Properties

Label 539.2.q.d.410.2
Level $539$
Weight $2$
Character 539.410
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(214,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.214"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.9234096523681640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 410.2
Root \(-0.764115 - 1.19001i\) of defining polynomial
Character \(\chi\) \(=\) 539.410
Dual form 539.2.q.d.422.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.58102 + 1.14914i) q^{2} +(4.00286 + 4.44563i) q^{4} +(3.47668 + 10.7001i) q^{8} +(-2.74064 - 1.22021i) q^{9} +(0.750967 - 3.23049i) q^{11} +(-2.07198 + 19.7136i) q^{16} +(-5.67144 - 6.29877i) q^{18} +(5.65055 - 7.47498i) q^{22} +(-3.75233 - 6.49922i) q^{23} +(4.89074 + 1.03956i) q^{25} +(1.42225 - 4.37724i) q^{29} +(-16.7508 + 29.0132i) q^{32} +(-5.54579 - 17.0682i) q^{36} +(-8.03151 + 1.70715i) q^{37} +6.59794 q^{43} +(17.3676 - 9.59268i) q^{44} +(-2.21629 - 21.0866i) q^{46} +(11.4285 + 8.30328i) q^{50} +(-0.195430 - 1.85939i) q^{53} +(8.70093 - 9.66336i) q^{58} +(-44.5014 + 32.3322i) q^{64} +(-3.04737 + 5.27819i) q^{67} +(7.95588 + 5.78028i) q^{71} +(3.52808 - 33.5674i) q^{72} +(-22.6912 - 4.82317i) q^{74} +(-14.4367 - 6.42763i) q^{79} +(6.02218 + 6.68830i) q^{81} +(17.0294 + 7.58197i) q^{86} +(37.1775 - 3.19593i) q^{88} +(13.8731 - 42.6969i) q^{92} +(-6.00000 + 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 2 q^{4} + 32 q^{8} - 6 q^{9} + 4 q^{11} + 28 q^{16} + 9 q^{18} - 8 q^{22} + 16 q^{23} - 10 q^{25} - 8 q^{29} - 100 q^{32} - 12 q^{36} + 18 q^{37} + 48 q^{43} - 9 q^{44} + 31 q^{46} + 20 q^{50}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58102 + 1.14914i 1.82506 + 0.812567i 0.931722 + 0.363173i \(0.118307\pi\)
0.893334 + 0.449394i \(0.148360\pi\)
\(3\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(4\) 4.00286 + 4.44563i 2.00143 + 2.22281i
\(5\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.47668 + 10.7001i 1.22919 + 3.78306i
\(9\) −2.74064 1.22021i −0.913545 0.406737i
\(10\) 0 0
\(11\) 0.750967 3.23049i 0.226425 0.974029i
\(12\) 0 0
\(13\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.07198 + 19.7136i −0.517995 + 4.92839i
\(17\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(18\) −5.67144 6.29877i −1.33677 1.48463i
\(19\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.65055 7.47498i 1.20470 1.59367i
\(23\) −3.75233 6.49922i −0.782414 1.35518i −0.930532 0.366211i \(-0.880655\pi\)
0.148117 0.988970i \(-0.452679\pi\)
\(24\) 0 0
\(25\) 4.89074 + 1.03956i 0.978148 + 0.207912i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.42225 4.37724i 0.264105 0.812833i −0.727793 0.685797i \(-0.759454\pi\)
0.991898 0.127036i \(-0.0405463\pi\)
\(30\) 0 0
\(31\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(32\) −16.7508 + 29.0132i −2.96115 + 5.12886i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.54579 17.0682i −0.924298 2.84470i
\(37\) −8.03151 + 1.70715i −1.32037 + 0.280654i −0.813599 0.581426i \(-0.802495\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(42\) 0 0
\(43\) 6.59794 1.00618 0.503088 0.864235i \(-0.332197\pi\)
0.503088 + 0.864235i \(0.332197\pi\)
\(44\) 17.3676 9.59268i 2.61826 1.44615i
\(45\) 0 0
\(46\) −2.21629 21.0866i −0.326774 3.10904i
\(47\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.4285 + 8.30328i 1.61623 + 1.17426i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.195430 1.85939i −0.0268444 0.255407i −0.999711 0.0240405i \(-0.992347\pi\)
0.972867 0.231367i \(-0.0743197\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 8.70093 9.66336i 1.14249 1.26886i
\(59\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −44.5014 + 32.3322i −5.56268 + 4.04152i
\(65\) 0 0
\(66\) 0 0
\(67\) −3.04737 + 5.27819i −0.372295 + 0.644834i −0.989918 0.141640i \(-0.954762\pi\)
0.617623 + 0.786474i \(0.288096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.95588 + 5.78028i 0.944189 + 0.685993i 0.949425 0.313993i \(-0.101667\pi\)
−0.00523645 + 0.999986i \(0.501667\pi\)
\(72\) 3.52808 33.5674i 0.415788 3.95596i
\(73\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(74\) −22.6912 4.82317i −2.63780 0.560682i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.4367 6.42763i −1.62426 0.723165i −0.625868 0.779929i \(-0.715255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) 6.02218 + 6.68830i 0.669131 + 0.743145i
\(82\) 0 0
\(83\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.0294 + 7.58197i 1.83633 + 0.817585i
\(87\) 0 0
\(88\) 37.1775 3.19593i 3.96313 0.340688i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 13.8731 42.6969i 1.44637 4.45146i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(98\) 0 0
\(99\) −6.00000 + 7.93725i −0.603023 + 0.797724i
\(100\) 14.9555 + 25.9036i 1.49555 + 2.59036i
\(101\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.63230 5.02371i 0.158543 0.487945i
\(107\) −0.768043 + 0.852998i −0.0742495 + 0.0824624i −0.779125 0.626869i \(-0.784336\pi\)
0.704875 + 0.709331i \(0.251003\pi\)
\(108\) 0 0
\(109\) 2.25137 3.89948i 0.215642 0.373502i −0.737829 0.674987i \(-0.764149\pi\)
0.953471 + 0.301485i \(0.0974824\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.34450 13.3710i −0.408696 1.25784i −0.917769 0.397114i \(-0.870012\pi\)
0.509073 0.860724i \(-0.329988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 25.1527 11.1987i 2.33537 1.03977i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.87210 4.85198i −0.897463 0.441089i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.21418 + 5.96795i 0.728890 + 0.529570i 0.889212 0.457495i \(-0.151253\pi\)
−0.160322 + 0.987065i \(0.551253\pi\)
\(128\) −86.4744 + 18.3807i −7.64332 + 1.62464i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −13.9307 + 10.1213i −1.20343 + 0.874343i
\(135\) 0 0
\(136\) 0 0
\(137\) −21.2127 + 9.44452i −1.81233 + 0.806900i −0.854562 + 0.519350i \(0.826174\pi\)
−0.957766 + 0.287550i \(0.907159\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.8919 + 24.0615i 1.16578 + 2.01919i
\(143\) 0 0
\(144\) 29.7332 51.4995i 2.47777 4.29162i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −39.7384 28.8716i −3.26647 2.37323i
\(149\) −2.29963 + 21.8795i −0.188393 + 1.79244i 0.336926 + 0.941531i \(0.390613\pi\)
−0.525318 + 0.850906i \(0.676054\pi\)
\(150\) 0 0
\(151\) 12.1769 + 2.58828i 0.990941 + 0.210631i 0.674735 0.738060i \(-0.264258\pi\)
0.316206 + 0.948691i \(0.397591\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(158\) −29.8751 33.1797i −2.37674 2.63963i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 7.85752 + 24.1830i 0.617345 + 1.89999i
\(163\) 8.14628 + 3.62696i 0.638066 + 0.284085i 0.700161 0.713985i \(-0.253112\pi\)
−0.0620951 + 0.998070i \(0.519778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(168\) 0 0
\(169\) −4.01722 + 12.3637i −0.309017 + 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 26.4106 + 29.3320i 2.01379 + 2.23654i
\(173\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 62.1285 + 21.4977i 4.68311 + 1.62045i
\(177\) 0 0
\(178\) 0 0
\(179\) 23.4037 + 4.97460i 1.74927 + 0.371819i 0.967721 0.252022i \(-0.0810956\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 56.4968 62.7461i 4.16500 4.62570i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.5422 4.57894i 1.55874 0.331320i 0.653735 0.756723i \(-0.273201\pi\)
0.905004 + 0.425403i \(0.139868\pi\)
\(192\) 0 0
\(193\) −24.6688 + 10.9833i −1.77570 + 0.790592i −0.792061 + 0.610442i \(0.790992\pi\)
−0.983639 + 0.180150i \(0.942342\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0995 −1.28953 −0.644767 0.764379i \(-0.723046\pi\)
−0.644767 + 0.764379i \(0.723046\pi\)
\(198\) −24.6072 + 13.5913i −1.74875 + 0.965894i
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 5.88013 + 55.9457i 0.415788 + 3.95596i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.35335 + 22.3906i 0.163569 + 1.55626i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −17.3570 + 12.6106i −1.19490 + 0.868148i −0.993774 0.111417i \(-0.964461\pi\)
−0.201129 + 0.979565i \(0.564461\pi\)
\(212\) 7.48389 8.31171i 0.513996 0.570850i
\(213\) 0 0
\(214\) −2.96255 + 1.31901i −0.202516 + 0.0901658i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 10.2919 7.47748i 0.697054 0.506439i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(224\) 0 0
\(225\) −12.1353 8.81678i −0.809017 0.587785i
\(226\) 4.15196 39.5033i 0.276184 2.62772i
\(227\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(228\) 0 0
\(229\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 51.7817 3.39963
\(233\) 20.0980 + 8.94821i 1.31666 + 0.586216i 0.940329 0.340267i \(-0.110518\pi\)
0.376335 + 0.926484i \(0.377184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.805627 + 2.47947i 0.0521117 + 0.160383i 0.973726 0.227725i \(-0.0731287\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −19.9044 23.8675i −1.27951 1.53426i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(252\) 0 0
\(253\) −23.8135 + 7.24115i −1.49714 + 0.455247i
\(254\) 14.3429 + 24.8427i 0.899954 + 1.55877i
\(255\) 0 0
\(256\) −136.704 29.0574i −8.54403 1.81609i
\(257\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −9.23902 + 10.2610i −0.571881 + 0.635138i
\(262\) 0 0
\(263\) 14.4994 25.1137i 0.894072 1.54858i 0.0591223 0.998251i \(-0.481170\pi\)
0.834949 0.550327i \(-0.185497\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −35.6631 + 7.58042i −2.17847 + 0.463048i
\(269\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(270\) 0 0
\(271\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −65.6036 −3.96326
\(275\) 7.03106 15.0188i 0.423989 0.905667i
\(276\) 0 0
\(277\) −2.83324 26.9565i −0.170233 1.61966i −0.662396 0.749154i \(-0.730460\pi\)
0.492164 0.870503i \(-0.336206\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.95218 5.05106i −0.414733 0.301321i 0.360782 0.932650i \(-0.382510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(284\) 6.14929 + 58.5066i 0.364893 + 3.47173i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 81.3099 59.0751i 4.79123 3.48104i
\(289\) −11.3752 + 12.6335i −0.669131 + 0.743145i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −46.1897 80.0029i −2.68472 4.65007i
\(297\) 0 0
\(298\) −31.0780 + 53.8287i −1.80030 + 3.11822i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 28.4545 + 20.6734i 1.63737 + 1.18962i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −29.2133 89.9092i −1.64337 5.05779i
\(317\) 30.8113 + 13.7181i 1.73053 + 0.770483i 0.995742 + 0.0921886i \(0.0293863\pi\)
0.734791 + 0.678294i \(0.237280\pi\)
\(318\) 0 0
\(319\) −13.0725 7.88172i −0.731922 0.441292i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −5.62778 + 53.5447i −0.312654 + 2.97471i
\(325\) 0 0
\(326\) 16.8578 + 18.7225i 0.933667 + 1.03694i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.04605 5.27591i −0.167426 0.289990i 0.770088 0.637937i \(-0.220212\pi\)
−0.937514 + 0.347947i \(0.886879\pi\)
\(332\) 0 0
\(333\) 24.0945 + 5.12145i 1.32037 + 0.280654i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.08528 27.9616i 0.494907 1.52317i −0.322195 0.946673i \(-0.604421\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(338\) −24.5762 + 27.2947i −1.33677 + 1.48463i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 22.9389 + 70.5987i 1.23678 + 3.80643i
\(345\) 0 0
\(346\) 0 0
\(347\) −22.8459 + 10.1716i −1.22643 + 0.546043i −0.914702 0.404128i \(-0.867575\pi\)
−0.311729 + 0.950171i \(0.600908\pi\)
\(348\) 0 0
\(349\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 81.1475 + 75.9011i 4.32517 + 4.04554i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 54.6888 + 39.7337i 2.89039 + 2.09999i
\(359\) 32.0397 6.81025i 1.69099 0.359431i 0.740951 0.671559i \(-0.234375\pi\)
0.950040 + 0.312128i \(0.101042\pi\)
\(360\) 0 0
\(361\) 1.98604 + 18.8959i 0.104528 + 0.994522i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(368\) 135.898 60.5055i 7.08415 3.15407i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 31.4997 + 22.8859i 1.61803 + 1.17557i 0.809522 + 0.587090i \(0.199726\pi\)
0.808511 + 0.588481i \(0.200274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 60.8627 + 12.9368i 3.11401 + 0.661902i
\(383\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −76.2920 −3.88316
\(387\) −18.0825 8.05087i −0.919187 0.409249i
\(388\) 0 0
\(389\) −14.5922 16.2063i −0.739853 0.821690i 0.249323 0.968420i \(-0.419792\pi\)
−0.989177 + 0.146730i \(0.953125\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −46.7151 20.7989i −2.35347 1.04783i
\(395\) 0 0
\(396\) −59.3033 + 5.09796i −2.98010 + 0.256182i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −30.6269 + 94.2600i −1.53135 + 4.71300i
\(401\) −1.00593 + 9.57078i −0.0502337 + 0.477942i 0.940267 + 0.340437i \(0.110575\pi\)
−0.990501 + 0.137505i \(0.956092\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.516471 + 27.2277i −0.0256005 + 1.34963i
\(408\) 0 0
\(409\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −19.6560 + 60.4950i −0.966040 + 2.97316i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −11.8136 36.3585i −0.575759 1.77200i −0.633581 0.773676i \(-0.718416\pi\)
0.0578225 0.998327i \(-0.481584\pi\)
\(422\) −59.2900 + 12.6025i −2.88619 + 0.613479i
\(423\) 0 0
\(424\) 19.2163 8.55564i 0.933225 0.415499i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −6.86648 −0.331904
\(429\) 0 0
\(430\) 0 0
\(431\) −3.66384 34.8591i −0.176481 1.67910i −0.621369 0.783518i \(-0.713423\pi\)
0.444888 0.895586i \(-0.353244\pi\)
\(432\) 0 0
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 26.3475 5.60034i 1.26182 0.268208i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.3950 28.2040i 1.20655 1.34001i 0.281785 0.959477i \(-0.409073\pi\)
0.924767 0.380535i \(-0.124260\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.0711 23.3010i 1.51353 1.09964i 0.548950 0.835855i \(-0.315028\pi\)
0.964580 0.263790i \(-0.0849724\pi\)
\(450\) −21.1896 36.7014i −0.998886 1.73012i
\(451\) 0 0
\(452\) 42.0521 72.8363i 1.97796 3.42593i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.01452 + 38.1957i −0.187792 + 1.78672i 0.343122 + 0.939291i \(0.388516\pi\)
−0.530913 + 0.847426i \(0.678151\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 41.6915 1.93757 0.968784 0.247907i \(-0.0797429\pi\)
0.968784 + 0.247907i \(0.0797429\pi\)
\(464\) 83.3441 + 37.1072i 3.86915 + 1.72266i
\(465\) 0 0
\(466\) 41.5905 + 46.1910i 1.92664 + 2.13976i
\(467\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.95483 21.3146i 0.227823 0.980044i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.73325 + 5.33439i −0.0793599 + 0.244245i
\(478\) −0.769923 + 7.32533i −0.0352154 + 0.335053i
\(479\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −17.9466 63.3095i −0.815752 2.87770i
\(485\) 0 0
\(486\) 0 0
\(487\) 2.30399 + 0.489728i 0.104404 + 0.0221917i 0.259817 0.965658i \(-0.416338\pi\)
−0.155414 + 0.987850i \(0.549671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 41.8465i 0.613613 1.88851i 0.193249 0.981150i \(-0.438097\pi\)
0.420363 0.907356i \(-0.361903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.2767 2.82204i 0.594345 0.126332i 0.0990885 0.995079i \(-0.468407\pi\)
0.495257 + 0.868747i \(0.335074\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −69.7843 8.67563i −3.10229 0.385679i
\(507\) 0 0
\(508\) 6.34893 + 60.4061i 0.281688 + 2.68009i
\(509\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −176.401 128.163i −7.79590 5.66405i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(522\) −35.6374 + 15.8668i −1.55981 + 0.694471i
\(523\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 66.2825 48.1570i 2.89005 2.09975i
\(527\) 0 0
\(528\) 0 0
\(529\) −16.6599 + 28.8558i −0.724344 + 1.25460i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −67.0720 14.2566i −2.89707 0.615791i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −37.1828 16.5549i −1.59862 0.711749i −0.602361 0.798224i \(-0.705773\pi\)
−0.996254 + 0.0864744i \(0.972440\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 + 41.8465i 0.581355 + 1.78923i 0.613440 + 0.789741i \(0.289785\pi\)
−0.0320849 + 0.999485i \(0.510215\pi\)
\(548\) −126.899 56.4989i −5.42084 2.41351i
\(549\) 0 0
\(550\) 35.4060 30.6841i 1.50972 1.30837i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 23.6642 72.8309i 1.00540 3.09429i
\(555\) 0 0
\(556\) 0 0
\(557\) −20.7392 23.0332i −0.878748 0.975949i 0.121113 0.992639i \(-0.461354\pi\)
−0.999861 + 0.0166902i \(0.994687\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −12.1393 21.0259i −0.512067 0.886925i
\(563\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −34.1897 + 105.225i −1.43457 + 4.41514i
\(569\) 14.7209 16.3492i 0.617131 0.685394i −0.350846 0.936433i \(-0.614106\pi\)
0.967977 + 0.251040i \(0.0807725\pi\)
\(570\) 0 0
\(571\) 22.0283 38.1541i 0.921856 1.59670i 0.125314 0.992117i \(-0.460006\pi\)
0.796542 0.604583i \(-0.206660\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.5953 35.6868i −0.483559 1.48824i
\(576\) 161.414 34.3097i 6.72559 1.42957i
\(577\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(578\) −43.8773 + 19.5354i −1.82506 + 0.812567i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.15351 0.765008i −0.254852 0.0316834i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −17.0129 161.867i −0.699226 6.65269i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −106.473 + 77.3573i −4.36131 + 3.16868i
\(597\) 0 0
\(598\) 0 0
\(599\) −23.1484 + 10.3063i −0.945818 + 0.421105i −0.820907 0.571063i \(-0.806531\pi\)
−0.124912 + 0.992168i \(0.539865\pi\)
\(600\) 0 0
\(601\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(602\) 0 0
\(603\) 14.7922 10.7472i 0.602386 0.437659i
\(604\) 37.2359 + 64.4944i 1.51511 + 2.62424i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −48.3246 10.2717i −1.95181 0.414871i −0.989971 0.141268i \(-0.954882\pi\)
−0.961843 0.273603i \(-0.911785\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.9166 1.84853 0.924266 0.381749i \(-0.124678\pi\)
0.924266 + 0.381749i \(0.124678\pi\)
\(618\) 0 0
\(619\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.8386 + 10.1684i 0.913545 + 0.406737i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.4683 + 38.3736i −0.496357 + 1.52763i 0.318475 + 0.947931i \(0.396829\pi\)
−0.814832 + 0.579698i \(0.803171\pi\)
\(632\) 18.5847 176.821i 0.739258 7.03357i
\(633\) 0 0
\(634\) 63.7604 + 70.8131i 2.53225 + 2.81235i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −24.6833 35.3651i −0.977219 1.40012i
\(639\) −14.7510 25.5495i −0.583541 1.01072i
\(640\) 0 0
\(641\) 48.5708 + 10.3240i 1.91843 + 0.407775i 0.999924 + 0.0123672i \(0.00393672\pi\)
0.918506 + 0.395407i \(0.129397\pi\)
\(642\) 0 0
\(643\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(648\) −50.6285 + 87.6911i −1.98887 + 3.44483i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 16.4843 + 50.7336i 0.645576 + 1.98688i
\(653\) −5.26812 + 1.11977i −0.206157 + 0.0438201i −0.309833 0.950791i \(-0.600273\pi\)
0.103675 + 0.994611i \(0.466940\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) −1.79913 17.1176i −0.0699251 0.665293i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 56.3031 + 40.9066i 2.18170 + 1.58510i
\(667\) −33.7854 + 7.18131i −1.30818 + 0.278061i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.494817 + 0.359506i −0.0190738 + 0.0138579i −0.597281 0.802032i \(-0.703752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 55.5812 61.7291i 2.14091 2.37772i
\(675\) 0 0
\(676\) −71.0450 + 31.6313i −2.73250 + 1.21659i
\(677\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.5507 18.2743i 0.403711 0.699249i −0.590459 0.807067i \(-0.701053\pi\)
0.994171 + 0.107819i \(0.0343867\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −13.6708 + 130.069i −0.521194 + 4.95883i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −70.6543 −2.68200
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.3604 47.2743i −0.580153 1.78553i −0.617922 0.786239i \(-0.712025\pi\)
0.0377695 0.999286i \(-0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 71.0296 + 168.042i 2.67703 + 6.33331i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.74372 26.1048i 0.103043 0.980386i −0.813802 0.581142i \(-0.802606\pi\)
0.916845 0.399244i \(-0.130727\pi\)
\(710\) 0 0
\(711\) 31.7227 + 35.2316i 1.18969 + 1.32129i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 71.5664 + 123.957i 2.67456 + 4.63248i
\(717\) 0 0
\(718\) 90.5210 + 19.2408i 3.37821 + 0.718062i
\(719\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −16.5881 + 51.0529i −0.617345 + 1.89999i
\(723\) 0 0
\(724\) 0 0
\(725\) 11.5063 19.9294i 0.427331 0.740160i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 25.6785i −0.309017 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 251.417 9.26737
\(737\) 14.7627 + 13.8082i 0.543790 + 0.508633i
\(738\) 0 0
\(739\) −5.37273 51.1181i −0.197639 1.88041i −0.422993 0.906133i \(-0.639020\pi\)
0.225354 0.974277i \(-0.427646\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.56653 6.22395i −0.314275 0.228334i 0.419453 0.907777i \(-0.362222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.49708 61.8156i −0.237875 2.26323i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.91197 7.67652i 0.252221 0.280120i −0.603716 0.797199i \(-0.706314\pi\)
0.855938 + 0.517079i \(0.172981\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −30.3109 + 22.0222i −1.10167 + 0.800410i −0.981332 0.192323i \(-0.938398\pi\)
−0.120338 + 0.992733i \(0.538398\pi\)
\(758\) 55.0022 + 95.2667i 1.99777 + 3.46024i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 106.587 + 77.4398i 3.85617 + 2.80167i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −147.573 65.7039i −5.31128 2.36474i
\(773\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(774\) −37.4198 41.5589i −1.34503 1.49380i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −19.0394 58.5972i −0.682595 2.10081i
\(779\) 0 0
\(780\) 0 0
\(781\) 24.6477 21.3606i 0.881965 0.764341i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(788\) −72.4497 80.4636i −2.58091 2.86640i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −105.790 36.6054i −3.75907 1.30072i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −112.085 + 124.482i −3.96279 + 4.40112i
\(801\) 0 0
\(802\) −13.5945 + 23.5464i −0.480039 + 0.831452i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −47.5069 + 21.1514i −1.67025 + 0.743645i −0.670255 + 0.742131i \(0.733815\pi\)
−0.999999 + 0.00151439i \(0.999518\pi\)
\(810\) 0 0
\(811\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −32.6215 + 69.6817i −1.14338 + 2.44234i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.5192 + 4.57406i −0.751027 + 0.159636i −0.567494 0.823378i \(-0.692087\pi\)
−0.183533 + 0.983013i \(0.558754\pi\)
\(822\) 0 0
\(823\) 5.63209 + 53.5858i 0.196322 + 1.86788i 0.439961 + 0.898017i \(0.354992\pi\)
−0.243639 + 0.969866i \(0.578341\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 + 25.8626i −1.23782 + 0.899329i −0.997451 0.0713526i \(-0.977268\pi\)
−0.240369 + 0.970682i \(0.577268\pi\)
\(828\) −90.1203 + 100.089i −3.13190 + 3.47832i
\(829\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(840\) 0 0
\(841\) 6.32408 + 4.59471i 0.218072 + 0.158438i
\(842\) 11.2900 107.417i 0.389080 3.70185i
\(843\) 0 0
\(844\) −125.539 26.6842i −4.32125 0.918509i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 37.0602 1.27265
\(849\) 0 0
\(850\) 0 0
\(851\) 41.2320 + 45.7927i 1.41341 + 1.56976i
\(852\) 0 0
\(853\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −11.7974 5.25255i −0.403227 0.179528i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 30.6017 94.1823i 1.04230 3.20786i
\(863\) −0.836228 + 7.95618i −0.0284655 + 0.270831i 0.971027 + 0.238971i \(0.0768100\pi\)
−0.999492 + 0.0318607i \(0.989857\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −31.6059 + 41.8106i −1.07216 + 1.41833i
\(870\) 0 0
\(871\) 0 0
\(872\) 49.5522 + 10.5326i 1.67805 + 0.356680i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.5799 + 16.1926i −0.492327 + 0.546784i −0.937192 0.348813i \(-0.886585\pi\)
0.444866 + 0.895597i \(0.353251\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 11.4127i −0.124791 0.384067i 0.869072 0.494686i \(-0.164717\pi\)
−0.993863 + 0.110619i \(0.964717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 97.9553 43.6125i 3.29087 1.46519i
\(887\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 26.1289 14.4319i 0.875352 0.483486i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 109.552 23.2861i 3.65581 0.777067i
\(899\) 0 0
\(900\) −9.37963 89.2412i −0.312654 2.97471i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 127.967 92.9734i 4.25611 3.09225i
\(905\) 0 0
\(906\) 0 0
\(907\) −41.5031 + 18.4784i −1.37809 + 0.613564i −0.956101 0.293039i \(-0.905333\pi\)
−0.421986 + 0.906602i \(0.638667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 + 9.40456i −0.428863 + 0.311587i −0.781194 0.624288i \(-0.785389\pi\)
0.352331 + 0.935875i \(0.385389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −54.2538 + 93.9704i −1.79456 + 3.10826i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.33491 + 60.2727i −0.208970 + 1.98821i −0.0757347 + 0.997128i \(0.524130\pi\)
−0.133235 + 0.991084i \(0.542536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −41.0547 −1.34987
\(926\) 107.606 + 47.9095i 3.53617 + 1.57440i
\(927\) 0 0
\(928\) 103.174 + 114.586i 3.38685 + 3.76147i
\(929\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 40.6691 + 125.167i 1.33216 + 4.09997i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 37.2820 49.3194i 1.21214 1.60351i
\(947\) 10.0000 + 17.3205i 0.324956 + 0.562841i 0.981504 0.191444i \(-0.0613171\pi\)
−0.656547 + 0.754285i \(0.727984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.682027 + 2.09906i −0.0220930 + 0.0679954i −0.961495 0.274822i \(-0.911381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) −10.6035 + 11.7764i −0.343302 + 0.381275i
\(955\) 0 0
\(956\) −7.79797 + 13.5065i −0.252204 + 0.436831i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.3226 6.44526i 0.978148 0.207912i
\(962\) 0 0
\(963\) 3.14576 1.40058i 0.101371 0.0451332i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −57.6533 −1.85401 −0.927003 0.375053i \(-0.877624\pi\)
−0.927003 + 0.375053i \(0.877624\pi\)
\(968\) 17.5946 122.501i 0.565513 3.93734i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 5.38387 + 3.91161i 0.172510 + 0.125336i
\(975\) 0 0
\(976\) 0 0
\(977\) 2.72248 + 25.9027i 0.0870999 + 0.828700i 0.947645 + 0.319326i \(0.103456\pi\)
−0.860545 + 0.509374i \(0.829877\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −10.9284 + 7.93992i −0.348916 + 0.253502i
\(982\) 83.1811 92.3819i 2.65441 2.94803i
\(983\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.7576 42.8814i −0.787246 1.36355i
\(990\) 0 0
\(991\) 12.0000 20.7846i 0.381193 0.660245i −0.610040 0.792370i \(-0.708847\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(998\) 37.5102 + 7.97305i 1.18737 + 0.252382i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.d.410.2 16
7.2 even 3 inner 539.2.q.d.520.1 16
7.3 odd 6 539.2.f.c.344.1 yes 8
7.4 even 3 539.2.f.c.344.1 yes 8
7.5 odd 6 inner 539.2.q.d.520.1 16
7.6 odd 2 CM 539.2.q.d.410.2 16
11.4 even 5 inner 539.2.q.d.312.1 16
77.4 even 15 539.2.f.c.246.1 8
77.24 even 30 5929.2.a.bg.1.1 4
77.26 odd 30 inner 539.2.q.d.422.2 16
77.31 odd 30 5929.2.a.bc.1.4 4
77.37 even 15 inner 539.2.q.d.422.2 16
77.46 odd 30 5929.2.a.bg.1.1 4
77.48 odd 10 inner 539.2.q.d.312.1 16
77.53 even 15 5929.2.a.bc.1.4 4
77.59 odd 30 539.2.f.c.246.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.1 8 77.4 even 15
539.2.f.c.246.1 8 77.59 odd 30
539.2.f.c.344.1 yes 8 7.3 odd 6
539.2.f.c.344.1 yes 8 7.4 even 3
539.2.q.d.312.1 16 11.4 even 5 inner
539.2.q.d.312.1 16 77.48 odd 10 inner
539.2.q.d.410.2 16 1.1 even 1 trivial
539.2.q.d.410.2 16 7.6 odd 2 CM
539.2.q.d.422.2 16 77.26 odd 30 inner
539.2.q.d.422.2 16 77.37 even 15 inner
539.2.q.d.520.1 16 7.2 even 3 inner
539.2.q.d.520.1 16 7.5 odd 6 inner
5929.2.a.bc.1.4 4 77.31 odd 30
5929.2.a.bc.1.4 4 77.53 even 15
5929.2.a.bg.1.1 4 77.24 even 30
5929.2.a.bg.1.1 4 77.46 odd 30