Properties

Label 539.2.q.d.361.2
Level $539$
Weight $2$
Character 539.361
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(214,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.214"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.9234096523681640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 361.2
Root \(1.26336 + 0.635539i\) of defining polynomial
Character \(\chi\) \(=\) 539.361
Dual form 539.2.q.d.324.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.31249 - 0.491535i) q^{2} +(3.27890 - 1.45986i) q^{4} +(3.03958 - 2.20838i) q^{8} +(2.93444 - 0.623735i) q^{9} +(-1.40621 - 3.00376i) q^{11} +(1.14020 - 1.26632i) q^{16} +(6.47928 - 2.88476i) q^{18} +(-4.72830 - 6.25495i) q^{22} +(4.79120 + 8.29860i) q^{23} +(0.522642 + 4.97261i) q^{25} +(-8.64279 - 6.27935i) q^{29} +(-1.74287 + 3.01874i) q^{32} +(8.71119 - 6.32905i) q^{36} +(0.142831 - 1.35895i) q^{37} -8.74072 q^{43} +(-8.99591 - 7.79616i) q^{44} +(15.1586 + 16.8354i) q^{46} +(3.65281 + 11.2422i) q^{50} +(-8.80255 - 9.77622i) q^{53} +(-23.0729 - 10.2727i) q^{58} +(-3.59968 + 11.0787i) q^{64} +(-8.16681 + 14.1453i) q^{67} +(3.08300 + 9.48849i) q^{71} +(7.54203 - 8.37627i) q^{72} +(-0.337674 - 3.21276i) q^{74} +(12.3495 - 2.62497i) q^{79} +(8.22191 - 3.66063i) q^{81} +(-20.2128 + 4.29637i) q^{86} +(-10.9077 - 6.02471i) q^{88} +(27.8247 + 20.2158i) q^{92} +(-6.00000 - 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 2 q^{4} + 32 q^{8} - 6 q^{9} + 4 q^{11} + 28 q^{16} + 9 q^{18} - 8 q^{22} + 16 q^{23} - 10 q^{25} - 8 q^{29} - 100 q^{32} - 12 q^{36} + 18 q^{37} + 48 q^{43} - 9 q^{44} + 31 q^{46} + 20 q^{50}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31249 0.491535i 1.63518 0.347567i 0.703454 0.710740i \(-0.251640\pi\)
0.931722 + 0.363173i \(0.118307\pi\)
\(3\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(4\) 3.27890 1.45986i 1.63945 0.729931i
\(5\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.03958 2.20838i 1.07465 0.780782i
\(9\) 2.93444 0.623735i 0.978148 0.207912i
\(10\) 0 0
\(11\) −1.40621 3.00376i −0.423989 0.905667i
\(12\) 0 0
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.14020 1.26632i 0.285049 0.316579i
\(17\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(18\) 6.47928 2.88476i 1.52718 0.679944i
\(19\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.72830 6.25495i −1.00808 1.33356i
\(23\) 4.79120 + 8.29860i 0.999035 + 1.73038i 0.537562 + 0.843224i \(0.319345\pi\)
0.461472 + 0.887155i \(0.347321\pi\)
\(24\) 0 0
\(25\) 0.522642 + 4.97261i 0.104528 + 0.994522i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.64279 6.27935i −1.60492 1.16605i −0.877132 0.480249i \(-0.840546\pi\)
−0.727793 0.685797i \(-0.759454\pi\)
\(30\) 0 0
\(31\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(32\) −1.74287 + 3.01874i −0.308099 + 0.533644i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 8.71119 6.32905i 1.45187 1.05484i
\(37\) 0.142831 1.35895i 0.0234813 0.223410i −0.976488 0.215572i \(-0.930838\pi\)
0.999969 0.00783774i \(-0.00249486\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(42\) 0 0
\(43\) −8.74072 −1.33295 −0.666474 0.745528i \(-0.732197\pi\)
−0.666474 + 0.745528i \(0.732197\pi\)
\(44\) −8.99591 7.79616i −1.35618 1.17532i
\(45\) 0 0
\(46\) 15.1586 + 16.8354i 2.23502 + 2.48224i
\(47\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.65281 + 11.2422i 0.516586 + 1.58989i
\(51\) 0 0
\(52\) 0 0
\(53\) −8.80255 9.77622i −1.20912 1.34287i −0.923060 0.384657i \(-0.874320\pi\)
−0.286064 0.958211i \(-0.592347\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −23.0729 10.2727i −3.02961 1.34887i
\(59\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −3.59968 + 11.0787i −0.449961 + 1.38484i
\(65\) 0 0
\(66\) 0 0
\(67\) −8.16681 + 14.1453i −0.997735 + 1.72813i −0.440609 + 0.897699i \(0.645238\pi\)
−0.557125 + 0.830428i \(0.688096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.08300 + 9.48849i 0.365885 + 1.12608i 0.949425 + 0.313993i \(0.101667\pi\)
−0.583541 + 0.812084i \(0.698333\pi\)
\(72\) 7.54203 8.37627i 0.888836 0.987153i
\(73\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(74\) −0.337674 3.21276i −0.0392538 0.373475i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.3495 2.62497i 1.38943 0.295332i 0.548352 0.836247i \(-0.315255\pi\)
0.841077 + 0.540915i \(0.181922\pi\)
\(80\) 0 0
\(81\) 8.22191 3.66063i 0.913545 0.406737i
\(82\) 0 0
\(83\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −20.2128 + 4.29637i −2.17960 + 0.463289i
\(87\) 0 0
\(88\) −10.9077 6.02471i −1.16277 0.642236i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 27.8247 + 20.2158i 2.90093 + 2.10765i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(98\) 0 0
\(99\) −6.00000 7.93725i −0.603023 0.797724i
\(100\) 8.97302 + 15.5417i 0.897302 + 1.55417i
\(101\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −25.1611 18.2806i −2.44387 1.77557i
\(107\) 11.9401 + 5.31608i 1.15429 + 0.513925i 0.892432 0.451181i \(-0.148997\pi\)
0.261861 + 0.965106i \(0.415664\pi\)
\(108\) 0 0
\(109\) 4.17089 7.22419i 0.399498 0.691952i −0.594166 0.804343i \(-0.702518\pi\)
0.993664 + 0.112391i \(0.0358510\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.7856 11.4689i 1.48498 1.07890i 0.509073 0.860724i \(-0.329988\pi\)
0.975909 0.218179i \(-0.0700116\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −37.5059 7.97212i −3.48233 0.740192i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.04513 + 8.44785i −0.640467 + 0.767986i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.11662 3.43661i −0.0990843 0.304950i 0.889212 0.457495i \(-0.151253\pi\)
−0.988297 + 0.152545i \(0.951253\pi\)
\(128\) −2.14995 + 20.4554i −0.190031 + 1.80802i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.9327 + 36.7252i −1.03083 + 3.17257i
\(135\) 0 0
\(136\) 0 0
\(137\) −20.0826 4.26868i −1.71577 0.364698i −0.758005 0.652249i \(-0.773826\pi\)
−0.957766 + 0.287550i \(0.907159\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.7933 + 20.4266i 0.989673 + 1.71416i
\(143\) 0 0
\(144\) 2.55600 4.42712i 0.213000 0.368926i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.51555 4.66437i −0.124577 0.383409i
\(149\) 14.7209 16.3492i 1.20598 1.33938i 0.280840 0.959755i \(-0.409387\pi\)
0.925141 0.379623i \(-0.123946\pi\)
\(150\) 0 0
\(151\) −2.35468 22.4033i −0.191621 1.82315i −0.493432 0.869785i \(-0.664258\pi\)
0.301811 0.953368i \(-0.402409\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(158\) 27.2679 12.1404i 2.16931 0.965841i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 17.2137 12.5065i 1.35244 0.982605i
\(163\) −6.69986 + 1.42410i −0.524773 + 0.111544i −0.462678 0.886526i \(-0.653112\pi\)
−0.0620951 + 0.998070i \(0.519778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 0 0
\(169\) 10.5172 + 7.64121i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) −28.6600 + 12.7603i −2.18530 + 0.972960i
\(173\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.40707 1.64417i −0.407573 0.123934i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.28730 12.2478i −0.0962170 0.915444i −0.931038 0.364922i \(-0.881096\pi\)
0.834821 0.550522i \(-0.185571\pi\)
\(180\) 0 0
\(181\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 32.8897 + 14.6435i 2.42466 + 1.07953i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.37180 22.5662i 0.171617 1.63283i −0.482118 0.876106i \(-0.660132\pi\)
0.653735 0.756723i \(-0.273201\pi\)
\(192\) 0 0
\(193\) 14.2494 + 3.02881i 1.02570 + 0.218018i 0.689891 0.723913i \(-0.257658\pi\)
0.335805 + 0.941932i \(0.390992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.2550 1.94184 0.970918 0.239411i \(-0.0769543\pi\)
0.970918 + 0.239411i \(0.0769543\pi\)
\(198\) −17.7764 15.4056i −1.26331 1.09483i
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 12.5700 + 13.9604i 0.888836 + 0.987153i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 19.2356 + 21.3633i 1.33697 + 1.48485i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.80563 + 5.55715i −0.124304 + 0.382570i −0.993774 0.111417i \(-0.964461\pi\)
0.869469 + 0.493987i \(0.164461\pi\)
\(212\) −43.1347 19.2048i −2.96250 1.31899i
\(213\) 0 0
\(214\) 30.2244 + 6.42439i 2.06610 + 0.439162i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.09419 18.7560i 0.412750 1.27032i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(224\) 0 0
\(225\) 4.63525 + 14.2658i 0.309017 + 0.951057i
\(226\) 30.8666 34.2808i 2.05322 2.28033i
\(227\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40.1377 −2.63517
\(233\) −21.5192 + 4.57406i −1.40977 + 0.299656i −0.849035 0.528337i \(-0.822816\pi\)
−0.560738 + 0.827993i \(0.689482\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.3570 + 17.6964i −1.57552 + 1.14468i −0.653907 + 0.756575i \(0.726871\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −12.1394 + 22.9985i −0.780349 + 1.47840i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(252\) 0 0
\(253\) 18.1896 26.0612i 1.14357 1.63845i
\(254\) −4.27139 7.39827i −0.268011 0.464209i
\(255\) 0 0
\(256\) 2.64754 + 25.1896i 0.165471 + 1.57435i
\(257\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −29.2784 13.0356i −1.81229 0.806883i
\(262\) 0 0
\(263\) −2.42801 + 4.20544i −0.149718 + 0.259319i −0.931123 0.364705i \(-0.881170\pi\)
0.781405 + 0.624024i \(0.214503\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −6.12796 + 58.3036i −0.374325 + 3.56146i
\(269\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(270\) 0 0
\(271\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −48.5389 −2.93234
\(275\) 14.2016 8.56244i 0.856387 0.516334i
\(276\) 0 0
\(277\) −7.07367 7.85611i −0.425016 0.472028i 0.492164 0.870503i \(-0.336206\pi\)
−0.917179 + 0.398475i \(0.869540\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.70331 26.7860i −0.519196 1.59792i −0.775515 0.631329i \(-0.782510\pi\)
0.256319 0.966592i \(-0.417490\pi\)
\(282\) 0 0
\(283\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(284\) 23.9607 + 26.6111i 1.42181 + 1.57908i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.23146 + 9.94542i −0.190416 + 0.586040i
\(289\) −15.5303 6.91452i −0.913545 0.406737i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.56693 4.44605i −0.149200 0.258422i
\(297\) 0 0
\(298\) 26.0057 45.0431i 1.50647 2.60928i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −16.4571 50.6499i −0.947002 2.91457i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 36.6608 26.6356i 2.06233 1.49837i
\(317\) 0.431893 0.0918017i 0.0242575 0.00515610i −0.195767 0.980650i \(-0.562720\pi\)
0.220024 + 0.975494i \(0.429386\pi\)
\(318\) 0 0
\(319\) −6.70806 + 34.7909i −0.375579 + 1.94792i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 21.6148 24.0057i 1.20082 1.33365i
\(325\) 0 0
\(326\) −14.7934 + 6.58642i −0.819328 + 0.364788i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.0072 + 22.5291i 0.714939 + 1.23831i 0.962983 + 0.269562i \(0.0868788\pi\)
−0.248044 + 0.968749i \(0.579788\pi\)
\(332\) 0 0
\(333\) −0.428493 4.07684i −0.0234813 0.223410i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.7003 + 21.5785i 1.61788 + 1.17546i 0.817102 + 0.576493i \(0.195579\pi\)
0.800776 + 0.598964i \(0.204421\pi\)
\(338\) 28.0769 + 12.5006i 1.52718 + 0.679944i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −26.5681 + 19.3029i −1.43246 + 1.04074i
\(345\) 0 0
\(346\) 0 0
\(347\) 33.2488 + 7.06724i 1.78489 + 0.379389i 0.977550 0.210702i \(-0.0675749\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 11.5184 + 0.990173i 0.613934 + 0.0527764i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −8.99708 27.6902i −0.475510 1.46347i
\(359\) −1.59926 + 15.2159i −0.0844056 + 0.803066i 0.867657 + 0.497163i \(0.165625\pi\)
−0.952063 + 0.305903i \(0.901042\pi\)
\(360\) 0 0
\(361\) −12.7135 14.1198i −0.669131 0.743145i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(368\) 15.9716 + 3.39486i 0.832576 + 0.176970i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 9.72788 + 29.9393i 0.499688 + 1.53788i 0.809522 + 0.587090i \(0.199726\pi\)
−0.309834 + 0.950791i \(0.600274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5.60729 53.3498i −0.286894 2.72961i
\(383\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.4404 1.75297
\(387\) −25.6491 + 5.45189i −1.30382 + 0.277135i
\(388\) 0 0
\(389\) 33.7675 15.0343i 1.71208 0.762268i 0.714015 0.700130i \(-0.246875\pi\)
0.998068 0.0621378i \(-0.0197918\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 63.0268 13.3968i 3.17524 0.674919i
\(395\) 0 0
\(396\) −31.2607 17.2663i −1.57091 0.867665i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.89282 + 5.00793i 0.344641 + 0.250396i
\(401\) 10.0808 11.1959i 0.503411 0.559094i −0.436857 0.899531i \(-0.643908\pi\)
0.940267 + 0.340437i \(0.110575\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.28280 + 1.48194i −0.212290 + 0.0734570i
\(408\) 0 0
\(409\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 54.9830 + 39.9475i 2.70227 + 1.96331i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −32.1148 + 23.3327i −1.56518 + 1.13717i −0.633581 + 0.773676i \(0.718416\pi\)
−0.931597 + 0.363492i \(0.881584\pi\)
\(422\) −1.44396 + 13.7384i −0.0702909 + 0.668773i
\(423\) 0 0
\(424\) −48.3457 10.2762i −2.34788 0.499056i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 46.9112 2.26754
\(429\) 0 0
\(430\) 0 0
\(431\) −27.7287 30.7958i −1.33564 1.48338i −0.714275 0.699865i \(-0.753244\pi\)
−0.621369 0.783518i \(-0.713423\pi\)
\(432\) 0 0
\(433\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3.12962 29.7763i 0.149882 1.42603i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.5360 + 11.8146i 1.26076 + 0.561328i 0.924767 0.380535i \(-0.124260\pi\)
0.335997 + 0.941863i \(0.390927\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.18900 22.1255i 0.339270 1.04417i −0.625310 0.780376i \(-0.715028\pi\)
0.964580 0.263790i \(-0.0849724\pi\)
\(450\) 17.7311 + 30.7112i 0.835853 + 1.44774i
\(451\) 0 0
\(452\) 35.0164 60.6502i 1.64703 2.85274i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.4014 + 14.8837i −0.626890 + 0.696232i −0.970011 0.243059i \(-0.921849\pi\)
0.343122 + 0.939291i \(0.388516\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 2.73687 0.127193 0.0635967 0.997976i \(-0.479743\pi\)
0.0635967 + 0.997976i \(0.479743\pi\)
\(464\) −17.8061 + 3.78481i −0.826629 + 0.175705i
\(465\) 0 0
\(466\) −47.5147 + 21.1549i −2.20108 + 0.979982i
\(467\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.2913 + 26.2550i 0.565155 + 1.20721i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −31.9284 23.1973i −1.46190 1.06213i
\(478\) −47.6268 + 52.8949i −2.17840 + 2.41936i
\(479\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −10.7676 + 37.9846i −0.489437 + 1.72657i
\(485\) 0 0
\(486\) 0 0
\(487\) 4.45752 + 42.4104i 0.201989 + 1.92180i 0.357403 + 0.933950i \(0.383662\pi\)
−0.155414 + 0.987850i \(0.549671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −35.5967 25.8626i −1.60646 1.16716i −0.873412 0.486983i \(-0.838097\pi\)
−0.733047 0.680178i \(-0.761903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.79305 + 36.0884i −0.169800 + 1.61554i 0.495257 + 0.868747i \(0.335074\pi\)
−0.665057 + 0.746793i \(0.731593\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 29.2532 69.2070i 1.30046 3.07663i
\(507\) 0 0
\(508\) −8.67829 9.63821i −0.385037 0.427627i
\(509\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 5.79221 + 17.8266i 0.255982 + 0.787831i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(522\) −74.1134 15.7533i −3.24386 0.689503i
\(523\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −3.54763 + 10.9185i −0.154684 + 0.476069i
\(527\) 0 0
\(528\) 0 0
\(529\) −34.4112 + 59.6020i −1.49614 + 2.59139i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 6.41465 + 61.0313i 0.277071 + 2.63615i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −45.1593 + 9.59890i −1.94155 + 0.412689i −0.945296 + 0.326215i \(0.894227\pi\)
−0.996254 + 0.0864744i \(0.972440\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.5967 + 25.8626i −1.52201 + 1.10580i −0.561525 + 0.827460i \(0.689785\pi\)
−0.960482 + 0.278343i \(0.910215\pi\)
\(548\) −72.0806 + 15.3212i −3.07913 + 0.654489i
\(549\) 0 0
\(550\) 28.6322 26.7811i 1.22088 1.14195i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −20.2193 14.6902i −0.859037 0.624127i
\(555\) 0 0
\(556\) 0 0
\(557\) 22.1807 9.87549i 0.939827 0.418438i 0.121113 0.992639i \(-0.461354\pi\)
0.818715 + 0.574201i \(0.194687\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −33.2926 57.6644i −1.40436 2.43243i
\(563\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 30.3252 + 22.0326i 1.27242 + 0.924467i
\(569\) 20.0980 + 8.94821i 0.842552 + 0.375128i 0.782184 0.623048i \(-0.214106\pi\)
0.0603683 + 0.998176i \(0.480772\pi\)
\(570\) 0 0
\(571\) −12.3782 + 21.4396i −0.518010 + 0.897220i 0.481771 + 0.876297i \(0.339994\pi\)
−0.999781 + 0.0209228i \(0.993340\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −38.7616 + 28.1620i −1.61647 + 1.17444i
\(576\) −3.65290 + 34.7550i −0.152204 + 1.44813i
\(577\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(578\) −39.3123 8.35609i −1.63518 0.347567i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −16.9872 + 40.1882i −0.703536 + 1.66442i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.55800 1.73034i −0.0640335 0.0711164i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24.4008 75.0979i 0.999495 3.07613i
\(597\) 0 0
\(598\) 0 0
\(599\) 4.02671 + 0.855905i 0.164527 + 0.0349713i 0.289439 0.957197i \(-0.406531\pi\)
−0.124912 + 0.992168i \(0.539865\pi\)
\(600\) 0 0
\(601\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(602\) 0 0
\(603\) −15.1421 + 46.6026i −0.616634 + 1.89780i
\(604\) −40.4265 70.0207i −1.64493 2.84910i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.92881 18.3514i −0.0779038 0.741205i −0.961843 0.273603i \(-0.911785\pi\)
0.883939 0.467602i \(-0.154882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.2257 1.29736 0.648679 0.761062i \(-0.275322\pi\)
0.648679 + 0.761062i \(0.275322\pi\)
\(618\) 0 0
\(619\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.4537 + 5.19779i −0.978148 + 0.207912i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.1742 8.84507i −0.484647 0.352117i 0.318475 0.947931i \(-0.396829\pi\)
−0.803122 + 0.595815i \(0.796829\pi\)
\(632\) 31.7404 35.2513i 1.26257 1.40222i
\(633\) 0 0
\(634\) 0.953624 0.424581i 0.0378732 0.0168623i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.58864 + 83.7509i 0.0628947 + 3.31573i
\(639\) 14.9652 + 25.9205i 0.592014 + 1.02540i
\(640\) 0 0
\(641\) 0.618316 + 5.88289i 0.0244220 + 0.232360i 0.999924 + 0.0123672i \(0.00393672\pi\)
−0.975502 + 0.219993i \(0.929397\pi\)
\(642\) 0 0
\(643\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(648\) 16.9071 29.2839i 0.664173 1.15038i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −19.8892 + 14.4504i −0.778922 + 0.565920i
\(653\) 3.57804 34.0428i 0.140020 1.33220i −0.668493 0.743719i \(-0.733060\pi\)
0.808512 0.588479i \(-0.200273\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 41.1528 + 45.7048i 1.59945 + 1.77637i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −2.99479 9.21703i −0.116046 0.357153i
\(667\) 10.7005 101.809i 0.414326 3.94205i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 15.3058 47.1065i 0.589996 1.81582i 0.0117883 0.999931i \(-0.496248\pi\)
0.578208 0.815890i \(-0.303752\pi\)
\(674\) 79.2882 + 35.3014i 3.05407 + 1.35976i
\(675\) 0 0
\(676\) 45.6401 + 9.70110i 1.75539 + 0.373119i
\(677\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.5896 + 39.1263i −0.864366 + 1.49713i 0.00330916 + 0.999995i \(0.498947\pi\)
−0.867675 + 0.497131i \(0.834387\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −9.96615 + 11.0685i −0.379956 + 0.421984i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 80.3612 3.05047
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8536 + 17.3306i −0.900937 + 0.654569i −0.938707 0.344717i \(-0.887975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 38.3396 4.76641i 1.44498 0.179641i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −34.9148 + 38.7768i −1.31125 + 1.45629i −0.507074 + 0.861903i \(0.669273\pi\)
−0.804178 + 0.594389i \(0.797394\pi\)
\(710\) 0 0
\(711\) 34.6017 15.4057i 1.29766 0.577757i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −22.1010 38.2801i −0.825954 1.43059i
\(717\) 0 0
\(718\) 3.78089 + 35.9727i 0.141101 + 1.34249i
\(719\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −36.3401 26.4026i −1.35244 0.982605i
\(723\) 0 0
\(724\) 0 0
\(725\) 26.7077 46.2591i 0.991898 1.71802i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 21.8435 15.8702i 0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −33.4018 −1.23121
\(737\) 53.9734 + 4.63979i 1.98814 + 0.170909i
\(738\) 0 0
\(739\) −0.649946 0.721839i −0.0239087 0.0265533i 0.731072 0.682300i \(-0.239020\pi\)
−0.754981 + 0.655747i \(0.772354\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.7056 45.2592i −0.539496 1.66040i −0.733729 0.679442i \(-0.762222\pi\)
0.194233 0.980955i \(-0.437778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −34.8024 38.6519i −1.27420 1.41515i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 21.2687 + 9.46943i 0.776106 + 0.345544i 0.756271 0.654259i \(-0.227019\pi\)
0.0198348 + 0.999803i \(0.493686\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.26681 + 25.4426i −0.300462 + 0.924728i 0.680869 + 0.732405i \(0.261602\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) 37.2118 + 64.4528i 1.35159 + 2.34103i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −25.1666 77.4548i −0.910495 2.80222i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 51.1442 10.8710i 1.84072 0.391257i
\(773\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(774\) −56.6336 + 25.2149i −2.03565 + 0.906330i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 70.6972 51.3645i 2.53462 1.84151i
\(779\) 0 0
\(780\) 0 0
\(781\) 24.1658 22.6034i 0.864720 0.808814i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(788\) 89.3665 39.7885i 3.18355 1.41741i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −35.7660 10.8756i −1.27089 0.386448i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −15.9219 7.08890i −0.562925 0.250631i
\(801\) 0 0
\(802\) 17.8086 30.8453i 0.628842 1.08919i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −54.4092 11.5650i −1.91293 0.406605i −0.912928 0.408120i \(-0.866185\pi\)
−0.999999 + 0.00151439i \(0.999518\pi\)
\(810\) 0 0
\(811\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −9.17550 + 5.53211i −0.321601 + 0.193900i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.29963 + 21.8795i −0.0802575 + 0.763599i 0.878186 + 0.478318i \(0.158754\pi\)
−0.958444 + 0.285281i \(0.907913\pi\)
\(822\) 0 0
\(823\) −23.6900 26.3104i −0.825781 0.917122i 0.171905 0.985114i \(-0.445008\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.5967 41.8465i 0.472805 1.45514i −0.376090 0.926583i \(-0.622732\pi\)
0.848895 0.528562i \(-0.177268\pi\)
\(828\) 94.2594 + 41.9670i 3.27574 + 1.45845i
\(829\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) 0 0
\(841\) 26.3060 + 80.9615i 0.907103 + 2.79178i
\(842\) −62.7962 + 69.7422i −2.16410 + 2.40348i
\(843\) 0 0
\(844\) 2.19219 + 20.8573i 0.0754584 + 0.717939i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −22.4164 −0.769784
\(849\) 0 0
\(850\) 0 0
\(851\) 11.9617 5.32569i 0.410042 0.182562i
\(852\) 0 0
\(853\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 48.0328 10.2097i 1.64173 0.348960i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −79.2595 57.5854i −2.69959 1.96137i
\(863\) 5.35304 5.94516i 0.182220 0.202376i −0.645114 0.764087i \(-0.723190\pi\)
0.827334 + 0.561711i \(0.189857\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.2508 33.4037i −0.856576 1.13314i
\(870\) 0 0
\(871\) 0 0
\(872\) −3.27604 31.1694i −0.110941 1.05553i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 41.6997 + 18.5659i 1.40810 + 0.626925i 0.963232 0.268672i \(-0.0865848\pi\)
0.444866 + 0.895597i \(0.353251\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 9.70820 7.05342i 0.326707 0.237367i −0.412325 0.911037i \(-0.635283\pi\)
0.739032 + 0.673670i \(0.235283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 67.1715 + 14.2777i 2.25667 + 0.479670i
\(887\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −22.5574 19.5490i −0.755701 0.654916i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 5.74905 54.6985i 0.191848 1.82531i
\(899\) 0 0
\(900\) 36.0247 + 40.0095i 1.20082 + 1.33365i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 22.6538 69.7212i 0.753454 2.31889i
\(905\) 0 0
\(906\) 0 0
\(907\) −23.0584 4.90121i −0.765642 0.162742i −0.191494 0.981494i \(-0.561333\pi\)
−0.574148 + 0.818752i \(0.694667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.94427 15.2169i 0.163811 0.504159i −0.835136 0.550044i \(-0.814611\pi\)
0.998947 + 0.0458855i \(0.0146109\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −23.6746 + 41.0057i −0.783088 + 1.35635i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 13.6468 15.1563i 0.450166 0.499960i −0.474756 0.880118i \(-0.657464\pi\)
0.924922 + 0.380158i \(0.124130\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.83216 0.224640
\(926\) 6.32899 1.34527i 0.207984 0.0442083i
\(927\) 0 0
\(928\) 34.0190 15.1462i 1.11673 0.497200i
\(929\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −63.8821 + 46.4130i −2.09253 + 1.52031i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 41.3288 + 54.6728i 1.34371 + 1.77757i
\(947\) 10.0000 + 17.3205i 0.324956 + 0.562841i 0.981504 0.191444i \(-0.0613171\pi\)
−0.656547 + 0.754285i \(0.727984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.8965 + 20.2680i 0.903655 + 0.656544i 0.939402 0.342817i \(-0.111381\pi\)
−0.0357473 + 0.999361i \(0.511381\pi\)
\(954\) −85.2362 37.9496i −2.75962 1.22866i
\(955\) 0 0
\(956\) −54.0299 + 93.5825i −1.74745 + 3.02668i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.24038 30.8302i 0.104528 0.994522i
\(962\) 0 0
\(963\) 38.3534 + 8.15226i 1.23592 + 0.262703i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 60.3531 1.94082 0.970412 0.241454i \(-0.0776244\pi\)
0.970412 + 0.241454i \(0.0776244\pi\)
\(968\) −2.75815 + 41.2363i −0.0886504 + 1.32538i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.1541 + 95.8826i 0.998243 + 3.07228i
\(975\) 0 0
\(976\) 0 0
\(977\) −8.25215 9.16494i −0.264010 0.293212i 0.596535 0.802587i \(-0.296544\pi\)
−0.860545 + 0.509374i \(0.829877\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 7.73325 23.8005i 0.246904 0.759891i
\(982\) −95.0294 42.3098i −3.03251 1.35016i
\(983\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −41.8786 72.5358i −1.33166 2.30650i
\(990\) 0 0
\(991\) 12.0000 20.7846i 0.381193 0.660245i −0.610040 0.792370i \(-0.708847\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(998\) 8.96733 + 85.3185i 0.283856 + 2.70071i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.d.361.2 16
7.2 even 3 inner 539.2.q.d.471.1 16
7.3 odd 6 539.2.f.c.295.1 yes 8
7.4 even 3 539.2.f.c.295.1 yes 8
7.5 odd 6 inner 539.2.q.d.471.1 16
7.6 odd 2 CM 539.2.q.d.361.2 16
11.5 even 5 inner 539.2.q.d.214.1 16
77.4 even 15 5929.2.a.bc.1.1 4
77.5 odd 30 inner 539.2.q.d.324.2 16
77.16 even 15 inner 539.2.q.d.324.2 16
77.18 odd 30 5929.2.a.bg.1.4 4
77.27 odd 10 inner 539.2.q.d.214.1 16
77.38 odd 30 539.2.f.c.148.1 8
77.59 odd 30 5929.2.a.bc.1.1 4
77.60 even 15 539.2.f.c.148.1 8
77.73 even 30 5929.2.a.bg.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.148.1 8 77.38 odd 30
539.2.f.c.148.1 8 77.60 even 15
539.2.f.c.295.1 yes 8 7.3 odd 6
539.2.f.c.295.1 yes 8 7.4 even 3
539.2.q.d.214.1 16 11.5 even 5 inner
539.2.q.d.214.1 16 77.27 odd 10 inner
539.2.q.d.324.2 16 77.5 odd 30 inner
539.2.q.d.324.2 16 77.16 even 15 inner
539.2.q.d.361.2 16 1.1 even 1 trivial
539.2.q.d.361.2 16 7.6 odd 2 CM
539.2.q.d.471.1 16 7.2 even 3 inner
539.2.q.d.471.1 16 7.5 odd 6 inner
5929.2.a.bc.1.1 4 77.4 even 15
5929.2.a.bc.1.1 4 77.59 odd 30
5929.2.a.bg.1.4 4 77.18 odd 30
5929.2.a.bg.1.4 4 77.73 even 30