Properties

Label 539.2.q.d.312.2
Level $539$
Weight $2$
Character 539.312
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(214,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.214"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.9234096523681640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 312.2
Root \(1.31765 + 0.513604i\) of defining polynomial
Character \(\chi\) \(=\) 539.312
Dual form 539.2.q.d.520.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.230720 - 2.19515i) q^{2} +(-2.80916 - 0.597105i) q^{4} +(-0.594713 + 1.83034i) q^{8} +(0.313585 - 2.98357i) q^{9} +(-2.84031 - 1.71249i) q^{11} +(-1.36660 - 0.608448i) q^{16} +(-6.47703 - 1.37673i) q^{18} +(-4.41448 + 5.83981i) q^{22} +(1.28019 + 2.21736i) q^{23} +(-3.34565 - 3.71572i) q^{25} +(-2.42225 - 7.45492i) q^{29} +(-3.57547 + 6.19289i) q^{32} +(-2.66241 + 8.19407i) q^{36} +(-7.97546 + 8.85765i) q^{37} +12.8185 q^{43} +(6.95636 + 6.50662i) q^{44} +(5.16280 - 2.29862i) q^{46} +(-8.92848 + 6.48692i) q^{50} +(13.0735 - 5.82069i) q^{53} +(-16.9235 + 3.59721i) q^{58} +(10.3489 + 7.51894i) q^{64} +(6.28343 - 10.8832i) q^{67} +(12.9884 - 9.43662i) q^{71} +(5.27444 + 2.34833i) q^{72} +(17.6038 + 19.5510i) q^{74} +(-0.298812 + 2.84301i) q^{79} +(-8.80333 - 1.87121i) q^{81} +(2.95747 - 28.1385i) q^{86} +(4.82361 - 4.18030i) q^{88} +(-2.27227 - 6.99331i) q^{92} +(-6.00000 + 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 2 q^{4} + 32 q^{8} - 6 q^{9} + 4 q^{11} + 28 q^{16} + 9 q^{18} - 8 q^{22} + 16 q^{23} - 10 q^{25} - 8 q^{29} - 100 q^{32} - 12 q^{36} + 18 q^{37} + 48 q^{43} - 9 q^{44} + 31 q^{46} + 20 q^{50}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.230720 2.19515i 0.163143 1.55221i −0.540311 0.841465i \(-0.681693\pi\)
0.703454 0.710740i \(-0.251640\pi\)
\(3\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(4\) −2.80916 0.597105i −1.40458 0.298553i
\(5\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.594713 + 1.83034i −0.210263 + 0.647123i
\(9\) 0.313585 2.98357i 0.104528 0.994522i
\(10\) 0 0
\(11\) −2.84031 1.71249i −0.856387 0.516334i
\(12\) 0 0
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.36660 0.608448i −0.341649 0.152112i
\(17\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(18\) −6.47703 1.37673i −1.52665 0.324499i
\(19\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.41448 + 5.83981i −0.941171 + 1.24505i
\(23\) 1.28019 + 2.21736i 0.266938 + 0.462351i 0.968070 0.250681i \(-0.0806547\pi\)
−0.701131 + 0.713032i \(0.747321\pi\)
\(24\) 0 0
\(25\) −3.34565 3.71572i −0.669131 0.743145i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.42225 7.45492i −0.449801 1.38434i −0.877132 0.480249i \(-0.840546\pi\)
0.427331 0.904095i \(-0.359454\pi\)
\(30\) 0 0
\(31\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(32\) −3.57547 + 6.19289i −0.632059 + 1.09476i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −2.66241 + 8.19407i −0.443736 + 1.36568i
\(37\) −7.97546 + 8.85765i −1.31116 + 1.45619i −0.506772 + 0.862080i \(0.669162\pi\)
−0.804385 + 0.594108i \(0.797505\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(42\) 0 0
\(43\) 12.8185 1.95480 0.977399 0.211402i \(-0.0678028\pi\)
0.977399 + 0.211402i \(0.0678028\pi\)
\(44\) 6.95636 + 6.50662i 1.04871 + 0.980909i
\(45\) 0 0
\(46\) 5.16280 2.29862i 0.761213 0.338914i
\(47\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −8.92848 + 6.48692i −1.26268 + 0.917389i
\(51\) 0 0
\(52\) 0 0
\(53\) 13.0735 5.82069i 1.79578 0.799533i 0.822914 0.568166i \(-0.192347\pi\)
0.972867 0.231367i \(-0.0743197\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −16.9235 + 3.59721i −2.22217 + 0.472337i
\(59\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(60\) 0 0
\(61\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 10.3489 + 7.51894i 1.29362 + 0.939868i
\(65\) 0 0
\(66\) 0 0
\(67\) 6.28343 10.8832i 0.767644 1.32960i −0.171194 0.985237i \(-0.554762\pi\)
0.938837 0.344361i \(-0.111904\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9884 9.43662i 1.54144 1.11992i 0.592014 0.805928i \(-0.298333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 5.27444 + 2.34833i 0.621599 + 0.276754i
\(73\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(74\) 17.6038 + 19.5510i 2.04640 + 2.27275i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.298812 + 2.84301i −0.0336190 + 0.319863i 0.964769 + 0.263100i \(0.0847448\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) −8.80333 1.87121i −0.978148 0.207912i
\(82\) 0 0
\(83\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.95747 28.1385i 0.318912 3.03425i
\(87\) 0 0
\(88\) 4.82361 4.18030i 0.514198 0.445622i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.27227 6.99331i −0.236900 0.729103i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(98\) 0 0
\(99\) −6.00000 + 7.93725i −0.603023 + 0.797724i
\(100\) 7.17979 + 12.4358i 0.717979 + 1.24358i
\(101\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.76098 30.0412i −0.948070 2.91786i
\(107\) 10.9678 2.33128i 1.06030 0.225374i 0.355425 0.934705i \(-0.384336\pi\)
0.704875 + 0.709331i \(0.251003\pi\)
\(108\) 0 0
\(109\) −7.81367 + 13.5337i −0.748414 + 1.29629i 0.200169 + 0.979761i \(0.435851\pi\)
−0.948583 + 0.316530i \(0.897482\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34450 10.2933i 0.314624 0.968314i −0.661285 0.750135i \(-0.729988\pi\)
0.975909 0.218179i \(-0.0700116\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.35312 + 22.3884i 0.218481 + 2.07871i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.13477 + 9.72801i 0.466798 + 0.884364i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.2142 + 11.7803i −1.43878 + 1.04533i −0.450479 + 0.892787i \(0.648747\pi\)
−0.988297 + 0.152545i \(0.951253\pi\)
\(128\) 9.32310 10.3544i 0.824053 0.915204i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −22.4406 16.3041i −1.93857 1.40846i
\(135\) 0 0
\(136\) 0 0
\(137\) −1.78115 16.9466i −0.152174 1.44784i −0.758005 0.652249i \(-0.773826\pi\)
0.605831 0.795593i \(-0.292841\pi\)
\(138\) 0 0
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17.7181 30.6887i −1.48687 2.57534i
\(143\) 0 0
\(144\) −2.24389 + 3.88653i −0.186991 + 0.323877i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 27.6933 20.1203i 2.27637 1.65388i
\(149\) 20.0980 + 8.94821i 1.64649 + 0.733066i 0.999565 0.0294862i \(-0.00938711\pi\)
0.646927 + 0.762552i \(0.276054\pi\)
\(150\) 0 0
\(151\) −1.59513 1.77158i −0.129810 0.144169i 0.674735 0.738060i \(-0.264258\pi\)
−0.804546 + 0.593891i \(0.797591\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(158\) 6.17188 + 1.31187i 0.491009 + 0.104367i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −6.13868 + 18.8929i −0.482300 + 1.48437i
\(163\) 2.22415 21.1613i 0.174209 1.65748i −0.462678 0.886526i \(-0.653112\pi\)
0.636887 0.770957i \(-0.280222\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(168\) 0 0
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) −36.0091 7.65398i −2.74567 0.583610i
\(173\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.83960 + 4.06846i 0.214043 + 0.306672i
\(177\) 0 0
\(178\) 0 0
\(179\) 17.6642 + 19.6180i 1.32028 + 1.46632i 0.781551 + 0.623841i \(0.214429\pi\)
0.538730 + 0.842479i \(0.318904\pi\)
\(180\) 0 0
\(181\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.81986 + 1.02449i −0.355325 + 0.0755266i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.07517 6.74716i 0.439584 0.488207i −0.482118 0.876106i \(-0.660132\pi\)
0.921702 + 0.387899i \(0.126799\pi\)
\(192\) 0 0
\(193\) 0.221730 + 2.10962i 0.0159604 + 0.151854i 0.999600 0.0282966i \(-0.00900830\pi\)
−0.983639 + 0.180150i \(0.942342\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.03059 0.144674 0.0723369 0.997380i \(-0.476954\pi\)
0.0723369 + 0.997380i \(0.476954\pi\)
\(198\) 16.0391 + 15.0022i 1.13985 + 1.06616i
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 8.79074 3.91389i 0.621599 0.276754i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.01708 3.12420i 0.487721 0.217147i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.3570 + 16.9698i 1.60796 + 1.16825i 0.869469 + 0.493987i \(0.164461\pi\)
0.738490 + 0.674264i \(0.235539\pi\)
\(212\) −40.2010 + 8.54500i −2.76102 + 0.586873i
\(213\) 0 0
\(214\) −2.58703 24.6139i −0.176845 1.68257i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 27.9057 + 20.2747i 1.89001 + 1.37317i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(224\) 0 0
\(225\) −12.1353 + 8.81678i −0.809017 + 0.587785i
\(226\) −21.8237 9.71655i −1.45169 0.646336i
\(227\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.0856 0.990417
\(233\) −2.29963 + 21.8795i −0.150654 + 1.43337i 0.614191 + 0.789157i \(0.289482\pi\)
−0.764844 + 0.644215i \(0.777184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.80563 + 27.1009i −0.569589 + 1.75301i 0.0843185 + 0.996439i \(0.473129\pi\)
−0.653907 + 0.756575i \(0.726871\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) 22.5391 9.02716i 1.44887 0.580288i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(252\) 0 0
\(253\) 0.161049 8.49030i 0.0101251 0.533781i
\(254\) 22.1186 + 38.3105i 1.38784 + 2.40381i
\(255\) 0 0
\(256\) −3.45931 3.84195i −0.216207 0.240122i
\(257\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −23.0018 + 4.88919i −1.42378 + 0.302633i
\(262\) 0 0
\(263\) 11.3891 19.7266i 0.702284 1.21639i −0.265378 0.964144i \(-0.585497\pi\)
0.967663 0.252248i \(-0.0811698\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −24.1496 + 26.8208i −1.47517 + 1.63834i
\(269\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(270\) 0 0
\(271\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −37.6112 −2.27217
\(275\) 3.13958 + 16.2832i 0.189324 + 0.981915i
\(276\) 0 0
\(277\) −30.4076 + 13.5383i −1.82702 + 0.813440i −0.909837 + 0.414965i \(0.863794\pi\)
−0.917179 + 0.398475i \(0.869540\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −27.0823 + 19.6764i −1.61559 + 1.17380i −0.775515 + 0.631329i \(0.782510\pi\)
−0.840077 + 0.542467i \(0.817490\pi\)
\(282\) 0 0
\(283\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(284\) −42.1211 + 18.7535i −2.49943 + 1.11282i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 17.3557 + 12.6096i 1.02269 + 0.743030i
\(289\) 16.6285 3.53450i 0.978148 0.207912i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.4694 19.8656i −0.666644 1.15466i
\(297\) 0 0
\(298\) 24.2797 42.0536i 1.40648 2.43610i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −4.25690 + 3.09282i −0.244957 + 0.177972i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(312\) 0 0
\(313\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.53698 7.80803i 0.142716 0.439236i
\(317\) −2.22500 + 21.1694i −0.124968 + 1.18899i 0.734791 + 0.678294i \(0.237280\pi\)
−0.859759 + 0.510700i \(0.829386\pi\)
\(318\) 0 0
\(319\) −5.88651 + 25.3224i −0.329581 + 1.41778i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 23.6126 + 10.5130i 1.31181 + 0.584057i
\(325\) 0 0
\(326\) −45.9392 9.76467i −2.54433 0.540815i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.07856 13.9925i −0.444038 0.769097i 0.553947 0.832552i \(-0.313121\pi\)
−0.997985 + 0.0634557i \(0.979788\pi\)
\(332\) 0 0
\(333\) 23.9264 + 26.5729i 1.31116 + 1.45619i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.35579 10.3281i −0.182801 0.562605i 0.817102 0.576493i \(-0.195579\pi\)
−0.999904 + 0.0138879i \(0.995579\pi\)
\(338\) −28.0671 + 5.96585i −1.52665 + 0.324499i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −7.62332 + 23.4622i −0.411022 + 1.26499i
\(345\) 0 0
\(346\) 0 0
\(347\) −1.93752 18.4343i −0.104011 0.989603i −0.914702 0.404128i \(-0.867575\pi\)
0.810691 0.585475i \(-0.199092\pi\)
\(348\) 0 0
\(349\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 20.7607 11.4668i 1.10655 0.611183i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 47.1400 34.2492i 2.49143 1.81013i
\(359\) 25.2261 28.0164i 1.33138 1.47865i 0.590430 0.807089i \(-0.298958\pi\)
0.740951 0.671559i \(-0.234375\pi\)
\(360\) 0 0
\(361\) −17.3574 + 7.72800i −0.913545 + 0.406737i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(368\) −0.400359 3.80916i −0.0208701 0.198566i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −25.4997 + 18.5267i −1.30983 + 0.951650i −0.309834 + 0.950791i \(0.600274\pi\)
−1.00000 0.000859657i \(0.999726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −13.4094 14.8926i −0.686083 0.761973i
\(383\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.68208 0.238312
\(387\) 4.01969 38.2448i 0.204332 1.94409i
\(388\) 0 0
\(389\) 1.64095 + 0.348795i 0.0831995 + 0.0176846i 0.249323 0.968420i \(-0.419792\pi\)
−0.166124 + 0.986105i \(0.553125\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0.468498 4.45746i 0.0236026 0.224564i
\(395\) 0 0
\(396\) 21.5943 18.7144i 1.08516 0.940433i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.31133 + 7.11355i 0.115567 + 0.355677i
\(401\) −27.9880 12.4610i −1.39765 0.622275i −0.436857 0.899531i \(-0.643908\pi\)
−0.960796 + 0.277256i \(0.910575\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 37.8214 11.5006i 1.87474 0.570065i
\(408\) 0 0
\(409\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −5.23912 16.1244i −0.257489 0.792469i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 6.84802 21.0760i 0.333752 1.02718i −0.633581 0.773676i \(-0.718416\pi\)
0.967333 0.253507i \(-0.0815842\pi\)
\(422\) 42.6402 47.3568i 2.07569 2.30529i
\(423\) 0 0
\(424\) 2.87886 + 27.3905i 0.139810 + 1.33020i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −32.2024 −1.55656
\(429\) 0 0
\(430\) 0 0
\(431\) −13.9535 + 6.21251i −0.672118 + 0.299246i −0.714275 0.699865i \(-0.753244\pi\)
0.0421573 + 0.999111i \(0.486577\pi\)
\(432\) 0 0
\(433\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 30.0309 33.3527i 1.43822 1.59730i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.46934 1.16254i 0.259856 0.0552342i −0.0761412 0.997097i \(-0.524260\pi\)
0.335997 + 0.941863i \(0.390927\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0711 24.0276i −1.56072 1.13393i −0.935413 0.353556i \(-0.884972\pi\)
−0.625310 0.780376i \(-0.715028\pi\)
\(450\) 16.5543 + 28.6729i 0.780378 + 1.35165i
\(451\) 0 0
\(452\) −15.5414 + 26.9185i −0.731007 + 1.26614i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.4733 17.1294i −1.79970 0.801280i −0.970011 0.243059i \(-0.921849\pi\)
−0.829693 0.558220i \(-0.811484\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 23.0299 1.07029 0.535145 0.844760i \(-0.320257\pi\)
0.535145 + 0.844760i \(0.320257\pi\)
\(464\) −1.22569 + 11.6617i −0.0569013 + 0.541380i
\(465\) 0 0
\(466\) 47.4982 + 10.0961i 2.20031 + 0.467691i
\(467\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −36.4085 21.9515i −1.67406 1.00933i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −13.2668 40.8309i −0.607443 1.86952i
\(478\) 57.4590 + 25.5824i 2.62811 + 1.17011i
\(479\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −8.61575 30.3935i −0.391625 1.38152i
\(485\) 0 0
\(486\) 0 0
\(487\) 27.5603 + 30.6089i 1.24888 + 1.38702i 0.891475 + 0.453069i \(0.149671\pi\)
0.357403 + 0.933950i \(0.383662\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 + 41.8465i 0.613613 + 1.88851i 0.420363 + 0.907356i \(0.361903\pi\)
0.193249 + 0.981150i \(0.438097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.8940 + 33.2007i −1.33824 + 1.48627i −0.665057 + 0.746793i \(0.731593\pi\)
−0.673184 + 0.739475i \(0.735074\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −18.6003 2.31241i −0.826885 0.102799i
\(507\) 0 0
\(508\) 52.5823 23.4111i 2.33296 1.03870i
\(509\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 13.3125 9.67211i 0.588336 0.427451i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(522\) 5.42553 + 51.6205i 0.237469 + 2.25937i
\(523\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −40.6751 29.5522i −1.77352 1.28854i
\(527\) 0 0
\(528\) 0 0
\(529\) 8.22222 14.2413i 0.357488 0.619187i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 16.1832 + 17.9732i 0.699006 + 0.776325i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.05801 + 19.5807i −0.0884808 + 0.841839i 0.856815 + 0.515624i \(0.172440\pi\)
−0.945296 + 0.326215i \(0.894227\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 41.8465i 0.581355 1.78923i −0.0320849 0.999485i \(-0.510215\pi\)
0.613440 0.789741i \(-0.289785\pi\)
\(548\) −5.11533 + 48.6691i −0.218516 + 2.07904i
\(549\) 0 0
\(550\) 36.4685 3.13498i 1.55502 0.133676i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 22.7031 + 69.8729i 0.964561 + 2.96861i
\(555\) 0 0
\(556\) 0 0
\(557\) 42.4862 + 9.03071i 1.80020 + 0.382643i 0.981481 0.191557i \(-0.0613538\pi\)
0.818715 + 0.574201i \(0.194687\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 36.9443 + 63.9894i 1.55840 + 2.69923i
\(563\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 9.54785 + 29.3853i 0.400619 + 1.23298i
\(569\) −21.5192 + 4.57406i −0.902134 + 0.191754i −0.635552 0.772058i \(-0.719228\pi\)
−0.266582 + 0.963812i \(0.585894\pi\)
\(570\) 0 0
\(571\) −23.2644 + 40.2951i −0.973583 + 1.68630i −0.289051 + 0.957314i \(0.593340\pi\)
−0.684533 + 0.728982i \(0.739994\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.95601 12.1753i 0.164977 0.507747i
\(576\) 25.6785 28.5189i 1.06994 1.18829i
\(577\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(578\) −3.92223 37.3176i −0.163143 1.55221i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −47.1006 5.85558i −1.95071 0.242514i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 16.2886 7.25217i 0.669459 0.298062i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −51.1155 37.1376i −2.09377 1.52121i
\(597\) 0 0
\(598\) 0 0
\(599\) −4.71592 44.8690i −0.192687 1.83330i −0.482126 0.876102i \(-0.660135\pi\)
0.289439 0.957197i \(-0.406531\pi\)
\(600\) 0 0
\(601\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(602\) 0 0
\(603\) −30.5004 22.1599i −1.24207 0.902419i
\(604\) 3.42317 + 5.92910i 0.139287 + 0.241252i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 8.08380 + 8.97796i 0.326501 + 0.362617i 0.883939 0.467602i \(-0.154882\pi\)
−0.557438 + 0.830219i \(0.688215\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.84770 −0.154902 −0.0774512 0.996996i \(-0.524678\pi\)
−0.0774512 + 0.996996i \(0.524678\pi\)
\(618\) 0 0
\(619\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −2.61321 + 24.8630i −0.104528 + 0.994522i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15.5241 + 47.7782i 0.618003 + 1.90202i 0.318475 + 0.947931i \(0.396829\pi\)
0.299528 + 0.954087i \(0.403171\pi\)
\(632\) −5.02596 2.23770i −0.199922 0.0890109i
\(633\) 0 0
\(634\) 45.9567 + 9.76841i 1.82518 + 0.387953i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 54.2283 + 18.7641i 2.14692 + 0.742879i
\(639\) −24.0818 41.7109i −0.952662 1.65006i
\(640\) 0 0
\(641\) −16.5768 18.4105i −0.654746 0.727169i 0.320755 0.947162i \(-0.396063\pi\)
−0.975502 + 0.219993i \(0.929397\pi\)
\(642\) 0 0
\(643\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(648\) 8.66040 15.0002i 0.340213 0.589265i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −18.8835 + 58.1175i −0.739536 + 2.27606i
\(653\) 17.0735 18.9620i 0.668136 0.742040i −0.309833 0.950791i \(-0.600273\pi\)
0.977969 + 0.208751i \(0.0669397\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) −32.5795 + 14.5053i −1.26624 + 0.563765i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 63.8519 46.3911i 2.47421 1.79762i
\(667\) 13.4293 14.9147i 0.519983 0.577500i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.7653 + 28.8912i 1.53284 + 1.11367i 0.954633 + 0.297784i \(0.0962476\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) −23.4459 + 4.98358i −0.903102 + 0.191960i
\(675\) 0 0
\(676\) 3.90256 + 37.1304i 0.150099 + 1.42809i
\(677\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.51818 9.55777i 0.211147 0.365718i −0.740926 0.671586i \(-0.765613\pi\)
0.952074 + 0.305868i \(0.0989467\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −17.5177 7.79937i −0.667855 0.297348i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −40.9130 −1.55304
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.7423 48.4499i 0.594579 1.82993i 0.0377695 0.999286i \(-0.487975\pi\)
0.556810 0.830640i \(-0.312025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −16.5181 39.0786i −0.622551 1.47283i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 32.8481 + 14.6249i 1.23364 + 0.549251i 0.916845 0.399244i \(-0.130727\pi\)
0.316793 + 0.948495i \(0.397394\pi\)
\(710\) 0 0
\(711\) 8.38859 + 1.78305i 0.314597 + 0.0668696i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −37.9074 65.6575i −1.41667 2.45374i
\(717\) 0 0
\(718\) −55.6800 61.8389i −2.07796 2.30781i
\(719\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 12.9594 + 39.8850i 0.482300 + 1.48437i
\(723\) 0 0
\(724\) 0 0
\(725\) −19.5964 + 33.9420i −0.727793 + 1.26057i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 + 25.6785i −0.309017 + 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −18.3091 −0.674883
\(737\) −36.4843 + 20.1515i −1.34392 + 0.742290i
\(738\) 0 0
\(739\) 29.9077 13.3158i 1.10017 0.489829i 0.225354 0.974277i \(-0.427646\pi\)
0.874820 + 0.484448i \(0.160980\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −43.7942 + 31.8183i −1.60665 + 1.16730i −0.733729 + 0.679442i \(0.762222\pi\)
−0.872923 + 0.487858i \(0.837778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −44.3612 + 19.7509i −1.62418 + 0.723130i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 39.1214 8.31551i 1.42756 0.303437i 0.571623 0.820516i \(-0.306314\pi\)
0.855938 + 0.517079i \(0.172981\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −40.3760 29.3349i −1.46749 1.06619i −0.981332 0.192323i \(-0.938398\pi\)
−0.486158 0.873871i \(-0.661602\pi\)
\(758\) 34.7855 + 60.2502i 1.26347 + 2.18839i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −21.0949 + 15.3263i −0.763186 + 0.554487i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.636789 6.05864i 0.0229185 0.218055i
\(773\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(774\) −83.0256 17.6476i −2.98429 0.634331i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.14426 3.52166i 0.0410236 0.126258i
\(779\) 0 0
\(780\) 0 0
\(781\) −53.0512 + 4.56051i −1.89832 + 0.163188i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(788\) −5.70426 1.21248i −0.203206 0.0431928i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −10.9596 15.7024i −0.389432 0.557961i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 34.9733 7.43381i 1.23649 0.262825i
\(801\) 0 0
\(802\) −33.8113 + 58.5628i −1.19392 + 2.06792i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.98089 28.3613i −0.104803 0.997129i −0.912928 0.408120i \(-0.866185\pi\)
0.808126 0.589010i \(-0.200482\pi\)
\(810\) 0 0
\(811\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16.5195 85.6771i −0.579007 3.00298i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.7209 16.3492i 0.513762 0.570591i −0.429319 0.903153i \(-0.641246\pi\)
0.943081 + 0.332562i \(0.107913\pi\)
\(822\) 0 0
\(823\) 1.92197 0.855717i 0.0669958 0.0298284i −0.372965 0.927845i \(-0.621659\pi\)
0.439961 + 0.898017i \(0.354992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 25.8626i −1.23782 0.899329i −0.240369 0.970682i \(-0.577268\pi\)
−0.997451 + 0.0713526i \(0.977268\pi\)
\(828\) −21.5776 + 4.58645i −0.749872 + 0.159390i
\(829\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(840\) 0 0
\(841\) −26.2471 + 19.0696i −0.905071 + 0.657573i
\(842\) −44.6851 19.8951i −1.53995 0.685630i
\(843\) 0 0
\(844\) −55.4807 61.6175i −1.90972 2.12096i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −21.4077 −0.735145
\(849\) 0 0
\(850\) 0 0
\(851\) −29.8507 6.34495i −1.02327 0.217502i
\(852\) 0 0
\(853\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2.25567 + 21.4613i −0.0770973 + 0.733532i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.4180 + 32.0635i 0.354840 + 1.09209i
\(863\) 7.30836 + 3.25389i 0.248780 + 0.110764i 0.527338 0.849655i \(-0.323190\pi\)
−0.278559 + 0.960419i \(0.589857\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.71733 7.56332i 0.193947 0.256568i
\(870\) 0 0
\(871\) 0 0
\(872\) −20.1243 22.3503i −0.681496 0.756878i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 57.8207 12.2902i 1.95247 0.415010i 0.963232 0.268672i \(-0.0865848\pi\)
0.989235 0.146338i \(-0.0467486\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 + 11.4127i −0.124791 + 0.384067i −0.993863 0.110619i \(-0.964717\pi\)
0.869072 + 0.494686i \(0.164717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.29008 12.2743i −0.0433409 0.412362i
\(887\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 21.7998 + 20.3904i 0.730321 + 0.683104i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −60.3743 + 67.0525i −2.01472 + 2.23757i
\(899\) 0 0
\(900\) 39.3544 17.5217i 1.31181 0.584057i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 16.8512 + 12.2431i 0.560464 + 0.407201i
\(905\) 0 0
\(906\) 0 0
\(907\) 5.39903 + 51.3683i 0.179272 + 1.70566i 0.601258 + 0.799055i \(0.294667\pi\)
−0.421986 + 0.906602i \(0.638667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 9.40456i −0.428863 0.311587i 0.352331 0.935875i \(-0.385389\pi\)
−0.781194 + 0.624288i \(0.785389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −46.4782 + 80.5025i −1.53736 + 2.66279i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 15.5859 + 6.93931i 0.514133 + 0.228907i 0.647368 0.762178i \(-0.275870\pi\)
−0.133235 + 0.991084i \(0.542536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 59.5957 1.95949
\(926\) 5.31344 50.5540i 0.174611 1.66131i
\(927\) 0 0
\(928\) 54.8282 + 11.6541i 1.79982 + 0.382564i
\(929\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.5244 60.0898i 0.639542 1.96831i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −56.5869 + 74.8575i −1.83980 + 2.43383i
\(947\) 10.0000 + 17.3205i 0.324956 + 0.562841i 0.981504 0.191444i \(-0.0613171\pi\)
−0.656547 + 0.754285i \(0.727984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.7590 + 36.1906i 0.380913 + 1.17233i 0.939402 + 0.342817i \(0.111381\pi\)
−0.558489 + 0.829512i \(0.688619\pi\)
\(954\) −92.6908 + 19.7020i −3.00098 + 0.637877i
\(955\) 0 0
\(956\) 40.9185 70.8729i 1.32340 2.29219i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −20.7430 + 23.0375i −0.669131 + 0.743145i
\(962\) 0 0
\(963\) −3.51619 33.4543i −0.113308 1.07805i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.9320 1.05902 0.529511 0.848303i \(-0.322376\pi\)
0.529511 + 0.848303i \(0.322376\pi\)
\(968\) −20.8593 + 3.61300i −0.670442 + 0.116126i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 73.5498 53.4370i 2.35669 1.71223i
\(975\) 0 0
\(976\) 0 0
\(977\) 49.7653 22.1569i 1.59213 0.708864i 0.596535 0.802587i \(-0.296544\pi\)
0.995598 + 0.0937232i \(0.0298769\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 37.9284 + 27.5566i 1.21096 + 0.879813i
\(982\) 94.9964 20.1921i 3.03146 0.644356i
\(983\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.4101 + 28.4231i 0.521811 + 0.903802i
\(990\) 0 0
\(991\) 12.0000 20.7846i 0.381193 0.660245i −0.610040 0.792370i \(-0.708847\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(998\) 65.9834 + 73.2820i 2.08867 + 2.31970i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.d.312.2 16
7.2 even 3 inner 539.2.q.d.422.1 16
7.3 odd 6 539.2.f.c.246.2 8
7.4 even 3 539.2.f.c.246.2 8
7.5 odd 6 inner 539.2.q.d.422.1 16
7.6 odd 2 CM 539.2.q.d.312.2 16
11.3 even 5 inner 539.2.q.d.410.1 16
77.3 odd 30 539.2.f.c.344.2 yes 8
77.17 even 30 5929.2.a.bg.1.3 4
77.25 even 15 539.2.f.c.344.2 yes 8
77.38 odd 30 5929.2.a.bc.1.2 4
77.39 odd 30 5929.2.a.bg.1.3 4
77.47 odd 30 inner 539.2.q.d.520.2 16
77.58 even 15 inner 539.2.q.d.520.2 16
77.60 even 15 5929.2.a.bc.1.2 4
77.69 odd 10 inner 539.2.q.d.410.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.2 8 7.3 odd 6
539.2.f.c.246.2 8 7.4 even 3
539.2.f.c.344.2 yes 8 77.3 odd 30
539.2.f.c.344.2 yes 8 77.25 even 15
539.2.q.d.312.2 16 1.1 even 1 trivial
539.2.q.d.312.2 16 7.6 odd 2 CM
539.2.q.d.410.1 16 11.3 even 5 inner
539.2.q.d.410.1 16 77.69 odd 10 inner
539.2.q.d.422.1 16 7.2 even 3 inner
539.2.q.d.422.1 16 7.5 odd 6 inner
539.2.q.d.520.2 16 77.47 odd 30 inner
539.2.q.d.520.2 16 77.58 even 15 inner
5929.2.a.bc.1.2 4 77.38 odd 30
5929.2.a.bc.1.2 4 77.60 even 15
5929.2.a.bg.1.3 4 77.17 even 30
5929.2.a.bg.1.3 4 77.39 odd 30