Newspace parameters
| Level: | \( N \) | \(=\) | \( 539 = 7^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 539.p (of order \(14\), degree \(6\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.30393666895\) |
| Analytic rank: | \(0\) |
| Dimension: | \(324\) |
| Relative dimension: | \(54\) over \(\Q(\zeta_{14})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 76.1 | −1.20486 | − | 2.50192i | 0.0714649 | + | 0.0163114i | −3.56092 | + | 4.46525i | 2.80665 | + | 0.640599i | −0.0452954 | − | 0.198452i | −2.58012 | + | 0.585648i | 10.0475 | + | 2.29328i | −2.69807 | − | 1.29932i | −1.77889 | − | 7.79383i |
| 76.2 | −1.13634 | − | 2.35963i | −0.493691 | − | 0.112682i | −3.02961 | + | 3.79901i | −0.771563 | − | 0.176104i | 0.295113 | + | 1.29297i | 2.35955 | + | 1.19689i | 7.30026 | + | 1.66624i | −2.47187 | − | 1.19039i | 0.461216 | + | 2.02072i |
| 76.3 | −1.08952 | − | 2.26242i | −2.76552 | − | 0.631211i | −2.68449 | + | 3.36624i | −2.05211 | − | 0.468380i | 1.58503 | + | 6.94447i | 0.329681 | + | 2.62513i | 5.64439 | + | 1.28830i | 4.54675 | + | 2.18960i | 1.17615 | + | 5.15303i |
| 76.4 | −1.07750 | − | 2.23745i | 2.24592 | + | 0.512616i | −2.59821 | + | 3.25806i | 1.95946 | + | 0.447235i | −1.27303 | − | 5.57749i | 2.09098 | + | 1.62105i | 5.24709 | + | 1.19761i | 2.07847 | + | 1.00094i | −1.11066 | − | 4.86611i |
| 76.5 | −1.06439 | − | 2.21023i | −1.25487 | − | 0.286416i | −2.50521 | + | 3.14143i | −1.23425 | − | 0.281709i | 0.702626 | + | 3.07841i | −0.216465 | − | 2.63688i | 4.82647 | + | 1.10161i | −1.21024 | − | 0.582823i | 0.691081 | + | 3.02782i |
| 76.6 | −1.04985 | − | 2.18004i | 2.33507 | + | 0.532964i | −2.40341 | + | 3.01379i | −4.16803 | − | 0.951326i | −1.28959 | − | 5.65008i | 2.40252 | − | 1.10811i | 4.37542 | + | 0.998660i | 2.46559 | + | 1.18737i | 2.30189 | + | 10.0852i |
| 76.7 | −1.01224 | − | 2.10194i | −3.15380 | − | 0.719834i | −2.14656 | + | 2.69170i | 2.19250 | + | 0.500424i | 1.67936 | + | 7.35776i | −1.38056 | − | 2.25700i | 3.28165 | + | 0.749015i | 6.72539 | + | 3.23878i | −1.16748 | − | 5.11506i |
| 76.8 | −1.00364 | − | 2.08409i | 2.98209 | + | 0.680642i | −2.08914 | + | 2.61970i | −0.377041 | − | 0.0860571i | −1.57444 | − | 6.89805i | −1.63031 | + | 2.08377i | 3.04609 | + | 0.695251i | 5.72667 | + | 2.75782i | 0.199064 | + | 0.872156i |
| 76.9 | −0.883051 | − | 1.83368i | 0.861327 | + | 0.196592i | −1.33561 | + | 1.67480i | 4.08698 | + | 0.932827i | −0.400110 | − | 1.75299i | 1.98134 | − | 1.75337i | 0.282043 | + | 0.0643745i | −1.99967 | − | 0.962991i | −1.89851 | − | 8.31793i |
| 76.10 | −0.856141 | − | 1.77779i | −1.16665 | − | 0.266280i | −1.18060 | + | 1.48042i | 2.81823 | + | 0.643242i | 0.525424 | + | 2.30203i | −1.63441 | + | 2.08055i | −0.204822 | − | 0.0467492i | −1.41274 | − | 0.680342i | −1.26925 | − | 5.56094i |
| 76.11 | −0.842046 | − | 1.74853i | 1.63999 | + | 0.374318i | −1.10132 | + | 1.38102i | −0.472311 | − | 0.107802i | −0.726445 | − | 3.18276i | −2.64560 | − | 0.0279441i | −0.442010 | − | 0.100886i | −0.153443 | − | 0.0738941i | 0.209213 | + | 0.916622i |
| 76.12 | −0.830698 | − | 1.72496i | 1.19405 | + | 0.272533i | −1.03846 | + | 1.30218i | −0.203997 | − | 0.0465610i | −0.521782 | − | 2.28608i | −0.808464 | − | 2.51920i | −0.624259 | − | 0.142483i | −1.35144 | − | 0.650817i | 0.0891439 | + | 0.390565i |
| 76.13 | −0.743826 | − | 1.54457i | −2.50374 | − | 0.571463i | −0.585441 | + | 0.734119i | 2.07578 | + | 0.473784i | 0.979684 | + | 4.29228i | 2.63798 | + | 0.202641i | −1.77336 | − | 0.404757i | 3.23926 | + | 1.55994i | −0.812228 | − | 3.55861i |
| 76.14 | −0.660894 | − | 1.37236i | 0.228024 | + | 0.0520451i | −0.199611 | + | 0.250304i | −2.93571 | − | 0.670057i | −0.0792753 | − | 0.347328i | 1.21395 | + | 2.35081i | −2.49460 | − | 0.569376i | −2.65362 | − | 1.27792i | 1.02063 | + | 4.47169i |
| 76.15 | −0.636546 | − | 1.32180i | 0.314620 | + | 0.0718100i | −0.0949871 | + | 0.119110i | 0.166617 | + | 0.0380292i | −0.105352 | − | 0.461576i | −0.0729806 | + | 2.64474i | −2.64271 | − | 0.603181i | −2.60908 | − | 1.25647i | −0.0557922 | − | 0.244441i |
| 76.16 | −0.627090 | − | 1.30217i | −1.71706 | − | 0.391908i | −0.0554150 | + | 0.0694883i | −2.96698 | − | 0.677193i | 0.566423 | + | 2.48166i | −2.62859 | − | 0.300822i | −2.69288 | − | 0.614633i | 0.0918039 | + | 0.0442104i | 0.978744 | + | 4.28816i |
| 76.17 | −0.577230 | − | 1.19863i | −1.76362 | − | 0.402535i | 0.143459 | − | 0.179891i | −3.39480 | − | 0.774842i | 0.535524 | + | 2.34629i | 1.34701 | − | 2.27718i | −2.89248 | − | 0.660190i | 0.245419 | + | 0.118187i | 1.03083 | + | 4.51638i |
| 76.18 | −0.486488 | − | 1.01020i | 2.59725 | + | 0.592805i | 0.463141 | − | 0.580760i | −0.0107786 | − | 0.00246015i | −0.664677 | − | 2.91214i | 2.23578 | − | 1.41466i | −2.99825 | − | 0.684332i | 3.69138 | + | 1.77767i | 0.00275842 | + | 0.0120854i |
| 76.19 | −0.401187 | − | 0.833074i | −2.14020 | − | 0.488488i | 0.713919 | − | 0.895226i | 0.858535 | + | 0.195955i | 0.451676 | + | 1.97892i | 2.58458 | + | 0.565653i | −2.83512 | − | 0.647098i | 1.63895 | + | 0.789276i | −0.181188 | − | 0.793837i |
| 76.20 | −0.374937 | − | 0.778564i | −2.02457 | − | 0.462094i | 0.781395 | − | 0.979838i | 1.26225 | + | 0.288101i | 0.399315 | + | 1.74951i | −2.33380 | − | 1.24634i | −2.74079 | − | 0.625568i | 1.18244 | + | 0.569431i | −0.248960 | − | 1.09076i |
| See next 80 embeddings (of 324 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.b | odd | 2 | 1 | inner |
| 49.f | odd | 14 | 1 | inner |
| 539.p | even | 14 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 539.2.p.a | ✓ | 324 |
| 11.b | odd | 2 | 1 | inner | 539.2.p.a | ✓ | 324 |
| 49.f | odd | 14 | 1 | inner | 539.2.p.a | ✓ | 324 |
| 539.p | even | 14 | 1 | inner | 539.2.p.a | ✓ | 324 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 539.2.p.a | ✓ | 324 | 1.a | even | 1 | 1 | trivial |
| 539.2.p.a | ✓ | 324 | 11.b | odd | 2 | 1 | inner |
| 539.2.p.a | ✓ | 324 | 49.f | odd | 14 | 1 | inner |
| 539.2.p.a | ✓ | 324 | 539.p | even | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(539, [\chi])\).