Properties

Label 539.2.q.d.214.1
Level $539$
Weight $2$
Character 539.214
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(214,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.214"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.9234096523681640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 2 x^{14} - 5 x^{13} + 5 x^{12} + x^{11} + 6 x^{10} + 5 x^{9} - 21 x^{8} + 10 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{15}]$

Embedding invariants

Embedding label 214.1
Root \(-0.0812893 + 1.41188i\) of defining polynomial
Character \(\chi\) \(=\) 539.214
Dual form 539.2.q.d.471.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58193 + 1.75691i) q^{2} +(-0.375174 - 3.56955i) q^{4} +(3.03958 + 2.20838i) q^{8} +(-2.00739 + 2.22943i) q^{9} +(3.30444 - 0.284064i) q^{11} +(-1.66676 + 0.354281i) q^{16} +(-0.741363 - 7.05360i) q^{18} +(-4.72830 + 6.25495i) q^{22} +(4.79120 + 8.29860i) q^{23} +(-4.56773 + 2.03368i) q^{25} +(-8.64279 + 6.27935i) q^{29} +(-1.74287 + 3.01874i) q^{32} +(8.71119 + 6.32905i) q^{36} +(-1.24830 - 0.555778i) q^{37} -8.74072 q^{43} +(-2.25372 - 11.6888i) q^{44} +(-22.1592 - 4.71008i) q^{46} +(3.65281 - 11.2422i) q^{50} +(12.8677 + 2.73512i) q^{53} +(2.64001 - 25.1180i) q^{58} +(-3.59968 - 11.0787i) q^{64} +(-8.16681 + 14.1453i) q^{67} +(3.08300 - 9.48849i) q^{71} +(-11.0251 + 2.34345i) q^{72} +(2.95116 - 1.31394i) q^{74} +(-8.44805 + 9.38251i) q^{79} +(-0.940756 - 8.95070i) q^{81} +(13.8272 - 15.3566i) q^{86} +(10.6714 + 6.43403i) q^{88} +(27.8247 - 20.2158i) q^{92} +(-6.00000 + 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 2 q^{4} + 32 q^{8} - 6 q^{9} + 4 q^{11} + 28 q^{16} + 9 q^{18} - 8 q^{22} + 16 q^{23} - 10 q^{25} - 8 q^{29} - 100 q^{32} - 12 q^{36} + 18 q^{37} + 48 q^{43} - 9 q^{44} + 31 q^{46} + 20 q^{50}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58193 + 1.75691i −1.11859 + 1.24232i −0.151344 + 0.988481i \(0.548360\pi\)
−0.967246 + 0.253839i \(0.918307\pi\)
\(3\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(4\) −0.375174 3.56955i −0.187587 1.78477i
\(5\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.03958 + 2.20838i 1.07465 + 0.780782i
\(9\) −2.00739 + 2.22943i −0.669131 + 0.743145i
\(10\) 0 0
\(11\) 3.30444 0.284064i 0.996325 0.0856484i
\(12\) 0 0
\(13\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.66676 + 0.354281i −0.416690 + 0.0885703i
\(17\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(18\) −0.741363 7.05360i −0.174741 1.66255i
\(19\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.72830 + 6.25495i −1.00808 + 1.33356i
\(23\) 4.79120 + 8.29860i 0.999035 + 1.73038i 0.537562 + 0.843224i \(0.319345\pi\)
0.461472 + 0.887155i \(0.347321\pi\)
\(24\) 0 0
\(25\) −4.56773 + 2.03368i −0.913545 + 0.406737i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.64279 + 6.27935i −1.60492 + 1.16605i −0.727793 + 0.685797i \(0.759454\pi\)
−0.877132 + 0.480249i \(0.840546\pi\)
\(30\) 0 0
\(31\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(32\) −1.74287 + 3.01874i −0.308099 + 0.533644i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 8.71119 + 6.32905i 1.45187 + 1.05484i
\(37\) −1.24830 0.555778i −0.205219 0.0913694i 0.301553 0.953449i \(-0.402495\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(42\) 0 0
\(43\) −8.74072 −1.33295 −0.666474 0.745528i \(-0.732197\pi\)
−0.666474 + 0.745528i \(0.732197\pi\)
\(44\) −2.25372 11.6888i −0.339761 1.76215i
\(45\) 0 0
\(46\) −22.1592 4.71008i −3.26719 0.694464i
\(47\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.65281 11.2422i 0.516586 1.58989i
\(51\) 0 0
\(52\) 0 0
\(53\) 12.8677 + 2.73512i 1.76752 + 0.375698i 0.972867 0.231367i \(-0.0743197\pi\)
0.794653 + 0.607065i \(0.207653\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 2.64001 25.1180i 0.346650 3.29816i
\(59\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −3.59968 11.0787i −0.449961 1.38484i
\(65\) 0 0
\(66\) 0 0
\(67\) −8.16681 + 14.1453i −0.997735 + 1.72813i −0.440609 + 0.897699i \(0.645238\pi\)
−0.557125 + 0.830428i \(0.688096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.08300 9.48849i 0.365885 1.12608i −0.583541 0.812084i \(-0.698333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) −11.0251 + 2.34345i −1.29932 + 0.276178i
\(73\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(74\) 2.95116 1.31394i 0.343066 0.152743i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.44805 + 9.38251i −0.950480 + 1.05562i 0.0479073 + 0.998852i \(0.484745\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) −0.940756 8.95070i −0.104528 0.994522i
\(82\) 0 0
\(83\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 13.8272 15.3566i 1.49102 1.65595i
\(87\) 0 0
\(88\) 10.6714 + 6.43403i 1.13758 + 0.685870i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 27.8247 20.2158i 2.90093 2.10765i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(98\) 0 0
\(99\) −6.00000 + 7.93725i −0.603023 + 0.797724i
\(100\) 8.97302 + 15.5417i 0.897302 + 1.55417i
\(101\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(102\) 0 0
\(103\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −25.1611 + 18.2806i −2.44387 + 1.77557i
\(107\) −1.36619 + 12.9985i −0.132075 + 1.25661i 0.704875 + 0.709331i \(0.251003\pi\)
−0.836950 + 0.547279i \(0.815664\pi\)
\(108\) 0 0
\(109\) 4.17089 7.22419i 0.399498 0.691952i −0.594166 0.804343i \(-0.702518\pi\)
0.993664 + 0.112391i \(0.0358510\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.7856 + 11.4689i 1.48498 + 1.07890i 0.975909 + 0.218179i \(0.0700116\pi\)
0.509073 + 0.860724i \(0.329988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 25.6570 + 28.4950i 2.38219 + 2.64569i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.8386 1.87734i 0.985329 0.170667i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.11662 + 3.43661i −0.0990843 + 0.304950i −0.988297 0.152545i \(-0.951253\pi\)
0.889212 + 0.457495i \(0.151253\pi\)
\(128\) 18.7899 + 8.36579i 1.66081 + 0.739439i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.9327 36.7252i −1.03083 3.17257i
\(135\) 0 0
\(136\) 0 0
\(137\) 13.7381 + 15.2577i 1.17372 + 1.30355i 0.943866 + 0.330327i \(0.107159\pi\)
0.229857 + 0.973224i \(0.426174\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.7933 + 20.4266i 0.989673 + 1.71416i
\(143\) 0 0
\(144\) 2.55600 4.42712i 0.213000 0.368926i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.51555 + 4.66437i −0.124577 + 0.383409i
\(149\) −21.5192 + 4.57406i −1.76293 + 0.374721i −0.971592 0.236663i \(-0.923946\pi\)
−0.791334 + 0.611385i \(0.790613\pi\)
\(150\) 0 0
\(151\) 20.5791 9.16242i 1.67471 0.745628i 0.674735 0.738060i \(-0.264258\pi\)
0.999971 0.00756783i \(-0.00240894\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(158\) −3.12001 29.6849i −0.248214 2.36160i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 17.2137 + 12.5065i 1.35244 + 0.982605i
\(163\) 4.58324 5.09020i 0.358987 0.398695i −0.536415 0.843954i \(-0.680222\pi\)
0.895402 + 0.445259i \(0.146888\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(168\) 0 0
\(169\) 10.5172 7.64121i 0.809017 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) 3.27930 + 31.2004i 0.250044 + 2.37901i
\(173\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.40707 + 1.64417i −0.407573 + 0.123934i
\(177\) 0 0
\(178\) 0 0
\(179\) 11.2506 5.00907i 0.840906 0.374396i 0.0593552 0.998237i \(-0.481096\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.76327 + 35.8051i −0.277432 + 2.63959i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.7288 9.22904i −1.49988 0.667790i −0.517671 0.855580i \(-0.673201\pi\)
−0.982209 + 0.187790i \(0.939868\pi\)
\(192\) 0 0
\(193\) −9.74774 10.8260i −0.701658 0.779270i 0.281982 0.959420i \(-0.409008\pi\)
−0.983639 + 0.180150i \(0.942342\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.2550 1.94184 0.970918 0.239411i \(-0.0769543\pi\)
0.970918 + 0.239411i \(0.0769543\pi\)
\(198\) −4.45346 23.0976i −0.316493 1.64147i
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) −18.3751 3.90575i −1.29932 0.276178i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −28.1190 5.97688i −1.95441 0.415422i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.80563 5.55715i −0.124304 0.382570i 0.869469 0.493987i \(-0.164461\pi\)
−0.993774 + 0.111417i \(0.964461\pi\)
\(212\) 4.93550 46.9581i 0.338971 3.22510i
\(213\) 0 0
\(214\) −20.6759 22.9629i −1.41337 1.56971i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.09419 + 18.7560i 0.412750 + 1.27032i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(224\) 0 0
\(225\) 4.63525 14.2658i 0.309017 0.951057i
\(226\) −45.1214 + 9.59084i −3.00143 + 0.637973i
\(227\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40.1377 −2.63517
\(233\) 14.7209 16.3492i 0.964396 1.07107i −0.0330358 0.999454i \(-0.510518\pi\)
0.997432 0.0716166i \(-0.0228158\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.3570 17.6964i −1.57552 1.14468i −0.921614 0.388108i \(-0.873129\pi\)
−0.653907 0.756575i \(-0.726871\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −13.8476 + 22.0122i −0.890156 + 1.41500i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(252\) 0 0
\(253\) 18.1896 + 26.0612i 1.14357 + 1.63845i
\(254\) −4.27139 7.39827i −0.268011 0.464209i
\(255\) 0 0
\(256\) −23.1386 + 10.3020i −1.44617 + 0.643874i
\(257\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.35005 31.8736i 0.207363 1.97293i
\(262\) 0 0
\(263\) −2.42801 + 4.20544i −0.149718 + 0.259319i −0.931123 0.364705i \(-0.881170\pi\)
0.781405 + 0.624024i \(0.214503\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 53.5564 + 23.8448i 3.27148 + 1.45656i
\(269\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(270\) 0 0
\(271\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −48.5389 −2.93234
\(275\) −14.5161 + 8.01770i −0.875352 + 0.483486i
\(276\) 0 0
\(277\) 10.3404 + 2.19792i 0.621296 + 0.132060i 0.507796 0.861478i \(-0.330460\pi\)
0.113500 + 0.993538i \(0.463794\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.70331 + 26.7860i −0.519196 + 1.59792i 0.256319 + 0.966592i \(0.417490\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(284\) −35.0263 7.44506i −2.07843 0.441783i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.23146 9.94542i −0.190416 0.586040i
\(289\) 1.77698 16.9069i 0.104528 0.994522i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.56693 4.44605i −0.149200 0.258422i
\(297\) 0 0
\(298\) 26.0057 45.0431i 1.50647 2.60928i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −16.4571 + 50.6499i −0.947002 + 2.91457i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 36.6608 + 26.6356i 2.06233 + 1.49837i
\(317\) −0.295449 + 0.328129i −0.0165941 + 0.0184296i −0.751385 0.659864i \(-0.770614\pi\)
0.734791 + 0.678294i \(0.237280\pi\)
\(318\) 0 0
\(319\) −26.7758 + 23.2048i −1.49916 + 1.29922i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −31.5970 + 6.71614i −1.75539 + 0.373119i
\(325\) 0 0
\(326\) 1.69266 + 16.1046i 0.0937480 + 0.891953i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.0072 + 22.5291i 0.714939 + 1.23831i 0.962983 + 0.269562i \(0.0868788\pi\)
−0.248044 + 0.968749i \(0.579788\pi\)
\(332\) 0 0
\(333\) 3.74489 1.66733i 0.205219 0.0913694i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.7003 21.5785i 1.61788 1.17546i 0.800776 0.598964i \(-0.204421\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(338\) −3.21257 + 30.5656i −0.174741 + 1.66255i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −26.5681 19.3029i −1.43246 1.04074i
\(345\) 0 0
\(346\) 0 0
\(347\) −22.7448 25.2607i −1.22100 1.35606i −0.914702 0.404128i \(-0.867575\pi\)
−0.306302 0.951934i \(-0.599092\pi\)
\(348\) 0 0
\(349\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.90170 + 10.4703i −0.261261 + 0.558071i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −8.99708 + 27.6902i −0.475510 + 1.46347i
\(359\) 13.9770 + 6.22296i 0.737678 + 0.328435i 0.740951 0.671559i \(-0.234375\pi\)
−0.00327287 + 0.999995i \(0.501042\pi\)
\(360\) 0 0
\(361\) 18.5848 + 3.95032i 0.978148 + 0.207912i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(368\) −10.9258 12.1344i −0.569548 0.632547i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 9.72788 29.9393i 0.499688 1.53788i −0.309834 0.950791i \(-0.600274\pi\)
0.809522 0.587090i \(-0.199726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 49.0059 21.8188i 2.50736 1.11635i
\(383\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.4404 1.75297
\(387\) 17.5461 19.4869i 0.891916 0.990573i
\(388\) 0 0
\(389\) −3.86370 36.7607i −0.195898 1.86384i −0.445221 0.895421i \(-0.646875\pi\)
0.249323 0.968420i \(-0.419792\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −43.1153 + 47.8844i −2.17212 + 2.41238i
\(395\) 0 0
\(396\) 30.5834 + 18.4394i 1.53688 + 0.926616i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.89282 5.00793i 0.344641 0.250396i
\(401\) −14.7363 + 3.13230i −0.735895 + 0.156419i −0.560589 0.828094i \(-0.689425\pi\)
−0.175307 + 0.984514i \(0.556092\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.28280 1.48194i −0.212290 0.0734570i
\(408\) 0 0
\(409\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 54.9830 39.9475i 2.70227 1.96331i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −32.1148 23.3327i −1.56518 1.13717i −0.931597 0.363492i \(-0.881584\pi\)
−0.633581 0.773676i \(-0.718416\pi\)
\(422\) 12.6198 + 5.61868i 0.614320 + 0.273513i
\(423\) 0 0
\(424\) 33.0723 + 36.7305i 1.60613 + 1.78379i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 46.9112 2.26754
\(429\) 0 0
\(430\) 0 0
\(431\) 40.5343 + 8.61584i 1.95247 + 0.415010i 0.989231 + 0.146362i \(0.0467564\pi\)
0.963238 + 0.268648i \(0.0865769\pi\)
\(432\) 0 0
\(433\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −27.3519 12.1778i −1.30992 0.583213i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.03627 + 28.8882i −0.144257 + 1.37252i 0.647678 + 0.761914i \(0.275740\pi\)
−0.791936 + 0.610604i \(0.790927\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.18900 + 22.1255i 0.339270 + 1.04417i 0.964580 + 0.263790i \(0.0849724\pi\)
−0.625310 + 0.780376i \(0.715028\pi\)
\(450\) 17.7311 + 30.7112i 0.835853 + 1.44774i
\(451\) 0 0
\(452\) 35.0164 60.6502i 1.64703 2.85274i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.5904 4.16406i 0.916399 0.194787i 0.274510 0.961584i \(-0.411484\pi\)
0.641889 + 0.766798i \(0.278151\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 2.73687 0.127193 0.0635967 0.997976i \(-0.479743\pi\)
0.0635967 + 0.997976i \(0.479743\pi\)
\(464\) 12.1808 13.5282i 0.565480 0.628029i
\(465\) 0 0
\(466\) 5.43666 + 51.7264i 0.251849 + 2.39618i
\(467\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −28.8832 + 2.48292i −1.32805 + 0.114165i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −31.9284 + 23.1973i −1.46190 + 1.06213i
\(478\) 69.6218 14.7986i 3.18443 0.676871i
\(479\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −10.7676 37.9846i −0.489437 1.72657i
\(485\) 0 0
\(486\) 0 0
\(487\) −38.9573 + 17.3449i −1.76532 + 0.785972i −0.777796 + 0.628517i \(0.783662\pi\)
−0.987526 + 0.157455i \(0.949671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −35.5967 + 25.8626i −1.60646 + 1.16716i −0.733047 + 0.680178i \(0.761903\pi\)
−0.873412 + 0.486983i \(0.838097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 33.1500 + 14.7593i 1.48400 + 0.660719i 0.979270 0.202560i \(-0.0649260\pi\)
0.504728 + 0.863278i \(0.331593\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −74.5616 9.26955i −3.31467 0.412082i
\(507\) 0 0
\(508\) 12.6861 + 2.69651i 0.562854 + 0.119638i
\(509\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 5.79221 17.8266i 0.255982 0.787831i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(522\) 50.6995 + 56.3075i 2.21906 + 2.46451i
\(523\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −3.54763 10.9185i −0.154684 0.476069i
\(527\) 0 0
\(528\) 0 0
\(529\) −34.4112 + 59.6020i −1.49614 + 2.59139i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −56.0620 + 24.9604i −2.42151 + 1.07813i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.8925 34.3096i 1.32817 1.47509i 0.573016 0.819544i \(-0.305773\pi\)
0.755158 0.655543i \(-0.227560\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.5967 25.8626i −1.52201 1.10580i −0.960482 0.278343i \(-0.910215\pi\)
−0.561525 0.827460i \(-0.689785\pi\)
\(548\) 49.3088 54.7630i 2.10637 2.33936i
\(549\) 0 0
\(550\) 8.87699 38.1868i 0.378516 1.62829i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −20.2193 + 14.6902i −0.859037 + 0.624127i
\(555\) 0 0
\(556\) 0 0
\(557\) −2.53793 24.1468i −0.107536 1.02313i −0.906630 0.421927i \(-0.861354\pi\)
0.799094 0.601206i \(-0.205313\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −33.2926 57.6644i −1.40436 2.43243i
\(563\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 30.3252 22.0326i 1.27242 0.924467i
\(569\) −2.29963 + 21.8795i −0.0964053 + 0.917236i 0.834262 + 0.551369i \(0.185894\pi\)
−0.930667 + 0.365867i \(0.880772\pi\)
\(570\) 0 0
\(571\) −12.3782 + 21.4396i −0.518010 + 0.897220i 0.481771 + 0.876297i \(0.339994\pi\)
−0.999781 + 0.0209228i \(0.993340\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −38.7616 28.1620i −1.61647 1.17444i
\(576\) 31.9252 + 14.2140i 1.33022 + 0.592250i
\(577\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(578\) 26.8927 + 29.8674i 1.11859 + 1.24232i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 43.2976 + 5.38278i 1.79320 + 0.222932i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 2.27752 + 0.484101i 0.0936054 + 0.0198964i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24.4008 + 75.0979i 0.999495 + 3.07613i
\(597\) 0 0
\(598\) 0 0
\(599\) −2.75459 3.05928i −0.112550 0.124999i 0.684237 0.729260i \(-0.260135\pi\)
−0.796787 + 0.604261i \(0.793469\pi\)
\(600\) 0 0
\(601\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(602\) 0 0
\(603\) −15.1421 46.6026i −0.616634 1.89780i
\(604\) −40.4265 70.0207i −1.64493 2.84910i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.8572 7.50529i 0.680854 0.303136i −0.0370140 0.999315i \(-0.511785\pi\)
0.717868 + 0.696179i \(0.245118\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.2257 1.29736 0.648679 0.761062i \(-0.275322\pi\)
0.648679 + 0.761062i \(0.275322\pi\)
\(618\) 0 0
\(619\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.7283 18.5786i 0.669131 0.743145i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.1742 + 8.84507i −0.484647 + 0.352117i −0.803122 0.595815i \(-0.796829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) −46.3987 + 9.86235i −1.84564 + 0.392303i
\(633\) 0 0
\(634\) −0.109114 1.03815i −0.00433348 0.0412303i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.58864 83.7509i 0.0628947 3.31573i
\(639\) 14.9652 + 25.9205i 0.592014 + 1.02540i
\(640\) 0 0
\(641\) −5.40389 + 2.40597i −0.213441 + 0.0950299i −0.510672 0.859776i \(-0.670603\pi\)
0.297231 + 0.954805i \(0.403937\pi\)
\(642\) 0 0
\(643\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(648\) 16.9071 29.2839i 0.664173 1.15038i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −19.8892 14.4504i −0.778922 0.565920i
\(653\) −31.2709 13.9227i −1.22373 0.544838i −0.309833 0.950791i \(-0.600273\pi\)
−0.913894 + 0.405953i \(0.866940\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) −60.1579 12.7869i −2.33810 0.496979i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −2.99479 + 9.21703i −0.116046 + 0.357153i
\(667\) −93.5192 41.6374i −3.62108 1.61221i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 15.3058 + 47.1065i 0.589996 + 1.81582i 0.578208 + 0.815890i \(0.303752\pi\)
0.0117883 + 0.999931i \(0.496248\pi\)
\(674\) −9.07220 + 86.3162i −0.349448 + 3.32478i
\(675\) 0 0
\(676\) −31.2214 34.6749i −1.20082 1.33365i
\(677\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.5896 + 39.1263i −0.864366 + 1.49713i 0.00330916 + 0.999995i \(0.498947\pi\)
−0.867675 + 0.497131i \(0.834387\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 14.5687 3.09667i 0.555427 0.118060i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 80.3612 3.05047
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8536 17.3306i −0.900937 0.654569i 0.0377695 0.999286i \(-0.487975\pi\)
−0.938707 + 0.344717i \(0.887975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −15.0420 35.5863i −0.566916 1.34121i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 51.0390 10.8487i 1.91681 0.407431i 0.916845 0.399244i \(-0.130727\pi\)
0.999966 0.00818726i \(-0.00260611\pi\)
\(710\) 0 0
\(711\) −3.95915 37.6688i −0.148480 1.41269i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −22.1010 38.2801i −0.825954 1.43059i
\(717\) 0 0
\(718\) −33.0437 + 14.7120i −1.23318 + 0.549048i
\(719\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −36.3401 + 26.4026i −1.35244 + 0.982605i
\(723\) 0 0
\(724\) 0 0
\(725\) 26.7077 46.2591i 0.991898 1.71802i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 21.8435 + 15.8702i 0.809017 + 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −33.4018 −1.23121
\(737\) −22.9685 + 49.0623i −0.846057 + 1.80723i
\(738\) 0 0
\(739\) 0.950104 + 0.201951i 0.0349501 + 0.00742888i 0.225354 0.974277i \(-0.427646\pi\)
−0.190403 + 0.981706i \(0.560980\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.7056 + 45.2592i −0.539496 + 1.66040i 0.194233 + 0.980955i \(0.437778\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 50.8747 + 10.8138i 1.86266 + 0.395920i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.43358 + 23.1539i −0.0888025 + 0.844899i 0.855938 + 0.517079i \(0.172981\pi\)
−0.944740 + 0.327820i \(0.893686\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.26681 25.4426i −0.300462 0.924728i −0.981332 0.192323i \(-0.938398\pi\)
0.680869 0.732405i \(-0.261602\pi\)
\(758\) 37.2118 + 64.4528i 1.35159 + 2.34103i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −25.1666 + 77.4548i −0.910495 + 2.80222i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −34.9867 + 38.8566i −1.25920 + 1.39848i
\(773\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(774\) 6.48005 + 61.6535i 0.232921 + 2.21609i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 70.6972 + 51.3645i 2.53462 + 1.84151i
\(779\) 0 0
\(780\) 0 0
\(781\) 7.49224 32.2299i 0.268093 1.15328i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(788\) −10.2254 97.2879i −0.364264 3.46574i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −35.7660 + 10.8756i −1.27089 + 0.386448i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.82180 17.3333i 0.0644103 0.612823i
\(801\) 0 0
\(802\) 17.8086 30.8453i 0.628842 1.08919i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37.2202 + 41.3373i 1.30859 + 1.45334i 0.809906 + 0.586559i \(0.199518\pi\)
0.498688 + 0.866782i \(0.333815\pi\)
\(810\) 0 0
\(811\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 9.37870 5.18016i 0.328723 0.181565i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.0980 + 8.94821i 0.701425 + 0.312295i 0.726282 0.687396i \(-0.241246\pi\)
−0.0248573 + 0.999691i \(0.507913\pi\)
\(822\) 0 0
\(823\) 34.6305 + 7.36093i 1.20714 + 0.256586i 0.767181 0.641431i \(-0.221659\pi\)
0.439961 + 0.898017i \(0.354992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.5967 + 41.8465i 0.472805 + 1.45514i 0.848895 + 0.528562i \(0.177268\pi\)
−0.376090 + 0.926583i \(0.622732\pi\)
\(828\) −10.7852 + 102.614i −0.374812 + 3.56610i
\(829\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(840\) 0 0
\(841\) 26.3060 80.9615i 0.907103 2.79178i
\(842\) 91.7966 19.5120i 3.16352 0.672427i
\(843\) 0 0
\(844\) −19.1591 + 8.53017i −0.659482 + 0.293621i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −22.4164 −0.769784
\(849\) 0 0
\(850\) 0 0
\(851\) −1.36867 13.0220i −0.0469172 0.446388i
\(852\) 0 0
\(853\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −32.8583 + 36.4928i −1.12307 + 1.24730i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −79.2595 + 57.5854i −2.69959 + 1.96137i
\(863\) −7.82518 + 1.66329i −0.266372 + 0.0566192i −0.339161 0.940728i \(-0.610143\pi\)
0.0727892 + 0.997347i \(0.476810\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.2508 + 33.4037i −0.856576 + 1.13314i
\(870\) 0 0
\(871\) 0 0
\(872\) 28.6315 12.7476i 0.969585 0.431687i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.77130 + 45.3959i −0.161115 + 1.53291i 0.553177 + 0.833064i \(0.313415\pi\)
−0.714293 + 0.699847i \(0.753251\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 9.70820 + 7.05342i 0.326707 + 0.237367i 0.739032 0.673670i \(-0.235283\pi\)
−0.412325 + 0.911037i \(0.635283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −45.9506 51.0334i −1.54374 1.71450i
\(887\) 0 0 0.406737 0.913545i \(-0.366667\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −5.65124 29.3098i −0.189324 0.981915i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −50.2449 22.3705i −1.67669 0.746512i
\(899\) 0 0
\(900\) −52.6616 11.1936i −1.75539 0.373119i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 22.6538 + 69.7212i 0.753454 + 2.31889i
\(905\) 0 0
\(906\) 0 0
\(907\) 15.7738 + 17.5186i 0.523760 + 0.581694i 0.945745 0.324908i \(-0.105333\pi\)
−0.421986 + 0.906602i \(0.638667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.94427 + 15.2169i 0.163811 + 0.504159i 0.998947 0.0458855i \(-0.0146109\pi\)
−0.835136 + 0.550044i \(0.814611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −23.6746 + 41.0057i −0.783088 + 1.35635i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −19.9491 + 4.24032i −0.658061 + 0.139875i −0.524826 0.851209i \(-0.675870\pi\)
−0.133235 + 0.991084i \(0.542536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.83216 0.224640
\(926\) −4.32953 + 4.80843i −0.142277 + 0.158015i
\(927\) 0 0
\(928\) −3.89248 37.0345i −0.127777 1.21572i
\(929\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −63.8821 46.4130i −2.09253 1.52031i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 41.3288 54.6728i 1.34371 1.77757i
\(947\) 10.0000 + 17.3205i 0.324956 + 0.562841i 0.981504 0.191444i \(-0.0613171\pi\)
−0.656547 + 0.754285i \(0.727984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.8965 20.2680i 0.903655 0.656544i −0.0357473 0.999361i \(-0.511381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) 9.75278 92.7915i 0.315758 3.00424i
\(955\) 0 0
\(956\) −54.0299 + 93.5825i −1.74745 + 3.02668i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −28.3199 12.6088i −0.913545 0.406737i
\(962\) 0 0
\(963\) −26.2368 29.1389i −0.845468 0.938987i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 60.3531 1.94082 0.970412 0.241454i \(-0.0776244\pi\)
0.970412 + 0.241454i \(0.0776244\pi\)
\(968\) 37.0907 + 18.2295i 1.19214 + 0.585918i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.1541 95.8826i 0.998243 3.07228i
\(975\) 0 0
\(976\) 0 0
\(977\) 12.0631 + 2.56410i 0.385934 + 0.0820329i 0.396793 0.917908i \(-0.370123\pi\)
−0.0108586 + 0.999941i \(0.503456\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 7.73325 + 23.8005i 0.246904 + 0.759891i
\(982\) 10.8733 103.453i 0.346982 3.30131i
\(983\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −41.8786 72.5358i −1.33166 2.30650i
\(990\) 0 0
\(991\) 12.0000 20.7846i 0.381193 0.660245i −0.610040 0.792370i \(-0.708847\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(998\) −78.3716 + 34.8933i −2.48081 + 1.10453i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.d.214.1 16
7.2 even 3 inner 539.2.q.d.324.2 16
7.3 odd 6 539.2.f.c.148.1 8
7.4 even 3 539.2.f.c.148.1 8
7.5 odd 6 inner 539.2.q.d.324.2 16
7.6 odd 2 CM 539.2.q.d.214.1 16
11.9 even 5 inner 539.2.q.d.361.2 16
77.3 odd 30 5929.2.a.bc.1.1 4
77.9 even 15 inner 539.2.q.d.471.1 16
77.20 odd 10 inner 539.2.q.d.361.2 16
77.25 even 15 5929.2.a.bc.1.1 4
77.31 odd 30 539.2.f.c.295.1 yes 8
77.52 even 30 5929.2.a.bg.1.4 4
77.53 even 15 539.2.f.c.295.1 yes 8
77.74 odd 30 5929.2.a.bg.1.4 4
77.75 odd 30 inner 539.2.q.d.471.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.148.1 8 7.3 odd 6
539.2.f.c.148.1 8 7.4 even 3
539.2.f.c.295.1 yes 8 77.31 odd 30
539.2.f.c.295.1 yes 8 77.53 even 15
539.2.q.d.214.1 16 1.1 even 1 trivial
539.2.q.d.214.1 16 7.6 odd 2 CM
539.2.q.d.324.2 16 7.2 even 3 inner
539.2.q.d.324.2 16 7.5 odd 6 inner
539.2.q.d.361.2 16 11.9 even 5 inner
539.2.q.d.361.2 16 77.20 odd 10 inner
539.2.q.d.471.1 16 77.9 even 15 inner
539.2.q.d.471.1 16 77.75 odd 30 inner
5929.2.a.bc.1.1 4 77.3 odd 30
5929.2.a.bc.1.1 4 77.25 even 15
5929.2.a.bg.1.4 4 77.52 even 30
5929.2.a.bg.1.4 4 77.74 odd 30