Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{276} - 35 T_{2}^{274} - 2 T_{2}^{273} + 581 T_{2}^{272} + 159 T_{2}^{271} - 5343 T_{2}^{270} - 4308 T_{2}^{269} + 17132 T_{2}^{268} + 63229 T_{2}^{267} + 246460 T_{2}^{266} - 526200 T_{2}^{265} - 4083701 T_{2}^{264} + \cdots + 16\!\cdots\!49 \)
acting on \(S_{2}^{\mathrm{new}}(539, [\chi])\).