Properties

Label 539.2.q.d.410.1
Level $539$
Weight $2$
Character 539.410
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(214,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.214"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.9234096523681640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 410.1
Root \(-0.214032 + 1.39792i\) of defining polynomial
Character \(\chi\) \(=\) 539.410
Dual form 539.2.q.d.422.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.01642 - 0.897766i) q^{2} +(1.92169 + 2.13425i) q^{4} +(-0.594713 - 1.83034i) q^{8} +(-2.74064 - 1.22021i) q^{9} +(2.90321 + 1.60354i) q^{11} +(0.156367 - 1.48773i) q^{16} +(4.43080 + 4.92090i) q^{18} +(-4.41448 - 5.83981i) q^{22} +(1.28019 + 2.21736i) q^{23} +(4.89074 + 1.03956i) q^{25} +(-2.42225 + 7.45492i) q^{29} +(-3.57547 + 6.19289i) q^{32} +(-2.66241 - 8.19407i) q^{36} +(11.6587 - 2.47813i) q^{37} +12.8185 q^{43} +(2.15671 + 9.27769i) q^{44} +(-0.590730 - 5.62042i) q^{46} +(-8.92848 - 6.48692i) q^{50} +(-1.49588 - 14.2323i) q^{53} +(11.5770 - 12.8576i) q^{58} +(10.3489 - 7.51894i) q^{64} +(6.28343 - 10.8832i) q^{67} +(12.9884 + 9.43662i) q^{71} +(-0.603505 + 5.74197i) q^{72} +(-25.7335 - 5.46983i) q^{74} +(2.61152 + 1.16272i) q^{79} +(6.02218 + 6.68830i) q^{81} +(-25.8474 - 11.5080i) q^{86} +(1.20844 - 6.26752i) q^{88} +(-2.27227 + 6.99331i) q^{92} +(-6.00000 - 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 2 q^{4} + 32 q^{8} - 6 q^{9} + 4 q^{11} + 28 q^{16} + 9 q^{18} - 8 q^{22} + 16 q^{23} - 10 q^{25} - 8 q^{29} - 100 q^{32} - 12 q^{36} + 18 q^{37} + 48 q^{43} - 9 q^{44} + 31 q^{46} + 20 q^{50}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.01642 0.897766i −1.42582 0.634817i −0.458575 0.888656i \(-0.651640\pi\)
−0.967246 + 0.253839i \(0.918307\pi\)
\(3\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(4\) 1.92169 + 2.13425i 0.960844 + 1.06713i
\(5\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.594713 1.83034i −0.210263 0.647123i
\(9\) −2.74064 1.22021i −0.913545 0.406737i
\(10\) 0 0
\(11\) 2.90321 + 1.60354i 0.875352 + 0.483486i
\(12\) 0 0
\(13\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.156367 1.48773i 0.0390917 0.371933i
\(17\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(18\) 4.43080 + 4.92090i 1.04435 + 1.15987i
\(19\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.41448 5.83981i −0.941171 1.24505i
\(23\) 1.28019 + 2.21736i 0.266938 + 0.462351i 0.968070 0.250681i \(-0.0806547\pi\)
−0.701131 + 0.713032i \(0.747321\pi\)
\(24\) 0 0
\(25\) 4.89074 + 1.03956i 0.978148 + 0.207912i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.42225 + 7.45492i −0.449801 + 1.38434i 0.427331 + 0.904095i \(0.359454\pi\)
−0.877132 + 0.480249i \(0.840546\pi\)
\(30\) 0 0
\(31\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(32\) −3.57547 + 6.19289i −0.632059 + 1.09476i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −2.66241 8.19407i −0.443736 1.36568i
\(37\) 11.6587 2.47813i 1.91667 0.407402i 0.916705 0.399564i \(-0.130838\pi\)
0.999969 0.00783774i \(-0.00249486\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(42\) 0 0
\(43\) 12.8185 1.95480 0.977399 0.211402i \(-0.0678028\pi\)
0.977399 + 0.211402i \(0.0678028\pi\)
\(44\) 2.15671 + 9.27769i 0.325137 + 1.39866i
\(45\) 0 0
\(46\) −0.590730 5.62042i −0.0870984 0.828686i
\(47\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −8.92848 6.48692i −1.26268 0.917389i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.49588 14.2323i −0.205474 1.95496i −0.286064 0.958211i \(-0.592347\pi\)
0.0805894 0.996747i \(-0.474320\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 11.5770 12.8576i 1.52014 1.68829i
\(59\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 10.3489 7.51894i 1.29362 0.939868i
\(65\) 0 0
\(66\) 0 0
\(67\) 6.28343 10.8832i 0.767644 1.32960i −0.171194 0.985237i \(-0.554762\pi\)
0.938837 0.344361i \(-0.111904\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9884 + 9.43662i 1.54144 + 1.11992i 0.949425 + 0.313993i \(0.101667\pi\)
0.592014 + 0.805928i \(0.298333\pi\)
\(72\) −0.603505 + 5.74197i −0.0711238 + 0.676698i
\(73\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(74\) −25.7335 5.46983i −2.99146 0.635855i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.61152 + 1.16272i 0.293819 + 0.130817i 0.548352 0.836247i \(-0.315255\pi\)
−0.254533 + 0.967064i \(0.581922\pi\)
\(80\) 0 0
\(81\) 6.02218 + 6.68830i 0.669131 + 0.743145i
\(82\) 0 0
\(83\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −25.8474 11.5080i −2.78719 1.24094i
\(87\) 0 0
\(88\) 1.20844 6.26752i 0.128820 0.668119i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.27227 + 6.99331i −0.236900 + 0.729103i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(98\) 0 0
\(99\) −6.00000 7.93725i −0.603023 0.797724i
\(100\) 7.17979 + 12.4358i 0.717979 + 1.24358i
\(101\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.76098 + 30.0412i −0.948070 + 2.91786i
\(107\) −7.50287 + 8.33278i −0.725329 + 0.805560i −0.987191 0.159546i \(-0.948997\pi\)
0.261861 + 0.965106i \(0.415664\pi\)
\(108\) 0 0
\(109\) −7.81367 + 13.5337i −0.748414 + 1.29629i 0.200169 + 0.979761i \(0.435851\pi\)
−0.948583 + 0.316530i \(0.897482\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34450 + 10.2933i 0.314624 + 0.968314i 0.975909 + 0.218179i \(0.0700116\pi\)
−0.661285 + 0.750135i \(0.729988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −20.5655 + 9.15634i −1.90946 + 0.850145i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.85731 + 9.31085i 0.532483 + 0.846441i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.2142 11.7803i −1.43878 1.04533i −0.988297 0.152545i \(-0.951253\pi\)
−0.450479 0.892787i \(-0.648747\pi\)
\(128\) −13.6287 + 2.89687i −1.20462 + 0.256049i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −22.4406 + 16.3041i −1.93857 + 1.40846i
\(135\) 0 0
\(136\) 0 0
\(137\) 15.5667 6.93075i 1.32996 0.592134i 0.386089 0.922462i \(-0.373826\pi\)
0.943866 + 0.330327i \(0.107159\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17.7181 30.6887i −1.48687 2.57534i
\(143\) 0 0
\(144\) −2.24389 + 3.88653i −0.186991 + 0.323877i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 27.6933 + 20.1203i 2.27637 + 1.65388i
\(149\) −2.29963 + 21.8795i −0.188393 + 1.79244i 0.336926 + 0.941531i \(0.390613\pi\)
−0.525318 + 0.850906i \(0.676054\pi\)
\(150\) 0 0
\(151\) 2.33180 + 0.495639i 0.189759 + 0.0403345i 0.301811 0.953368i \(-0.402409\pi\)
−0.112052 + 0.993702i \(0.535742\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(158\) −4.22206 4.68907i −0.335889 0.373042i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −6.13868 18.8929i −0.482300 1.48437i
\(163\) −19.4383 8.65450i −1.52253 0.677873i −0.536415 0.843954i \(-0.680222\pi\)
−0.986112 + 0.166082i \(0.946888\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(168\) 0 0
\(169\) −4.01722 + 12.3637i −0.309017 + 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 24.6331 + 27.3578i 1.87826 + 2.08601i
\(173\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.83960 4.06846i 0.214043 0.306672i
\(177\) 0 0
\(178\) 0 0
\(179\) −25.8218 5.48859i −1.93001 0.410236i −0.998973 0.0453142i \(-0.985571\pi\)
−0.931038 0.364922i \(-0.881096\pi\)
\(180\) 0 0
\(181\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.29717 3.66188i 0.243070 0.269957i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.88080 + 1.88767i −0.642592 + 0.136587i −0.517671 0.855580i \(-0.673201\pi\)
−0.124921 + 0.992167i \(0.539868\pi\)
\(192\) 0 0
\(193\) −1.93785 + 0.862785i −0.139489 + 0.0621046i −0.475294 0.879827i \(-0.657658\pi\)
0.335805 + 0.941932i \(0.390992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.03059 0.144674 0.0723369 0.997380i \(-0.476954\pi\)
0.0723369 + 0.997380i \(0.476954\pi\)
\(198\) 4.97270 + 21.3914i 0.353394 + 1.52022i
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) −1.00584 9.56995i −0.0711238 0.676698i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.802898 7.63907i −0.0558053 0.530952i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.3570 16.9698i 1.60796 1.16825i 0.738490 0.674264i \(-0.235539\pi\)
0.869469 0.493987i \(-0.164461\pi\)
\(212\) 27.5007 30.5426i 1.88876 2.09768i
\(213\) 0 0
\(214\) 22.6098 10.0665i 1.54557 0.688133i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 27.9057 20.2747i 1.89001 1.37317i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(224\) 0 0
\(225\) −12.1353 8.81678i −0.809017 0.587785i
\(226\) 2.49709 23.7582i 0.166104 1.58037i
\(227\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(228\) 0 0
\(229\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.0856 0.990417
\(233\) 20.0980 + 8.94821i 1.31666 + 0.586216i 0.940329 0.340267i \(-0.110518\pi\)
0.376335 + 0.926484i \(0.377184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.80563 27.1009i −0.569589 1.75301i −0.653907 0.756575i \(-0.726871\pi\)
0.0843185 0.996439i \(-0.473129\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −3.45182 24.0330i −0.221891 1.54490i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(252\) 0 0
\(253\) 0.161049 + 8.49030i 0.0101251 + 0.533781i
\(254\) 22.1186 + 38.3105i 1.38784 + 2.40381i
\(255\) 0 0
\(256\) 5.05689 + 1.07487i 0.316055 + 0.0671796i
\(257\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 15.7351 17.4756i 0.973977 1.08171i
\(262\) 0 0
\(263\) 11.3891 19.7266i 0.702284 1.21639i −0.265378 0.964144i \(-0.585497\pi\)
0.967663 0.252248i \(-0.0811698\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 35.3023 7.50374i 2.15643 0.458364i
\(269\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(270\) 0 0
\(271\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −37.6112 −2.27217
\(275\) 12.5319 + 10.8606i 0.755701 + 0.654916i
\(276\) 0 0
\(277\) 3.47926 + 33.1029i 0.209048 + 1.98896i 0.113500 + 0.993538i \(0.463794\pi\)
0.0955484 + 0.995425i \(0.469540\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −27.0823 19.6764i −1.61559 1.17380i −0.840077 0.542467i \(-0.817490\pi\)
−0.775515 0.631329i \(-0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(284\) 4.81953 + 45.8547i 0.285986 + 2.72098i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 17.3557 12.6096i 1.02269 0.743030i
\(289\) −11.3752 + 12.6335i −0.669131 + 0.743145i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.4694 19.8656i −0.666644 1.15466i
\(297\) 0 0
\(298\) 24.2797 42.0536i 1.40648 2.43610i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −4.25690 3.09282i −0.244957 0.177972i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.53698 + 7.80803i 0.142716 + 0.439236i
\(317\) 19.4458 + 8.65781i 1.09218 + 0.486271i 0.872159 0.489223i \(-0.162720\pi\)
0.220024 + 0.975494i \(0.429386\pi\)
\(318\) 0 0
\(319\) −18.9866 + 17.7591i −1.06304 + 0.994317i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −2.70177 + 25.7057i −0.150099 + 1.42809i
\(325\) 0 0
\(326\) 31.4260 + 34.9021i 1.74053 + 1.93305i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.07856 13.9925i −0.444038 0.769097i 0.553947 0.832552i \(-0.313121\pi\)
−0.997985 + 0.0634557i \(0.979788\pi\)
\(332\) 0 0
\(333\) −34.9760 7.43438i −1.91667 0.407402i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.35579 + 10.3281i −0.182801 + 0.562605i −0.999904 0.0138879i \(-0.995579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 19.2001 21.3239i 1.04435 1.15987i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −7.62332 23.4622i −0.411022 1.26499i
\(345\) 0 0
\(346\) 0 0
\(347\) 16.9333 7.53919i 0.909027 0.404725i 0.101690 0.994816i \(-0.467575\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(348\) 0 0
\(349\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −20.3109 + 12.2459i −1.08257 + 0.652708i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 47.1400 + 34.2492i 2.49143 + 1.81013i
\(359\) −36.8759 + 7.83822i −1.94624 + 0.413685i −0.952063 + 0.305903i \(0.901042\pi\)
−0.994174 + 0.107783i \(0.965625\pi\)
\(360\) 0 0
\(361\) 1.98604 + 18.8959i 0.104528 + 0.994522i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(368\) 3.49901 1.55786i 0.182398 0.0812090i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −25.4997 18.5267i −1.30983 0.951650i −1.00000 0.000859657i \(-0.999726\pi\)
−0.309834 0.950791i \(-0.600274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.6021 + 4.16655i 1.00293 + 0.213179i
\(383\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.68208 0.238312
\(387\) −35.1308 15.6412i −1.78580 0.795088i
\(388\) 0 0
\(389\) −1.12254 1.24671i −0.0569150 0.0632106i 0.714015 0.700130i \(-0.246875\pi\)
−0.770930 + 0.636920i \(0.780208\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −4.09452 1.82300i −0.206279 0.0918414i
\(395\) 0 0
\(396\) 5.40996 28.0584i 0.271861 1.40999i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.31133 7.11355i 0.115567 0.355677i
\(401\) 3.20240 30.4688i 0.159920 1.52154i −0.560589 0.828094i \(-0.689425\pi\)
0.720509 0.693446i \(-0.243908\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 37.8214 + 11.5006i 1.87474 + 0.570065i
\(408\) 0 0
\(409\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −5.23912 + 16.1244i −0.257489 + 0.792469i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 6.84802 + 21.0760i 0.333752 + 1.02718i 0.967333 + 0.253507i \(0.0815842\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) −62.3323 + 13.2491i −3.03429 + 0.644958i
\(423\) 0 0
\(424\) −25.1603 + 11.2021i −1.22189 + 0.544022i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −32.2024 −1.55656
\(429\) 0 0
\(430\) 0 0
\(431\) 1.59657 + 15.1904i 0.0769042 + 0.731695i 0.963238 + 0.268648i \(0.0865769\pi\)
−0.886334 + 0.463046i \(0.846756\pi\)
\(432\) 0 0
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −43.8997 + 9.33117i −2.10241 + 0.446882i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.74146 + 4.15532i −0.177762 + 0.197425i −0.825441 0.564489i \(-0.809073\pi\)
0.647678 + 0.761914i \(0.275740\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0711 + 24.0276i −1.56072 + 1.13393i −0.625310 + 0.780376i \(0.715028\pi\)
−0.935413 + 0.353556i \(0.884972\pi\)
\(450\) 16.5543 + 28.6729i 0.780378 + 1.35165i
\(451\) 0 0
\(452\) −15.5414 + 26.9185i −0.731007 + 1.26614i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.40214 41.8835i 0.205923 1.95923i −0.0685868 0.997645i \(-0.521849\pi\)
0.274510 0.961584i \(-0.411484\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 23.0299 1.07029 0.535145 0.844760i \(-0.320257\pi\)
0.535145 + 0.844760i \(0.320257\pi\)
\(464\) 10.7122 + 4.76936i 0.497299 + 0.221412i
\(465\) 0 0
\(466\) −32.4925 36.0866i −1.50519 1.67168i
\(467\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 37.2148 + 20.5549i 1.71114 + 0.945117i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −13.2668 + 40.8309i −0.607443 + 1.86952i
\(478\) −6.57450 + 62.5521i −0.300710 + 2.86107i
\(479\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −8.61575 + 30.3935i −0.391625 + 1.38152i
\(485\) 0 0
\(486\) 0 0
\(487\) −40.2882 8.56352i −1.82563 0.388050i −0.838107 0.545506i \(-0.816338\pi\)
−0.987526 + 0.157455i \(0.949671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 41.8465i 0.613613 1.88851i 0.193249 0.981150i \(-0.438097\pi\)
0.420363 0.907356i \(-0.361903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 43.6997 9.28865i 1.95627 0.415817i 0.976996 0.213257i \(-0.0684073\pi\)
0.979270 0.202560i \(-0.0649260\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 7.29756 17.2646i 0.324416 0.767503i
\(507\) 0 0
\(508\) −6.01650 57.2432i −0.266939 2.53975i
\(509\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 13.3125 + 9.67211i 0.588336 + 0.427451i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(522\) −47.4174 + 21.1116i −2.07541 + 0.924030i
\(523\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −40.6751 + 29.5522i −1.77352 + 1.28854i
\(527\) 0 0
\(528\) 0 0
\(529\) 8.22222 14.2413i 0.357488 0.619187i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −23.6568 5.02842i −1.02182 0.217195i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.9864 + 8.00805i 0.773294 + 0.344293i 0.755158 0.655543i \(-0.227560\pi\)
0.0181362 + 0.999836i \(0.494227\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 + 41.8465i 0.581355 + 1.78923i 0.613440 + 0.789741i \(0.289785\pi\)
−0.0320849 + 0.999485i \(0.510215\pi\)
\(548\) 44.7063 + 19.9045i 1.90976 + 0.850280i
\(549\) 0 0
\(550\) −15.5193 33.1501i −0.661743 1.41353i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 22.7031 69.8729i 0.964561 2.96861i
\(555\) 0 0
\(556\) 0 0
\(557\) −29.0639 32.2787i −1.23148 1.36769i −0.906630 0.421927i \(-0.861354\pi\)
−0.324847 0.945767i \(-0.605313\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 36.9443 + 63.9894i 1.55840 + 2.69923i
\(563\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 9.54785 29.3853i 0.400619 1.23298i
\(569\) 14.7209 16.3492i 0.617131 0.685394i −0.350846 0.936433i \(-0.614106\pi\)
0.967977 + 0.251040i \(0.0807725\pi\)
\(570\) 0 0
\(571\) −23.2644 + 40.2951i −0.973583 + 1.68630i −0.289051 + 0.957314i \(0.593340\pi\)
−0.684533 + 0.728982i \(0.739994\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.95601 + 12.1753i 0.164977 + 0.507747i
\(576\) −37.5374 + 7.97881i −1.56406 + 0.332451i
\(577\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(578\) 34.2791 15.2620i 1.42582 0.634817i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 18.4792 43.7181i 0.765332 1.81062i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.86376 17.7325i −0.0765999 0.728800i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −51.1155 + 37.1376i −2.09377 + 1.52121i
\(597\) 0 0
\(598\) 0 0
\(599\) 41.2157 18.3504i 1.68403 0.749777i 0.684237 0.729260i \(-0.260135\pi\)
0.999789 0.0205175i \(-0.00653138\pi\)
\(600\) 0 0
\(601\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(602\) 0 0
\(603\) −30.5004 + 22.1599i −1.24207 + 0.902419i
\(604\) 3.42317 + 5.92910i 0.139287 + 0.241252i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.8170 2.51179i −0.477286 0.101450i −0.0370140 0.999315i \(-0.511785\pi\)
−0.440272 + 0.897865i \(0.645118\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.84770 −0.154902 −0.0774512 0.996996i \(-0.524678\pi\)
−0.0774512 + 0.996996i \(0.524678\pi\)
\(618\) 0 0
\(619\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.8386 + 10.1684i 0.913545 + 0.406737i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15.5241 47.7782i 0.618003 1.90202i 0.299528 0.954087i \(-0.403171\pi\)
0.318475 0.947931i \(-0.396829\pi\)
\(632\) 0.575073 5.47146i 0.0228752 0.217643i
\(633\) 0 0
\(634\) −31.4381 34.9155i −1.24857 1.38667i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 54.2283 18.7641i 2.14692 0.742879i
\(639\) −24.0818 41.7109i −0.952662 1.65006i
\(640\) 0 0
\(641\) 24.2323 + 5.15074i 0.957120 + 0.203442i 0.659889 0.751363i \(-0.270603\pi\)
0.297231 + 0.954805i \(0.403937\pi\)
\(642\) 0 0
\(643\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(648\) 8.66040 15.0002i 0.340213 0.589265i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −18.8835 58.1175i −0.739536 2.27606i
\(653\) −24.9583 + 5.30505i −0.976694 + 0.207603i −0.668493 0.743719i \(-0.733060\pi\)
−0.308201 + 0.951321i \(0.599727\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 3.72777 + 35.4673i 0.144884 + 1.37848i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 63.8519 + 46.3911i 2.47421 + 1.79762i
\(667\) −19.6312 + 4.17273i −0.760121 + 0.161569i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.7653 28.8912i 1.53284 1.11367i 0.578208 0.815890i \(-0.303752\pi\)
0.954633 0.297784i \(-0.0962476\pi\)
\(674\) 16.0388 17.8129i 0.617793 0.686129i
\(675\) 0 0
\(676\) −34.1072 + 15.1855i −1.31181 + 0.584057i
\(677\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.51818 9.55777i 0.211147 0.365718i −0.740926 0.671586i \(-0.765613\pi\)
0.952074 + 0.305868i \(0.0989467\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 2.00438 19.0704i 0.0764164 0.727053i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −40.9130 −1.55304
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.7423 + 48.4499i 0.594579 + 1.82993i 0.556810 + 0.830640i \(0.312025\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 42.1021 5.23417i 1.58678 0.197270i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.75851 + 35.7598i −0.141154 + 1.34299i 0.663024 + 0.748598i \(0.269273\pi\)
−0.804178 + 0.594389i \(0.797394\pi\)
\(710\) 0 0
\(711\) −5.73846 6.37321i −0.215209 0.239014i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −37.9074 65.6575i −1.41667 2.45374i
\(717\) 0 0
\(718\) 81.3941 + 17.3009i 3.03760 + 0.645662i
\(719\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 12.9594 39.8850i 0.482300 1.48437i
\(723\) 0 0
\(724\) 0 0
\(725\) −19.5964 + 33.9420i −0.727793 + 1.26057i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 25.6785i −0.309017 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −18.3091 −0.674883
\(737\) 35.6939 21.5206i 1.31480 0.792722i
\(738\) 0 0
\(739\) −3.42206 32.5587i −0.125883 1.19769i −0.856954 0.515392i \(-0.827646\pi\)
0.731072 0.682300i \(-0.239020\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −43.7942 31.8183i −1.60665 1.16730i −0.872923 0.487858i \(-0.837778\pi\)
−0.733729 0.679442i \(-0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.07583 + 48.2933i 0.185839 + 1.76814i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −26.7622 + 29.7224i −0.976565 + 1.08459i 0.0198348 + 0.999803i \(0.493686\pi\)
−0.996400 + 0.0847817i \(0.972981\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −40.3760 + 29.3349i −1.46749 + 1.06619i −0.486158 + 0.873871i \(0.661602\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) 34.7855 + 60.2502i 1.26347 + 2.18839i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −21.0949 15.3263i −0.763186 0.554487i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.56534 2.47785i −0.200301 0.0891797i
\(773\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(774\) 56.7961 + 63.0784i 2.04149 + 2.26731i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.14426 + 3.52166i 0.0410236 + 0.126258i
\(779\) 0 0
\(780\) 0 0
\(781\) 22.5761 + 48.2240i 0.807836 + 1.72559i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(788\) 3.90217 + 4.33380i 0.139009 + 0.154385i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −10.9596 + 15.7024i −0.389432 + 0.557961i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −23.9245 + 26.5709i −0.845860 + 0.939423i
\(801\) 0 0
\(802\) −33.8113 + 58.5628i −1.19392 + 2.06792i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 26.0520 11.5991i 0.915941 0.407803i 0.106034 0.994362i \(-0.466185\pi\)
0.809906 + 0.586559i \(0.199518\pi\)
\(810\) 0 0
\(811\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −65.9388 57.1448i −2.31116 2.00293i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.5192 + 4.57406i −0.751027 + 0.159636i −0.567494 0.823378i \(-0.692087\pi\)
−0.183533 + 0.983013i \(0.558754\pi\)
\(822\) 0 0
\(823\) −0.219913 2.09234i −0.00766570 0.0729342i 0.990020 0.140925i \(-0.0450077\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 + 25.8626i −1.23782 + 0.899329i −0.997451 0.0713526i \(-0.977268\pi\)
−0.240369 + 0.970682i \(0.577268\pi\)
\(828\) 14.7608 16.3935i 0.512972 0.569713i
\(829\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(840\) 0 0
\(841\) −26.2471 19.0696i −0.905071 0.657573i
\(842\) 5.11290 48.6460i 0.176202 1.67645i
\(843\) 0 0
\(844\) 81.1027 + 17.2389i 2.79167 + 0.593387i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −21.4077 −0.735145
\(849\) 0 0
\(850\) 0 0
\(851\) 20.4202 + 22.6790i 0.699996 + 0.777425i
\(852\) 0 0
\(853\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 19.7139 + 8.77718i 0.673806 + 0.299998i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.4180 32.0635i 0.354840 1.09209i
\(863\) −0.836228 + 7.95618i −0.0284655 + 0.270831i 0.971027 + 0.238971i \(0.0768100\pi\)
−0.999492 + 0.0318607i \(0.989857\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.71733 + 7.56332i 0.193947 + 0.256568i
\(870\) 0 0
\(871\) 0 0
\(872\) 29.4181 + 6.25301i 0.996223 + 0.211754i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −39.5540 + 43.9291i −1.33564 + 1.48338i −0.621349 + 0.783534i \(0.713415\pi\)
−0.714293 + 0.699847i \(0.753251\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 11.4127i −0.124791 0.384067i 0.869072 0.494686i \(-0.164717\pi\)
−0.993863 + 0.110619i \(0.964717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 11.2749 5.01989i 0.378786 0.168646i
\(887\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.75870 + 29.0744i 0.226425 + 0.974029i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 88.2563 18.7595i 2.94515 0.626011i
\(899\) 0 0
\(900\) −4.50296 42.8428i −0.150099 1.42809i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 16.8512 12.2431i 0.560464 0.407201i
\(905\) 0 0
\(906\) 0 0
\(907\) −47.1858 + 21.0085i −1.56678 + 0.697575i −0.992631 0.121177i \(-0.961333\pi\)
−0.574148 + 0.818752i \(0.694667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 + 9.40456i −0.428863 + 0.311587i −0.781194 0.624288i \(-0.785389\pi\)
0.352331 + 0.935875i \(0.385389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −46.4782 + 80.5025i −1.53736 + 2.66279i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.78335 + 16.9675i −0.0588274 + 0.559706i 0.924922 + 0.380158i \(0.124130\pi\)
−0.983749 + 0.179548i \(0.942536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 59.5957 1.95949
\(926\) −46.4378 20.6754i −1.52604 0.679437i
\(927\) 0 0
\(928\) −37.5068 41.6556i −1.23122 1.36741i
\(929\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.5244 + 60.0898i 0.639542 + 1.96831i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −56.5869 74.8575i −1.83980 2.43383i
\(947\) 10.0000 + 17.3205i 0.324956 + 0.562841i 0.981504 0.191444i \(-0.0613171\pi\)
−0.656547 + 0.754285i \(0.727984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.7590 36.1906i 0.380913 1.17233i −0.558489 0.829512i \(-0.688619\pi\)
0.939402 0.342817i \(-0.111381\pi\)
\(954\) 63.4079 70.4216i 2.05291 2.27998i
\(955\) 0 0
\(956\) 40.9185 70.8729i 1.32340 2.29219i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.3226 6.44526i 0.978148 0.207912i
\(962\) 0 0
\(963\) 30.7304 13.6820i 0.990272 0.440898i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.9320 1.05902 0.529511 0.848303i \(-0.322376\pi\)
0.529511 + 0.848303i \(0.322376\pi\)
\(968\) 13.5586 16.2582i 0.435790 0.522557i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 73.5498 + 53.4370i 2.35669 + 1.71223i
\(975\) 0 0
\(976\) 0 0
\(977\) −5.69418 54.1765i −0.182173 1.73326i −0.578966 0.815352i \(-0.696544\pi\)
0.396793 0.917908i \(-0.370123\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 37.9284 27.5566i 1.21096 0.879813i
\(982\) −64.9851 + 72.1732i −2.07376 + 2.30314i
\(983\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.4101 + 28.4231i 0.521811 + 0.903802i
\(990\) 0 0
\(991\) 12.0000 20.7846i 0.381193 0.660245i −0.610040 0.792370i \(-0.708847\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(998\) −96.4558 20.5023i −3.05325 0.648989i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.d.410.1 16
7.2 even 3 inner 539.2.q.d.520.2 16
7.3 odd 6 539.2.f.c.344.2 yes 8
7.4 even 3 539.2.f.c.344.2 yes 8
7.5 odd 6 inner 539.2.q.d.520.2 16
7.6 odd 2 CM 539.2.q.d.410.1 16
11.4 even 5 inner 539.2.q.d.312.2 16
77.4 even 15 539.2.f.c.246.2 8
77.24 even 30 5929.2.a.bg.1.3 4
77.26 odd 30 inner 539.2.q.d.422.1 16
77.31 odd 30 5929.2.a.bc.1.2 4
77.37 even 15 inner 539.2.q.d.422.1 16
77.46 odd 30 5929.2.a.bg.1.3 4
77.48 odd 10 inner 539.2.q.d.312.2 16
77.53 even 15 5929.2.a.bc.1.2 4
77.59 odd 30 539.2.f.c.246.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.2 8 77.4 even 15
539.2.f.c.246.2 8 77.59 odd 30
539.2.f.c.344.2 yes 8 7.3 odd 6
539.2.f.c.344.2 yes 8 7.4 even 3
539.2.q.d.312.2 16 11.4 even 5 inner
539.2.q.d.312.2 16 77.48 odd 10 inner
539.2.q.d.410.1 16 1.1 even 1 trivial
539.2.q.d.410.1 16 7.6 odd 2 CM
539.2.q.d.422.1 16 77.26 odd 30 inner
539.2.q.d.422.1 16 77.37 even 15 inner
539.2.q.d.520.2 16 7.2 even 3 inner
539.2.q.d.520.2 16 7.5 odd 6 inner
5929.2.a.bc.1.2 4 77.31 odd 30
5929.2.a.bc.1.2 4 77.53 even 15
5929.2.a.bg.1.3 4 77.24 even 30
5929.2.a.bg.1.3 4 77.46 odd 30