0.259212 −0.00960043
\(10\) −36.8533 −1.16540
\(11\) 11.0000 0.301511
\(12\) −27.7227 −0.666904
\(13\) 84.5724 1.80432 0.902161 0.431400i \(-0.141980\pi\)
0.902161 + 0.431400i \(0.141980\pi\)
\(14\) 0 0
\(15\) −52.1367 −0.897443
\(16\) −78.1476 −1.22106
\(17\) 38.2525 0.545741 0.272871 0.962051i \(-0.412027\pi\)
0.272871 + 0.962051i \(0.412027\pi\)
\(18\) 0.947489 0.0124070
\(19\) 127.283 1.53688 0.768442 0.639919i \(-0.221032\pi\)
0.768442 + 0.639919i \(0.221032\pi\)
\(20\) 54.0511 0.604310
\(21\) 0 0
\(22\) −40.2080 −0.389654
\(23\) 140.378 1.27265 0.636323 0.771423i \(-0.280455\pi\)
0.636323 + 0.771423i \(0.280455\pi\)
\(24\) −49.8817 −0.424253
\(25\) −23.3486 −0.186789
\(26\) −309.135 −2.33179
\(27\) 140.961 1.00474
\(28\) 0 0
\(29\) −116.806 −0.747943 −0.373971 0.927440i \(-0.622004\pi\)
−0.373971 + 0.927440i \(0.622004\pi\)
\(30\) 190.574 1.15980
\(31\) −338.709 −1.96238 −0.981192 0.193034i \(-0.938167\pi\)
−0.981192 + 0.193034i \(0.938167\pi\)
\(32\) 208.482 1.15171
\(33\) −56.8826 −0.300061
\(34\) −139.823 −0.705280
\(35\) 0 0
\(36\) −1.38964 −0.00643352
\(37\) −75.3416 −0.334759 −0.167379 0.985893i \(-0.553531\pi\)
−0.167379 + 0.985893i \(0.553531\pi\)
\(38\) −465.256 −1.98617
\(39\) −437.337 −1.79564
\(40\) 97.2548 0.384434
\(41\) 22.4446 0.0854941 0.0427471 0.999086i \(-0.486389\pi\)
0.0427471 + 0.999086i \(0.486389\pi\)
\(42\) 0 0
\(43\) 181.844 0.644906 0.322453 0.946585i \(-0.395492\pi\)
0.322453 + 0.946585i \(0.395492\pi\)
\(44\) 58.9713 0.202051
\(45\) −2.61343 −0.00865749
\(46\) −513.121 −1.64468
\(47\) −300.530 −0.932698 −0.466349 0.884601i \(-0.654431\pi\)
−0.466349 + 0.884601i \(0.654431\pi\)
\(48\) 404.113 1.21518
\(49\) 0 0
\(50\) 85.3455 0.241394
\(51\) −197.810 −0.543115
\(52\) 453.395 1.20913
\(53\) −31.8596 −0.0825708 −0.0412854 0.999147i \(-0.513145\pi\)
−0.0412854 + 0.999147i \(0.513145\pi\)
\(54\) −515.253 −1.29846
\(55\) 110.905 0.271898
\(56\) 0 0
\(57\) −658.201 −1.52949
\(58\) 426.958 0.966593
\(59\) 68.3030 0.150717 0.0753584 0.997157i \(-0.475990\pi\)
0.0753584 + 0.997157i \(0.475990\pi\)
\(60\) −279.507 −0.601402
\(61\) 145.315 0.305012 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(62\) 1238.07 2.53606
\(63\) 0 0
\(64\) −136.877 −0.267337
\(65\) 852.679 1.62710
\(66\) 207.922 0.387779
\(67\) −668.020 −1.21808 −0.609042 0.793138i \(-0.708446\pi\)
−0.609042 + 0.793138i \(0.708446\pi\)
\(68\) 205.073 0.365717
\(69\) −725.916 −1.26652
\(70\) 0 0
\(71\) 727.608 1.21621 0.608107 0.793855i \(-0.291929\pi\)
0.608107 + 0.793855i \(0.291929\pi\)
\(72\) −2.50040 −0.00409270
\(73\) 416.982 0.668548 0.334274 0.942476i \(-0.391509\pi\)
0.334274 + 0.942476i \(0.391509\pi\)
\(74\) 275.394 0.432621
\(75\) 120.739 0.185890
\(76\) 682.370 1.02991
\(77\) 0 0
\(78\) 1598.59 2.32057
\(79\) 458.805 0.653413 0.326707 0.945126i \(-0.394061\pi\)
0.326707 + 0.945126i \(0.394061\pi\)
\(80\) −787.902 −1.10113
\(81\) −721.934 −0.990307
\(82\) −82.0412 −0.110487
\(83\) −355.737 −0.470449 −0.235224 0.971941i \(-0.575582\pi\)
−0.235224 + 0.971941i \(0.575582\pi\)
\(84\) 0 0
\(85\) 385.671 0.492140
\(86\) −664.690 −0.833435
\(87\) 604.022 0.744344
\(88\) 106.108 0.128536
\(89\) 1245.97 1.48396 0.741980 0.670422i \(-0.233887\pi\)
0.741980 + 0.670422i \(0.233887\pi\)
\(90\) 9.55281 0.0111884
\(91\) 0 0
\(92\) 752.571 0.852837
\(93\) 1751.51 1.95294
\(94\) 1098.52 1.20536
\(95\) 1283.30 1.38594
\(96\) −1078.09 −1.14617
\(97\) 935.338 0.979063 0.489532 0.871986i \(-0.337168\pi\)
0.489532 + 0.871986i \(0.337168\pi\)
\(98\) 0 0
\(99\) −2.85133 −0.00289464
\(100\) −125.173 −0.125173
\(101\) 533.395 0.525493 0.262747 0.964865i \(-0.415372\pi\)
0.262747 + 0.964865i \(0.415372\pi\)
\(102\) 723.048 0.701887
\(103\) 738.096 0.706086 0.353043 0.935607i \(-0.385147\pi\)
0.353043 + 0.935607i \(0.385147\pi\)
\(104\) 815.800 0.769190
\(105\) 0 0
\(106\) 116.456 0.106709
\(107\) −2039.07 −1.84228 −0.921141 0.389229i \(-0.872741\pi\)
−0.921141 + 0.389229i \(0.872741\pi\)
\(108\) 755.699 0.673307
\(109\) 1488.69 1.30817 0.654085 0.756421i \(-0.273054\pi\)
0.654085 + 0.756421i \(0.273054\pi\)
\(110\) −405.387 −0.351383
\(111\) 389.603 0.333148
\(112\) 0 0
\(113\) −532.743 −0.443507 −0.221753 0.975103i \(-0.571178\pi\)
−0.221753 + 0.975103i \(0.571178\pi\)
\(114\) 2405.91 1.97661
\(115\) 1415.32 1.14765
\(116\) −626.201 −0.501218
\(117\) −21.9222 −0.0173223
\(118\) −249.666 −0.194776
\(119\) 0 0
\(120\) −502.919 −0.382584
\(121\) 121.000 0.0909091
\(122\) −531.167 −0.394177
\(123\) −116.064 −0.0850828
\(124\) −1815.83 −1.31505
\(125\) −1495.68 −1.07023
\(126\) 0 0
\(127\) −2257.44 −1.57729 −0.788645 0.614849i \(-0.789217\pi\)
−0.788645 + 0.614849i \(0.789217\pi\)
\(128\) −1167.53 −0.806220
\(129\) −940.343 −0.641803
\(130\) −3116.78 −2.10276
\(131\) −1174.21 −0.783142 −0.391571 0.920148i \(-0.628068\pi\)
−0.391571 + 0.920148i \(0.628068\pi\)
\(132\) −304.950 −0.201079
\(133\) 0 0
\(134\) 2441.79 1.57417
\(135\) 1421.21 0.906059
\(136\) 368.990 0.232652
\(137\) 2690.08 1.67758 0.838792 0.544451i \(-0.183262\pi\)
0.838792 + 0.544451i \(0.183262\pi\)
\(138\) 2653.42 1.63677
\(139\) −17.7500 −0.0108312 −0.00541559 0.999985i \(-0.501724\pi\)
−0.00541559 + 0.999985i \(0.501724\pi\)
\(140\) 0 0
\(141\) 1554.09 0.928210
\(142\) −2659.61 −1.57175
\(143\) 930.297 0.544023
\(144\) 20.2568 0.0117227
\(145\) −1177.67 −0.674482
\(146\) −1524.18 −0.863988
\(147\) 0 0
\(148\) −403.908 −0.224332
\(149\) 1517.86 0.834550 0.417275 0.908780i \(-0.362985\pi\)
0.417275 + 0.908780i \(0.362985\pi\)
\(150\) −441.335 −0.240232
\(151\) 1948.86 1.05031 0.525153 0.851008i \(-0.324008\pi\)
0.525153 + 0.851008i \(0.324008\pi\)
\(152\) 1227.80 0.655180
\(153\) −9.91550 −0.00523935
\(154\) 0 0
\(155\) −3414.94 −1.76964
\(156\) −2344.58 −1.20331
\(157\) 1554.20 0.790055 0.395027 0.918669i \(-0.370735\pi\)
0.395027 + 0.918669i \(0.370735\pi\)
\(158\) −1677.06 −0.844428
\(159\) 164.751 0.0821735
\(160\) 2101.96 1.03859
\(161\) 0 0
\(162\) 2638.87 1.27981
\(163\) −3472.71 −1.66873 −0.834367 0.551209i \(-0.814167\pi\)
−0.834367 + 0.551209i \(0.814167\pi\)
\(164\) 120.326 0.0572921
\(165\) −573.504 −0.270589
\(166\) 1300.32 0.607977
\(167\) 2228.90 1.03280 0.516400 0.856347i \(-0.327272\pi\)
0.516400 + 0.856347i \(0.327272\pi\)
\(168\) 0 0
\(169\) 4955.50 2.25558
\(170\) −1409.73 −0.636009
\(171\) −32.9933 −0.0147547
\(172\) 974.872 0.432170
\(173\) 1008.04 0.443005 0.221502 0.975160i \(-0.428904\pi\)
0.221502 + 0.975160i \(0.428904\pi\)
\(174\) −2207.87 −0.961942
\(175\) 0 0
\(176\) −859.624 −0.368162
\(177\) −353.205 −0.149992
\(178\) −4554.36 −1.91777
\(179\) −746.246 −0.311603 −0.155802 0.987788i \(-0.549796\pi\)
−0.155802 + 0.987788i \(0.549796\pi\)
\(180\) −14.0107 −0.00580163
\(181\) 2787.76 1.14482 0.572410 0.819968i \(-0.306009\pi\)
0.572410 + 0.819968i \(0.306009\pi\)
\(182\) 0 0
\(183\) −751.447 −0.303544
\(184\) 1354.11 0.542534
\(185\) −759.611 −0.301880
\(186\) −6402.27 −2.52385
\(187\) 420.778 0.164547
\(188\) −1611.15 −0.625028
\(189\) 0 0
\(190\) −4690.82 −1.79109
\(191\) −911.917 −0.345466 −0.172733 0.984969i \(-0.555260\pi\)
−0.172733 + 0.984969i \(0.555260\pi\)
\(192\) 707.810 0.266051
\(193\) 4454.66 1.66142 0.830709 0.556707i \(-0.187935\pi\)
0.830709 + 0.556707i \(0.187935\pi\)
\(194\) −3418.92 −1.26528
\(195\) −4409.33 −1.61928
\(196\) 0 0
\(197\) −1377.46 −0.498171 −0.249086 0.968481i \(-0.580130\pi\)
−0.249086 + 0.968481i \(0.580130\pi\)
\(198\) 10.4224 0.00374084
\(199\) 94.3572 0.0336121 0.0168060 0.999859i \(-0.494650\pi\)
0.0168060 + 0.999859i \(0.494650\pi\)
\(200\) −225.224 −0.0796288
\(201\) 3454.43 1.21222
\(202\) −1949.71 −0.679113
\(203\) 0 0
\(204\) −1060.46 −0.363957
\(205\) 226.292 0.0770971
\(206\) −2697.95 −0.912499
\(207\) −36.3876 −0.0122179
\(208\) −6609.13 −2.20318
\(209\) 1400.12 0.463388
\(210\) 0 0
\(211\) 1174.19 0.383101 0.191550 0.981483i \(-0.438648\pi\)
0.191550 + 0.981483i \(0.438648\pi\)
\(212\) −170.800 −0.0553330
\(213\) −3762.57 −1.21036
\(214\) 7453.35 2.38084
\(215\) 1833.40 0.581565
\(216\) 1359.74 0.428326
\(217\) 0 0
\(218\) −5441.56 −1.69059
\(219\) −2156.27 −0.665331
\(220\) 594.563 0.182206
\(221\) 3235.11 0.984692
\(222\) −1424.10 −0.430539
\(223\) −88.5875 −0.0266021 −0.0133010 0.999912i \(-0.504234\pi\)
−0.0133010 + 0.999912i \(0.504234\pi\)
\(224\) 0 0
\(225\) 6.05223 0.00179325
\(226\) 1947.32 0.573159
\(227\) −883.312 −0.258271 −0.129135 0.991627i \(-0.541220\pi\)
−0.129135 + 0.991627i \(0.541220\pi\)
\(228\) −3528.64 −1.02495
\(229\) −1240.26 −0.357898 −0.178949 0.983858i \(-0.557270\pi\)
−0.178949 + 0.983858i \(0.557270\pi\)
\(230\) −5173.40 −1.48315
\(231\) 0 0
\(232\) −1126.73 −0.318851
\(233\) −5479.93 −1.54078 −0.770392 0.637571i \(-0.779939\pi\)
−0.770392 + 0.637571i \(0.779939\pi\)
\(234\) 80.1315 0.0223861
\(235\) −3030.01 −0.841090
\(236\) 366.174 0.101000
\(237\) −2372.55 −0.650269
\(238\) 0 0
\(239\) 594.006 0.160766 0.0803830 0.996764i \(-0.474386\pi\)
0.0803830 + 0.996764i \(0.474386\pi\)
\(240\) 4074.36 1.09583
\(241\) −308.785 −0.0825336 −0.0412668 0.999148i \(-0.513139\pi\)
−0.0412668 + 0.999148i \(0.513139\pi\)
\(242\) −442.288 −0.117485
\(243\) −72.7302 −0.0192002
\(244\) 779.039 0.204397
\(245\) 0 0
\(246\) 424.247 0.109955
\(247\) 10764.7 2.77303
\(248\) −3267.24 −0.836573
\(249\) 1839.57 0.468185
\(250\) 5467.14 1.38309
\(251\) −3487.59 −0.877031 −0.438515 0.898724i \(-0.644495\pi\)
−0.438515 + 0.898724i \(0.644495\pi\)
\(252\) 0 0
\(253\) 1544.16 0.383717
\(254\) 8251.58 2.03839
\(255\) −1994.36 −0.489772
\(256\) 5362.66 1.30924
\(257\) −451.445 −0.109574 −0.0547868 0.998498i \(-0.517448\pi\)
−0.0547868 + 0.998498i \(0.517448\pi\)
\(258\) 3437.21 0.829425
\(259\) 0 0
\(260\) 4571.24 1.09037
\(261\) 30.2775 0.00718057
\(262\) 4292.08 1.01208
\(263\) −5878.61 −1.37829 −0.689146 0.724622i \(-0.742014\pi\)
−0.689146 + 0.724622i \(0.742014\pi\)
\(264\) −548.699 −0.127917
\(265\) −321.216 −0.0744609
\(266\) 0 0
\(267\) −6443.09 −1.47682
\(268\) −3581.27 −0.816272
\(269\) 52.8516 0.0119792 0.00598962 0.999982i \(-0.498093\pi\)
0.00598962 + 0.999982i \(0.498093\pi\)
\(270\) −5194.90 −1.17093
\(271\) 6822.19 1.52922 0.764610 0.644493i \(-0.222931\pi\)
0.764610 + 0.644493i \(0.222931\pi\)
\(272\) −2989.34 −0.666381
\(273\) 0 0
\(274\) −9832.98 −2.16800
\(275\) −256.835 −0.0563189
\(276\) −3891.66 −0.848733
\(277\) 469.032 0.101738 0.0508689 0.998705i \(-0.483801\pi\)
0.0508689 + 0.998705i \(0.483801\pi\)
\(278\) 64.8810 0.0139975
\(279\) 87.7972 0.0188397
\(280\) 0 0
\(281\) −2305.05 −0.489352 −0.244676 0.969605i \(-0.578682\pi\)
−0.244676 + 0.969605i \(0.578682\pi\)
\(282\) −5680.61 −1.19956
\(283\) 7370.80 1.54823 0.774114 0.633046i \(-0.218195\pi\)
0.774114 + 0.633046i \(0.218195\pi\)
\(284\) 3900.73 0.815020
\(285\) −6636.14 −1.37927
\(286\) −3400.49 −0.703060
\(287\) 0 0
\(288\) −54.0408 −0.0110569
\(289\) −3449.74 −0.702167
\(290\) 4304.69 0.871656
\(291\) −4836.77 −0.974352
\(292\) 2235.45 0.448013
\(293\) −1758.90 −0.350702 −0.175351 0.984506i \(-0.556106\pi\)
−0.175351 + 0.984506i \(0.556106\pi\)
\(294\) 0 0
\(295\) 688.646 0.135914
\(296\) −726.757 −0.142709
\(297\) 1550.58 0.302941
\(298\) −5548.20 −1.07852
\(299\) 11872.1 2.29626
\(300\) 647.286 0.124570
\(301\) 0 0
\(302\) −7123.63 −1.35735
\(303\) −2758.27 −0.522965
\(304\) −9946.89 −1.87662
\(305\) 1465.10 0.275054
\(306\) 36.2439 0.00677099
\(307\) −3468.10 −0.644739 −0.322369 0.946614i \(-0.604479\pi\)
−0.322369 + 0.946614i \(0.604479\pi\)
\(308\) 0 0
\(309\) −3816.81 −0.702688
\(310\) 12482.5 2.28697
\(311\) −1983.98 −0.361741 −0.180870 0.983507i \(-0.557891\pi\)
−0.180870 + 0.983507i \(0.557891\pi\)
\(312\) −4218.62 −0.765488
\(313\) 10094.2 1.82287 0.911436 0.411443i \(-0.134975\pi\)
0.911436 + 0.411443i \(0.134975\pi\)
\(314\) −5681.03 −1.02102
\(315\) 0 0
\(316\) 2459.67 0.437871
\(317\) −3051.34 −0.540633 −0.270316 0.962772i \(-0.587128\pi\)
−0.270316 + 0.962772i \(0.587128\pi\)
\(318\) −602.209 −0.106196
\(319\) −1284.87 −0.225513
\(320\) −1380.02 −0.241080
\(321\) 10544.3 1.83342
\(322\) 0 0
\(323\) 4868.91 0.838741
\(324\) −3870.31 −0.663633
\(325\) −1974.65 −0.337027
\(326\) 12693.7 2.15656
\(327\) −7698.23 −1.30187
\(328\) 216.504 0.0364465
\(329\) 0 0
\(330\) 2096.31 0.349692
\(331\) −26.9826 −0.00448066 −0.00224033 0.999997i \(-0.500713\pi\)
−0.00224033 + 0.999997i \(0.500713\pi\)
\(332\) −1907.12 −0.315261
\(333\) 19.5294 0.00321383
\(334\) −8147.25 −1.33472
\(335\) −6735.13 −1.09845
\(336\) 0 0
\(337\) 6818.62 1.10218 0.551089 0.834447i \(-0.314213\pi\)
0.551089 + 0.834447i \(0.314213\pi\)
\(338\) −18113.7 −2.91496
\(339\) 2754.90 0.441373
\(340\) 2067.59 0.329797
\(341\) −3725.80 −0.591681
\(342\) 120.600 0.0190681
\(343\) 0 0
\(344\) 1754.10 0.274926
\(345\) −7318.86 −1.14213
\(346\) −3684.66 −0.572510
\(347\) 11907.0 1.84208 0.921038 0.389473i \(-0.127343\pi\)
0.921038 + 0.389473i \(0.127343\pi\)
\(348\) 3238.18 0.498806
\(349\) 4352.72 0.667609 0.333805 0.942642i \(-0.391667\pi\)
0.333805 + 0.942642i \(0.391667\pi\)
\(350\) 0 0
\(351\) 11921.5 1.81288
\(352\) 2293.30 0.347253
\(353\) 1326.31 0.199978 0.0999891 0.994989i \(-0.468119\pi\)
0.0999891 + 0.994989i \(0.468119\pi\)
\(354\) 1291.06 0.193839
\(355\) 7335.91 1.09676
\(356\) 6679.68 0.994444
\(357\) 0 0
\(358\) 2727.73 0.402696
\(359\) −8292.92 −1.21917 −0.609587 0.792719i \(-0.708665\pi\)
−0.609587 + 0.792719i \(0.708665\pi\)
\(360\) −25.2096 −0.00369073
\(361\) 9342.06 1.36201
\(362\) −10190.0 −1.47949
\(363\) −625.709 −0.0904717
\(364\) 0 0
\(365\) 4204.10 0.602885
\(366\) 2746.74 0.392280
\(367\) 11027.5 1.56848 0.784241 0.620457i \(-0.213053\pi\)
0.784241 + 0.620457i \(0.213053\pi\)
\(368\) −10970.2 −1.55397
\(369\) −5.81790 −0.000820780 0
\(370\) 2776.59 0.390130
\(371\) 0 0
\(372\) 9389.92 1.30872
\(373\) 8245.72 1.14463 0.572316 0.820034i \(-0.306045\pi\)
0.572316 + 0.820034i \(0.306045\pi\)
\(374\) −1538.06 −0.212650
\(375\) 7734.41 1.06508
\(376\) −2898.96 −0.397613
\(377\) −9878.58 −1.34953
\(378\) 0 0
\(379\) 10163.4 1.37747 0.688734 0.725014i \(-0.258167\pi\)
0.688734 + 0.725014i \(0.258167\pi\)
\(380\) 6879.81 0.928755
\(381\) 11673.6 1.56970
\(382\) 3333.31 0.446458
\(383\) −14338.9 −1.91301 −0.956506 0.291714i \(-0.905774\pi\)
−0.956506 + 0.291714i \(0.905774\pi\)
\(384\) 6037.48 0.802341
\(385\) 0 0
\(386\) −16283.0 −2.14711
\(387\) −47.1361 −0.00619138
\(388\) 5014.37 0.656098
\(389\) −2382.91 −0.310587 −0.155294 0.987868i \(-0.549632\pi\)
−0.155294 + 0.987868i \(0.549632\pi\)
\(390\) 16117.3 2.09265
\(391\) 5369.82 0.694535
\(392\) 0 0
\(393\) 6072.04 0.779374
\(394\) 5034.98 0.643804
\(395\) 4625.78 0.589236
\(396\) −15.2860 −0.00193978
\(397\) 9868.22 1.24754 0.623768 0.781609i \(-0.285601\pi\)
0.623768 + 0.781609i \(0.285601\pi\)
\(398\) −344.901 −0.0434380
\(399\) 0 0
\(400\) 1824.64 0.228080
\(401\) −5879.12 −0.732143 −0.366072 0.930587i \(-0.619298\pi\)
−0.366072 + 0.930587i \(0.619298\pi\)
\(402\) −12626.9 −1.56660
\(403\) −28645.4 −3.54077
\(404\) 2859.55 0.352148
\(405\) −7278.71 −0.893042
\(406\) 0 0
\(407\) −828.758 −0.100934
\(408\) −1908.10 −0.231532
\(409\) −5680.84 −0.686796 −0.343398 0.939190i \(-0.611578\pi\)
−0.343398 + 0.939190i \(0.611578\pi\)
\(410\) −827.158 −0.0996352
\(411\) −13910.8 −1.66951
\(412\) 3956.96 0.473168
\(413\) 0 0
\(414\) 133.007 0.0157897
\(415\) −3586.62 −0.424242
\(416\) 17631.8 2.07805
\(417\) 91.7878 0.0107791
\(418\) −5117.81 −0.598853
\(419\) 1098.50 0.128079 0.0640395 0.997947i \(-0.479602\pi\)
0.0640395 + 0.997947i \(0.479602\pi\)
\(420\) 0 0
\(421\) −5265.06 −0.609509 −0.304754 0.952431i \(-0.598574\pi\)
−0.304754 + 0.952431i \(0.598574\pi\)
\(422\) −4291.97 −0.495095
\(423\) 77.9008 0.00895430
\(424\) −307.323 −0.0352003
\(425\) −893.143 −0.101938
\(426\) 13753.2 1.56419
\(427\) 0 0
\(428\) −10931.5 −1.23457
\(429\) −4810.70 −0.541406
\(430\) −6701.56 −0.751577
\(431\) 4273.45 0.477598 0.238799 0.971069i \(-0.423246\pi\)
0.238799 + 0.971069i \(0.423246\pi\)
\(432\) −11015.8 −1.22685
\(433\) 8560.19 0.950061 0.475031 0.879969i \(-0.342437\pi\)
0.475031 + 0.879969i \(0.342437\pi\)
\(434\) 0 0
\(435\) 6089.89 0.671236
\(436\) 7980.90 0.876642
\(437\) 17867.8 1.95591
\(438\) 7881.77 0.859830
\(439\) −12664.2 −1.37684 −0.688419 0.725314i \(-0.741695\pi\)
−0.688419 + 0.725314i \(0.741695\pi\)
\(440\) 1069.80 0.115911
\(441\) 0 0
\(442\) −11825.2 −1.27255
\(443\) 12368.9 1.32656 0.663279 0.748372i \(-0.269164\pi\)
0.663279 + 0.748372i \(0.269164\pi\)
\(444\) 2088.67 0.223252
\(445\) 12562.2 1.33821
\(446\) 323.812 0.0343788
\(447\) −7849.09 −0.830535
\(448\) 0 0
\(449\) −2092.69 −0.219956 −0.109978 0.993934i \(-0.535078\pi\)
−0.109978 + 0.993934i \(0.535078\pi\)
\(450\) −22.1225 −0.00231748
\(451\) 246.891 0.0257775
\(452\) −2856.05 −0.297207
\(453\) −10077.9 −1.04525
\(454\) 3228.75 0.333772
\(455\) 0 0
\(456\) −6349.12 −0.652028
\(457\) 7825.71 0.801031 0.400515 0.916290i \(-0.368831\pi\)
0.400515 + 0.916290i \(0.368831\pi\)
\(458\) 4533.49 0.462525
\(459\) 5392.13 0.548329
\(460\) 7587.60 0.769073
\(461\) −4775.60 −0.482477 −0.241238 0.970466i \(-0.577554\pi\)
−0.241238 + 0.970466i \(0.577554\pi\)
\(462\) 0 0
\(463\) 11518.3 1.15615 0.578077 0.815982i \(-0.303803\pi\)
0.578077 + 0.815982i \(0.303803\pi\)
\(464\) 9128.12 0.913280
\(465\) 17659.2 1.76113
\(466\) 20030.7 1.99121
\(467\) 7420.17 0.735256 0.367628 0.929973i \(-0.380170\pi\)
0.367628 + 0.929973i \(0.380170\pi\)
\(468\) −117.525 −0.0116081
\(469\) 0 0
\(470\) 11075.5 1.08697
\(471\) −8037.00 −0.786253
\(472\) 658.861 0.0642512
\(473\) 2000.29 0.194447
\(474\) 8672.32 0.840365
\(475\) −2971.89 −0.287073
\(476\) 0 0
\(477\) 8.25837 0.000792715 0
\(478\) −2171.26 −0.207764
\(479\) −10159.2 −0.969076 −0.484538 0.874770i \(-0.661012\pi\)
−0.484538 + 0.874770i \(0.661012\pi\)
\(480\) −10869.5 −1.03359
\(481\) −6371.82 −0.604013
\(482\) 1128.69 0.106661
\(483\) 0 0
\(484\) 648.685 0.0609208
\(485\) 9430.29 0.882902
\(486\) 265.849 0.0248131
\(487\) −12344.9 −1.14866 −0.574331 0.818623i \(-0.694738\pi\)
−0.574331 + 0.818623i \(0.694738\pi\)
\(488\) 1401.73 0.130028
\(489\) 17957.9 1.66070
\(490\) 0 0
\(491\) 15344.9 1.41040 0.705200 0.709009i \(-0.250857\pi\)
0.705200 + 0.709009i \(0.250857\pi\)
\(492\) −622.225 −0.0570164
\(493\) −4468.13 −0.408183
\(494\) −39347.8 −3.58369
\(495\) −28.7477 −0.00261033
\(496\) 26469.3 2.39618
\(497\) 0 0
\(498\) −6724.13 −0.605051
\(499\) −5022.76 −0.450601 −0.225300 0.974289i \(-0.572336\pi\)
−0.225300 + 0.974289i \(0.572336\pi\)
\(500\) −8018.41 −0.717188
\(501\) −11526.0 −1.02783
\(502\) 12748.1 1.13342
\(503\) −8735.90 −0.774383 −0.387191 0.921999i \(-0.626555\pi\)
−0.387191 + 0.921999i \(0.626555\pi\)
\(504\) 0 0
\(505\) 5377.82 0.473881
\(506\) −5644.33 −0.495891
\(507\) −25625.6 −2.24472
\(508\) −12102.2 −1.05699
\(509\) 21805.5 1.89884 0.949420 0.314008i \(-0.101672\pi\)
0.949420 + 0.314008i \(0.101672\pi\)
\(510\) 7289.94 0.632949
\(511\) 0 0
\(512\) −10261.7 −0.885760
\(513\) 17942.1 1.54417
\(514\) 1650.16 0.141606
\(515\) 7441.66 0.636735
\(516\) −5041.21 −0.430091
\(517\) −3305.83 −0.281219
\(518\) 0 0
\(519\) −5212.72 −0.440873
\(520\) 8225.08 0.693642
\(521\) 4732.28 0.397936 0.198968 0.980006i \(-0.436241\pi\)
0.198968 + 0.980006i \(0.436241\pi\)
\(522\) −110.673 −0.00927970
\(523\) 7511.23 0.627998 0.313999 0.949423i \(-0.398331\pi\)
0.313999 + 0.949423i \(0.398331\pi\)
\(524\) −6295.00 −0.524806
\(525\) 0 0
\(526\) 21487.9 1.78121
\(527\) −12956.5 −1.07095
\(528\) 4445.24 0.366391
\(529\) 7539.02 0.619629
\(530\) 1174.13 0.0962283
\(531\) −17.7049 −0.00144695
\(532\) 0 0
\(533\) 1898.20 0.154259
\(534\) 23551.3 1.90855
\(535\) −20558.4 −1.66134
\(536\) −6443.82 −0.519274
\(537\) 3858.95 0.310104
\(538\) −193.187 −0.0154812
\(539\) 0 0
\(540\) 7619.13 0.607176
\(541\) −598.410 −0.0475557 −0.0237779 0.999717i \(-0.507569\pi\)
−0.0237779 + 0.999717i \(0.507569\pi\)
\(542\) −24937.0 −1.97626
\(543\) −14415.9 −1.13931
\(544\) 7974.95 0.628535
\(545\) 15009.3 1.17968
\(546\) 0 0
\(547\) −14042.3 −1.09763 −0.548816 0.835943i \(-0.684921\pi\)
−0.548816 + 0.835943i \(0.684921\pi\)
\(548\) 14421.6 1.12420
\(549\) −37.6674 −0.00292824
\(550\) 938.801 0.0727829
\(551\) −14867.5 −1.14950
\(552\) −7002.31 −0.539924
\(553\) 0 0
\(554\) −1714.44 −0.131479
\(555\) 3928.06 0.300427
\(556\) −95.1581 −0.00725828
\(557\) 4965.87 0.377757 0.188878 0.982000i \(-0.439515\pi\)
0.188878 + 0.982000i \(0.439515\pi\)
\(558\) −320.923 −0.0243472
\(559\) 15379.0 1.16362
\(560\) 0 0
\(561\) −2175.90 −0.163755
\(562\) 8425.60 0.632406
\(563\) 15362.4 1.14999 0.574997 0.818155i \(-0.305003\pi\)
0.574997 + 0.818155i \(0.305003\pi\)
\(564\) 8331.50 0.622020
\(565\) −5371.24 −0.399947
\(566\) −26942.3 −2.00083
\(567\) 0 0
\(568\) 7018.62 0.518477
\(569\) 17735.3 1.30668 0.653341 0.757064i \(-0.273367\pi\)
0.653341 + 0.757064i \(0.273367\pi\)
\(570\) 24256.9 1.78247
\(571\) −19818.8 −1.45252 −0.726262 0.687418i \(-0.758744\pi\)
−0.726262 + 0.687418i \(0.758744\pi\)
\(572\) 4987.35 0.364566
\(573\) 4715.66 0.343804
\(574\) 0 0
\(575\) −3277.63 −0.237716
\(576\) 35.4800 0.00256655
\(577\) −6579.03 −0.474677 −0.237339 0.971427i \(-0.576275\pi\)
−0.237339 + 0.971427i \(0.576275\pi\)
\(578\) 12609.8 0.907434
\(579\) −23035.7 −1.65342
\(580\) −6313.50 −0.451989
\(581\) 0 0
\(582\) 17679.7 1.25919
\(583\) −350.455 −0.0248960
\(584\) 4022.27 0.285005
\(585\) −221.024 −0.0156209
\(586\) 6429.25 0.453225
\(587\) −13901.5 −0.977470 −0.488735 0.872432i \(-0.662541\pi\)
−0.488735 + 0.872432i \(0.662541\pi\)
\(588\) 0 0
\(589\) −43112.0 −3.01596
\(590\) −2517.19 −0.175646
\(591\) 7123.03 0.495774
\(592\) 5887.76 0.408760
\(593\) −23928.0 −1.65700 −0.828502 0.559986i \(-0.810807\pi\)
−0.828502 + 0.559986i \(0.810807\pi\)
\(594\) −5667.78 −0.391501
\(595\) 0 0
\(596\) 8137.30 0.559256
\(597\) −487.935 −0.0334503
\(598\) −43395.9 −2.96754
\(599\) 24078.9 1.64247 0.821233 0.570594i \(-0.193287\pi\)
0.821233 + 0.570594i \(0.193287\pi\)
\(600\) 1164.67 0.0792457
\(601\) 11806.6 0.801336 0.400668 0.916223i \(-0.368778\pi\)
0.400668 + 0.916223i \(0.368778\pi\)
\(602\) 0 0
\(603\) 173.158 0.0116941
\(604\) 10447.9 0.703840
\(605\) 1219.95 0.0819802
\(606\) 10082.2 0.675846
\(607\) −1957.71 −0.130908 −0.0654539 0.997856i \(-0.520850\pi\)
−0.0654539 + 0.997856i \(0.520850\pi\)
\(608\) 26536.2 1.77004
\(609\) 0 0
\(610\) −5355.35 −0.355462
\(611\) −25416.6 −1.68289
\(612\) −53.1573 −0.00351104
\(613\) −16029.2 −1.05614 −0.528069 0.849201i \(-0.677084\pi\)
−0.528069 + 0.849201i \(0.677084\pi\)
\(614\) 12676.9 0.833218
\(615\) −1170.19 −0.0767261
\(616\) 0 0
\(617\) −7153.99 −0.466789 −0.233394 0.972382i \(-0.574983\pi\)
−0.233394 + 0.972382i \(0.574983\pi\)
\(618\) 13951.5 0.908108
\(619\) 11035.9 0.716590 0.358295 0.933608i \(-0.383358\pi\)
0.358295 + 0.933608i \(0.383358\pi\)
\(620\) −18307.6 −1.18589
\(621\) 19787.9 1.27868
\(622\) 7252.00 0.467490
\(623\) 0 0
\(624\) 34176.8 2.19258
\(625\) −12161.3 −0.778321
\(626\) −36897.1 −2.35576
\(627\) −7240.22 −0.461158
\(628\) 8332.11 0.529438
\(629\) −2882.01 −0.182692
\(630\) 0 0
\(631\) −4311.46 −0.272007 −0.136004 0.990708i \(-0.543426\pi\)
−0.136004 + 0.990708i \(0.543426\pi\)
\(632\) 4425.71 0.278553
\(633\) −6071.89 −0.381258
\(634\) 11153.5 0.698678
\(635\) −22760.1 −1.42237
\(636\) 883.233 0.0550668
\(637\) 0 0
\(638\) 4696.54 0.291439
\(639\) −188.604 −0.0116762
\(640\) −11771.3 −0.727035
\(641\) 2692.13 0.165886 0.0829429 0.996554i \(-0.473568\pi\)
0.0829429 + 0.996554i \(0.473568\pi\)
\(642\) −38542.4 −2.36939
\(643\) −19694.3 −1.20788 −0.603941 0.797029i \(-0.706404\pi\)
−0.603941 + 0.797029i \(0.706404\pi\)
\(644\) 0 0
\(645\) −9480.76 −0.578767
\(646\) −17797.2 −1.08393
\(647\) 21225.5 1.28974 0.644870 0.764292i \(-0.276911\pi\)
0.644870 + 0.764292i \(0.276911\pi\)
\(648\) −6963.89 −0.422172
\(649\) 751.333 0.0454428
\(650\) 7217.88 0.435552
\(651\) 0 0
\(652\) −18617.3 −1.11827
\(653\) −12929.7 −0.774850 −0.387425 0.921901i \(-0.626635\pi\)
−0.387425 + 0.921901i \(0.626635\pi\)
\(654\) 28139.1 1.68246
\(655\) −11838.7 −0.706224
\(656\) −1753.99 −0.104393
\(657\) −108.086 −0.00641835
\(658\) 0 0
\(659\) −20835.3 −1.23161 −0.615803 0.787900i \(-0.711168\pi\)
−0.615803 + 0.787900i \(0.711168\pi\)
\(660\) −3074.57 −0.181330
\(661\) 1451.06 0.0853850 0.0426925 0.999088i \(-0.486406\pi\)
0.0426925 + 0.999088i \(0.486406\pi\)
\(662\) 98.6288 0.00579051
\(663\) −16729.2 −0.979954
\(664\) −3431.50 −0.200554
\(665\) 0 0
\(666\) −71.3853 −0.00415334
\(667\) −16397.0 −0.951867
\(668\) 11949.2 0.692109
\(669\) 458.099 0.0264741
\(670\) 24618.7 1.41956
\(671\) 1598.47 0.0919645
\(672\) 0 0
\(673\) −28986.0 −1.66022 −0.830111 0.557598i \(-0.811723\pi\)
−0.830111 + 0.557598i \(0.811723\pi\)
\(674\) −24923.9 −1.42438
\(675\) −3291.25 −0.187675
\(676\) 26566.6 1.51153
\(677\) −24818.6 −1.40895 −0.704474 0.709730i \(-0.748817\pi\)
−0.704474 + 0.709730i \(0.748817\pi\)
\(678\) −10069.9 −0.570401
\(679\) 0 0
\(680\) 3720.24 0.209801
\(681\) 4567.74 0.257028
\(682\) 13618.8 0.764650
\(683\) −7450.70 −0.417413 −0.208706 0.977978i \(-0.566925\pi\)
−0.208706 + 0.977978i \(0.566925\pi\)
\(684\) −176.878 −0.00988758
\(685\) 27122.0 1.51282
\(686\) 0 0
\(687\) 6413.57 0.356176
\(688\) −14210.7 −0.787467
\(689\) −2694.44 −0.148984
\(690\) 26752.4 1.47601
\(691\) 28469.1 1.56731 0.783657 0.621193i \(-0.213352\pi\)
0.783657 + 0.621193i \(0.213352\pi\)
\(692\) 5404.13 0.296870
\(693\) 0 0
\(694\) −43523.3 −2.38058
\(695\) −178.959 −0.00976736
\(696\) 5826.49 0.317317
\(697\) 858.563 0.0466577
\(698\) −15910.4 −0.862775
\(699\) 28337.6 1.53337
\(700\) 0 0
\(701\) 20045.7 1.08005 0.540027 0.841648i \(-0.318414\pi\)
0.540027 + 0.841648i \(0.318414\pi\)
\(702\) −43576.2 −2.34285
\(703\) −9589.73 −0.514486
\(704\) −1505.64 −0.0806052
\(705\) 15668.6 0.837043
\(706\) −4848.02 −0.258439
\(707\) 0 0
\(708\) −1893.54 −0.100514
\(709\) 15326.9 0.811868 0.405934 0.913902i \(-0.366946\pi\)
0.405934 + 0.913902i \(0.366946\pi\)
\(710\) −26814.8 −1.41738
\(711\) −118.928 −0.00627304
\(712\) 12018.8 0.632618
\(713\) −47547.3 −2.49742
\(714\) 0 0
\(715\) 9379.47 0.490591
\(716\) −4000.64 −0.208814
\(717\) −3071.70 −0.159992
\(718\) 30312.9 1.57558
\(719\) 11023.4 0.571770 0.285885 0.958264i \(-0.407712\pi\)
0.285885 + 0.958264i \(0.407712\pi\)
\(720\) 204.233 0.0105713
\(721\) 0 0
\(722\) −34147.8 −1.76018
\(723\) 1596.77 0.0821365
\(724\) 14945.3 0.767177
\(725\) 2727.26 0.139707
\(726\) 2287.14 0.116920
\(727\) −28755.9 −1.46698 −0.733492 0.679699i \(-0.762111\pi\)
−0.733492 + 0.679699i \(0.762111\pi\)
\(728\) 0 0
\(729\) 19868.3 1.00942
\(730\) −15367.2 −0.779129
\(731\) 6956.00 0.351952
\(732\) −4028.53 −0.203413
\(733\) −21500.9 −1.08343 −0.541714 0.840563i \(-0.682225\pi\)
−0.541714 + 0.840563i \(0.682225\pi\)
\(734\) −40308.7 −2.02700
\(735\) 0 0
\(736\) 29266.3 1.46572
\(737\) −7348.21 −0.367266
\(738\) 21.2660 0.00106072
\(739\) −2598.63 −0.129353 −0.0646767 0.997906i \(-0.520602\pi\)
−0.0646767 + 0.997906i \(0.520602\pi\)
\(740\) −4072.30 −0.202298
\(741\) −55665.7 −2.75969
\(742\) 0 0
\(743\) 29920.5 1.47736 0.738678 0.674058i \(-0.235450\pi\)
0.738678 + 0.674058i \(0.235450\pi\)
\(744\) 16895.4 0.832547
\(745\) 15303.4 0.752583
\(746\) −30140.4 −1.47925
\(747\) 92.2112 0.00451651
\(748\) 2255.80 0.110268
\(749\) 0 0
\(750\) −28271.4 −1.37643
\(751\) 17763.1 0.863096 0.431548 0.902090i \(-0.357968\pi\)
0.431548 + 0.902090i \(0.357968\pi\)
\(752\) 23485.7 1.13888
\(753\) 18034.8 0.872810
\(754\) 36108.9 1.74404
\(755\) 19648.9 0.947147
\(756\) 0 0
\(757\) 6472.04 0.310740 0.155370 0.987856i \(-0.450343\pi\)
0.155370 + 0.987856i \(0.450343\pi\)
\(758\) −37150.1 −1.78015
\(759\) −7985.08 −0.381871
\(760\) 12378.9 0.590830
\(761\) 33720.2 1.60625 0.803126 0.595809i \(-0.203169\pi\)
0.803126 + 0.595809i \(0.203169\pi\)
\(762\) −42670.1 −2.02858
\(763\) 0 0
\(764\) −4888.81 −0.231507
\(765\) −99.9703 −0.00472475
\(766\) 52412.6 2.47225
\(767\) 5776.55 0.271941
\(768\) −27731.1 −1.30294
\(769\) 9361.49 0.438991 0.219495 0.975614i \(-0.429559\pi\)
0.219495 + 0.975614i \(0.429559\pi\)
\(770\) 0 0
\(771\) 2334.49 0.109046
\(772\) 23881.6 1.11336
\(773\) −34886.0 −1.62324 −0.811618 0.584188i \(-0.801413\pi\)
−0.811618 + 0.584188i \(0.801413\pi\)
\(774\) 172.295 0.00800133
\(775\) 7908.38 0.366551
\(776\) 9022.42 0.417379
\(777\) 0 0
\(778\) 8710.20 0.401383
\(779\) 2856.83 0.131395
\(780\) −23638.6 −1.08512
\(781\) 8003.69 0.366702
\(782\) −19628.2 −0.897572
\(783\) −16465.2 −0.751490
\(784\) 0 0
\(785\) 15669.8 0.712458
\(786\) −22195.0 −1.00721
\(787\) 9526.64 0.431497 0.215748 0.976449i \(-0.430781\pi\)
0.215748 + 0.976449i \(0.430781\pi\)
\(788\) −7384.58 −0.333839
\(789\) 30399.2 1.37166
\(790\) −16908.5 −0.761490
\(791\) 0 0
\(792\) −27.5044 −0.00123400
\(793\) 12289.7 0.550339
\(794\) −36071.1 −1.61223
\(795\) 1661.05 0.0741026
\(796\) 505.852 0.0225244
\(797\) 33267.9 1.47856 0.739278 0.673400i \(-0.235167\pi\)
0.739278 + 0.673400i \(0.235167\pi\)
\(798\) 0 0
\(799\) −11496.0 −0.509012
\(800\) −4867.75 −0.215126
\(801\) −322.970 −0.0142467
\(802\) 21489.8 0.946174
\(803\) 4586.80 0.201575
\(804\) 18519.3 0.812345
\(805\) 0 0
\(806\) 104707. 4.57586
\(807\) −273.303 −0.0119216
\(808\) 5145.22 0.224020
\(809\) 17949.6 0.780069 0.390035 0.920800i \(-0.372463\pi\)
0.390035 + 0.920800i \(0.372463\pi\)
\(810\) 26605.7 1.15411
\(811\) −10877.9 −0.470991 −0.235495 0.971875i \(-0.575671\pi\)
−0.235495 + 0.971875i \(0.575671\pi\)
\(812\) 0 0
\(813\) −35278.6 −1.52186
\(814\) 3029.34 0.130440
\(815\) −35012.7 −1.50484
\(816\) 15458.3 0.663174
\(817\) 23145.7 0.991147
\(818\) 20765.0 0.887570
\(819\) 0 0
\(820\) 1213.16 0.0516650
\(821\) −4519.04 −0.192102 −0.0960509 0.995376i \(-0.530621\pi\)
−0.0960509 + 0.995376i \(0.530621\pi\)
\(822\) 50847.8 2.15757
\(823\) 36987.7 1.56660 0.783300 0.621644i \(-0.213535\pi\)
0.783300 + 0.621644i \(0.213535\pi\)
\(824\) 7119.80 0.301007
\(825\) 1328.13 0.0560480
\(826\) 0 0
\(827\) 15325.3 0.644392 0.322196 0.946673i \(-0.395579\pi\)
0.322196 + 0.946673i \(0.395579\pi\)
\(828\) −195.075 −0.00818760
\(829\) −26546.3 −1.11217 −0.556087 0.831124i \(-0.687698\pi\)
−0.556087 + 0.831124i \(0.687698\pi\)
\(830\) 13110.1 0.548263
\(831\) −2425.43 −0.101248
\(832\) −11576.0 −0.482362
\(833\) 0 0
\(834\) −335.509 −0.0139301
\(835\) 22472.3 0.931361
\(836\) 7506.07 0.310530
\(837\) −47744.9 −1.97169
\(838\) −4015.31 −0.165521
\(839\) −11906.5 −0.489938 −0.244969 0.969531i \(-0.578778\pi\)
−0.244969 + 0.969531i \(0.578778\pi\)
\(840\) 0 0
\(841\) −10745.3 −0.440581
\(842\) 19245.2 0.787689
\(843\) 11919.8 0.486997
\(844\) 6294.85 0.256727
\(845\) 49962.5 2.03404
\(846\) −284.749 −0.0115719
\(847\) 0 0
\(848\) 2489.75 0.100824
\(849\) −38115.5 −1.54078
\(850\) 3264.68 0.131738
\(851\) −10576.3 −0.426030
\(852\) −20171.2 −0.811098
\(853\) 6859.53 0.275341 0.137670 0.990478i \(-0.456039\pi\)
0.137670 + 0.990478i \(0.456039\pi\)
\(854\) 0 0
\(855\) −332.646 −0.0133056
\(856\) −19669.2 −0.785372
\(857\) −5193.59 −0.207013 −0.103506 0.994629i \(-0.533006\pi\)
−0.103506 + 0.994629i \(0.533006\pi\)
\(858\) 17584.4 0.699677
\(859\) −5265.73 −0.209155 −0.104578 0.994517i \(-0.533349\pi\)
−0.104578 + 0.994517i \(0.533349\pi\)
\(860\) 9828.89 0.389724
\(861\) 0 0
\(862\) −15620.6 −0.617216
\(863\) −16016.7 −0.631767 −0.315884 0.948798i \(-0.602301\pi\)
−0.315884 + 0.948798i \(0.602301\pi\)
\(864\) 29387.9 1.15717
\(865\) 10163.3 0.399494
\(866\) −31289.8 −1.22780
\(867\) 17839.1 0.698788
\(868\) 0 0
\(869\) 5046.86 0.197011
\(870\) −22260.2 −0.867462
\(871\) −56496.0 −2.19781
\(872\) 14360.1 0.557678
\(873\) −242.450 −0.00939943
\(874\) −65311.7 −2.52769
\(875\) 0 0
\(876\) −11559.8 −0.445857
\(877\) −11195.5 −0.431065 −0.215533 0.976497i \(-0.569149\pi\)
−0.215533 + 0.976497i \(0.569149\pi\)
\(878\) 46291.3 1.77933
\(879\) 9095.51 0.349015
\(880\) −8666.92 −0.332002
\(881\) −45542.5 −1.74162 −0.870809 0.491621i \(-0.836405\pi\)
−0.870809 + 0.491621i \(0.836405\pi\)
\(882\) 0 0
\(883\) 10394.9 0.396167 0.198083 0.980185i \(-0.436528\pi\)
0.198083 + 0.980185i \(0.436528\pi\)
\(884\) 17343.5 0.659871
\(885\) −3561.09 −0.135260
\(886\) −45211.8 −1.71436
\(887\) 4020.51 0.152193 0.0760967 0.997100i \(-0.475754\pi\)
0.0760967 + 0.997100i \(0.475754\pi\)
\(888\) 3758.17 0.142022
\(889\) 0 0
\(890\) −45918.1 −1.72941
\(891\) −7941.28 −0.298589
\(892\) −474.920 −0.0178268
\(893\) −38252.5 −1.43345
\(894\) 28690.6 1.07333
\(895\) −7523.82 −0.280998
\(896\) 0 0
\(897\) −61392.5 −2.28521
\(898\) 7649.36 0.284257
\(899\) 39563.3 1.46775
\(900\) 32.4462 0.00120171
\(901\) −1218.71 −0.0450623
\(902\) −902.453 −0.0333131
\(903\) 0 0
\(904\) −5138.93 −0.189069
\(905\) 28106.8 1.03238
\(906\) 36837.3 1.35082
\(907\) −23907.5 −0.875231 −0.437615 0.899162i \(-0.644177\pi\)
−0.437615 + 0.899162i \(0.644177\pi\)
\(908\) −4735.46 −0.173075
\(909\) −138.262 −0.00504496
\(910\) 0 0
\(911\) 40571.4 1.47551 0.737755 0.675069i \(-0.235886\pi\)
0.737755 + 0.675069i \(0.235886\pi\)
\(912\) 51436.9 1.86759
\(913\) −3913.11 −0.141846
\(914\) −28605.1 −1.03520
\(915\) −7576.26 −0.273731
\(916\) −6649.07 −0.239838
\(917\) 0 0
\(918\) −19709.7 −0.708625
\(919\) 20551.0 0.737667 0.368834 0.929495i \(-0.379757\pi\)
0.368834 + 0.929495i \(0.379757\pi\)
\(920\) 13652.5 0.489248
\(921\) 17934.1 0.641637
\(922\) 17456.1 0.623521
\(923\) 61535.6 2.19444
\(924\) 0 0
\(925\) 1759.12 0.0625292
\(926\) −42102.4 −1.49414
\(927\) −191.323 −0.00677872
\(928\) −24351.9 −0.861413
\(929\) −34068.4 −1.20317 −0.601587 0.798807i \(-0.705465\pi\)
−0.601587 + 0.798807i \(0.705465\pi\)
\(930\) −64549.1 −2.27597
\(931\) 0 0
\(932\) −29378.1 −1.03252
\(933\) 10259.5 0.360000
\(934\) −27122.8 −0.950197
\(935\) 4242.38 0.148386
\(936\) −211.465 −0.00738455
\(937\) −15597.9 −0.543824 −0.271912 0.962322i \(-0.587656\pi\)
−0.271912 + 0.962322i \(0.587656\pi\)
\(938\) 0 0
\(939\) −52198.7 −1.81410
\(940\) −16244.0 −0.563639
\(941\) 22855.3 0.791775 0.395887 0.918299i \(-0.370437\pi\)
0.395887 + 0.918299i \(0.370437\pi\)
\(942\) 29377.4 1.01610
\(943\) 3150.73 0.108804
\(944\) −5337.71 −0.184034
\(945\) 0 0
\(946\) −7311.59 −0.251290
\(947\) 36670.7 1.25833 0.629164 0.777272i \(-0.283397\pi\)
0.629164 + 0.777272i \(0.283397\pi\)
\(948\) −12719.3 −0.435764
\(949\) 35265.1 1.20628
\(950\) 10863.1 0.370994
\(951\) 15779.0 0.538031
\(952\) 0 0
\(953\) −19922.8 −0.677192 −0.338596 0.940932i \(-0.609952\pi\)
−0.338596 + 0.940932i \(0.609952\pi\)
\(954\) −30.1866 −0.00102445
\(955\) −9194.16 −0.311535
\(956\) 3184.49 0.107734
\(957\) 6644.24 0.224428
\(958\) 37134.8 1.25237
\(959\) 0 0
\(960\) 7136.30 0.239920
\(961\) 84932.7 2.85095
\(962\) 23290.8 0.780587
\(963\) 528.550 0.0176867
\(964\) −1655.41 −0.0553081
\(965\) 44913.0 1.49824
\(966\) 0 0
\(967\) 24523.8 0.815545 0.407772 0.913084i \(-0.366306\pi\)
0.407772 + 0.913084i \(0.366306\pi\)
\(968\) 1167.19 0.0387549
\(969\) −25177.9 −0.834705
\(970\) −34470.3 −1.14100
\(971\) −4493.82 −0.148520 −0.0742602 0.997239i \(-0.523660\pi\)
−0.0742602 + 0.997239i \(0.523660\pi\)
\(972\) −389.909 −0.0128666
\(973\) 0 0
\(974\) 45123.8 1.48446
\(975\) 10211.2 0.335405
\(976\) −11356.0 −0.372436
\(977\) −18285.3 −0.598771 −0.299385 0.954132i \(-0.596782\pi\)
−0.299385 + 0.954132i \(0.596782\pi\)
\(978\) −65641.1 −2.14619
\(979\) 13705.7 0.447431
\(980\) 0 0
\(981\) −385.885 −0.0125590
\(982\) −56089.9 −1.82271
\(983\) 25850.8 0.838772 0.419386 0.907808i \(-0.362245\pi\)
0.419386 + 0.907808i \(0.362245\pi\)
\(984\) −1119.58 −0.0362711
\(985\) −13887.8 −0.449242
\(986\) 16332.2 0.527509
\(987\) 0 0
\(988\) 57709.7 1.85829
\(989\) 25526.9 0.820738
\(990\) 105.081 0.00337342
\(991\) −26842.1 −0.860412 −0.430206 0.902731i \(-0.641559\pi\)
−0.430206 + 0.902731i \(0.641559\pi\)
\(992\) −70614.6 −2.26010
\(993\) 139.531 0.00445910
\(994\) 0 0
\(995\) 951.331 0.0303108
\(996\) 9861.99 0.313744
\(997\) 10468.1 0.332526 0.166263 0.986081i \(-0.446830\pi\)
0.166263 + 0.986081i \(0.446830\pi\)
\(998\) 18359.6 0.582327
\(999\) −10620.3 −0.336347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.4.a.f.1.2 4
7.6 odd 2 77.4.a.c.1.2 4
21.20 even 2 693.4.a.m.1.3 4
28.27 even 2 1232.4.a.w.1.1 4
35.34 odd 2 1925.4.a.q.1.3 4
77.76 even 2 847.4.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.2 4 7.6 odd 2
539.4.a.f.1.2 4 1.1 even 1 trivial
693.4.a.m.1.3 4 21.20 even 2
847.4.a.e.1.3 4 77.76 even 2
1232.4.a.w.1.1 4 28.27 even 2
1925.4.a.q.1.3 4 35.34 odd 2