Properties

Label 539.2.f.c.344.2
Level $539$
Weight $2$
Character 539.344
Analytic conductor $4.304$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(148,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.37515625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{5}]$

Embedding invariants

Embedding label 344.2
Root \(-0.373058 - 1.36412i\) of defining polynomial
Character \(\chi\) \(=\) 539.344
Dual form 539.2.f.c.246.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78570 - 1.29738i) q^{2} +(0.887471 - 2.73136i) q^{4} +(-0.594713 - 1.83034i) q^{8} +(2.42705 - 1.76336i) q^{9} +(-0.0629004 - 3.31603i) q^{11} +(1.21023 + 0.879283i) q^{16} +(2.04623 - 6.29764i) q^{18} +(-4.41448 - 5.83981i) q^{22} -2.56038 q^{23} +(-1.54508 - 4.75528i) q^{25} +(-2.42225 + 7.45492i) q^{29} +7.15093 q^{32} +(-2.66241 - 8.19407i) q^{36} +(-3.68322 + 11.3358i) q^{37} +12.8185 q^{43} +(-9.11308 - 2.77108i) q^{44} +(-4.57206 + 3.32180i) q^{46} +(-8.92848 - 6.48692i) q^{50} +(-11.5776 + 8.41162i) q^{53} +(5.34649 + 16.4548i) q^{58} +(10.3489 - 7.51894i) q^{64} -12.5669 q^{67} +(12.9884 + 9.43662i) q^{71} +(-4.67094 - 3.39364i) q^{72} +(8.12975 + 25.0208i) q^{74} +(-2.31271 + 1.68028i) q^{79} +(2.78115 - 8.55951i) q^{81} +(22.8899 - 16.6305i) q^{86} +(-6.03205 + 2.08722i) q^{88} +(-2.27227 + 6.99331i) q^{92} +(-6.00000 - 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} + 16 q^{8} + 6 q^{9} - 4 q^{11} - 28 q^{16} - 9 q^{18} - 4 q^{22} - 16 q^{23} + 10 q^{25} - 4 q^{29} + 100 q^{32} - 6 q^{36} - 18 q^{37} + 24 q^{43} + 9 q^{44} - 31 q^{46} + 10 q^{50}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78570 1.29738i 1.26268 0.917389i 0.263792 0.964580i \(-0.415027\pi\)
0.998886 + 0.0471903i \(0.0150267\pi\)
\(3\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(4\) 0.887471 2.73136i 0.443736 1.36568i
\(5\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.594713 1.83034i −0.210263 0.647123i
\(9\) 2.42705 1.76336i 0.809017 0.587785i
\(10\) 0 0
\(11\) −0.0629004 3.31603i −0.0189652 0.999820i
\(12\) 0 0
\(13\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.21023 + 0.879283i 0.302557 + 0.219821i
\(17\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(18\) 2.04623 6.29764i 0.482300 1.48437i
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.41448 5.83981i −0.941171 1.24505i
\(23\) −2.56038 −0.533877 −0.266938 0.963714i \(-0.586012\pi\)
−0.266938 + 0.963714i \(0.586012\pi\)
\(24\) 0 0
\(25\) −1.54508 4.75528i −0.309017 0.951057i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.42225 + 7.45492i −0.449801 + 1.38434i 0.427331 + 0.904095i \(0.359454\pi\)
−0.877132 + 0.480249i \(0.840546\pi\)
\(30\) 0 0
\(31\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(32\) 7.15093 1.26412
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −2.66241 8.19407i −0.443736 1.36568i
\(37\) −3.68322 + 11.3358i −0.605517 + 1.86359i −0.112320 + 0.993672i \(0.535828\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(42\) 0 0
\(43\) 12.8185 1.95480 0.977399 0.211402i \(-0.0678028\pi\)
0.977399 + 0.211402i \(0.0678028\pi\)
\(44\) −9.11308 2.77108i −1.37385 0.417756i
\(45\) 0 0
\(46\) −4.57206 + 3.32180i −0.674114 + 0.489773i
\(47\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −8.92848 6.48692i −1.26268 0.917389i
\(51\) 0 0
\(52\) 0 0
\(53\) −11.5776 + 8.41162i −1.59031 + 1.15542i −0.686803 + 0.726844i \(0.740986\pi\)
−0.903503 + 0.428581i \(0.859014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.34649 + 16.4548i 0.702029 + 2.16062i
\(59\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(60\) 0 0
\(61\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 10.3489 7.51894i 1.29362 0.939868i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.5669 −1.53529 −0.767644 0.640877i \(-0.778571\pi\)
−0.767644 + 0.640877i \(0.778571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9884 + 9.43662i 1.54144 + 1.11992i 0.949425 + 0.313993i \(0.101667\pi\)
0.592014 + 0.805928i \(0.298333\pi\)
\(72\) −4.67094 3.39364i −0.550475 0.399944i
\(73\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(74\) 8.12975 + 25.0208i 0.945064 + 2.90861i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.31271 + 1.68028i −0.260200 + 0.189046i −0.710235 0.703964i \(-0.751411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 2.78115 8.55951i 0.309017 0.951057i
\(82\) 0 0
\(83\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 22.8899 16.6305i 2.46828 1.79331i
\(87\) 0 0
\(88\) −6.03205 + 2.08722i −0.643019 + 0.222498i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.27227 + 6.99331i −0.236900 + 0.729103i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(98\) 0 0
\(99\) −6.00000 7.93725i −0.603023 0.797724i
\(100\) −14.3596 −1.43596
\(101\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(102\) 0 0
\(103\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.76098 + 30.0412i −0.948070 + 2.91786i
\(107\) −3.46496 10.6641i −0.334971 1.03093i −0.966736 0.255774i \(-0.917670\pi\)
0.631766 0.775159i \(-0.282330\pi\)
\(108\) 0 0
\(109\) 15.6273 1.49683 0.748414 0.663232i \(-0.230816\pi\)
0.748414 + 0.663232i \(0.230816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34450 + 10.2933i 0.314624 + 0.968314i 0.975909 + 0.218179i \(0.0700116\pi\)
−0.661285 + 0.750135i \(0.729988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 18.2124 + 13.2321i 1.69098 + 1.22857i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9921 + 0.417159i −0.999281 + 0.0379235i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.2142 11.7803i −1.43878 1.04533i −0.988297 0.152545i \(-0.951253\pi\)
−0.450479 0.892787i \(-0.648747\pi\)
\(128\) 4.30558 13.2512i 0.380563 1.17125i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −22.4406 + 16.3041i −1.93857 + 1.40846i
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7856 10.0158i −1.17778 0.855708i −0.185861 0.982576i \(-0.559507\pi\)
−0.991920 + 0.126868i \(0.959507\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 35.4363 2.97374
\(143\) 0 0
\(144\) 4.48778 0.373981
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 27.6933 + 20.1203i 2.27637 + 1.65388i
\(149\) −17.7984 12.9313i −1.45810 1.05937i −0.983853 0.178979i \(-0.942720\pi\)
−0.474247 0.880392i \(-0.657280\pi\)
\(150\) 0 0
\(151\) −0.736662 2.26721i −0.0599487 0.184503i 0.916597 0.399811i \(-0.130924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(158\) −1.94983 + 6.00095i −0.155120 + 0.477410i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −6.13868 18.8929i −0.482300 1.48437i
\(163\) 17.2142 12.5068i 1.34832 0.979611i 0.349225 0.937039i \(-0.386445\pi\)
0.999093 0.0425718i \(-0.0135551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(168\) 0 0
\(169\) −4.01722 + 12.3637i −0.309017 + 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 11.3760 35.0118i 0.867414 2.66963i
\(173\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.83960 4.06846i 0.214043 0.306672i
\(177\) 0 0
\(178\) 0 0
\(179\) 8.15763 + 25.1066i 0.609730 + 1.87656i 0.460243 + 0.887793i \(0.347762\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.52269 + 4.68637i 0.112254 + 0.345484i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.80563 8.63483i 0.203008 0.624795i −0.796781 0.604268i \(-0.793466\pi\)
0.999789 0.0205267i \(-0.00653431\pi\)
\(192\) 0 0
\(193\) 1.71612 + 1.24683i 0.123529 + 0.0897489i 0.647834 0.761781i \(-0.275675\pi\)
−0.524305 + 0.851530i \(0.675675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.03059 0.144674 0.0723369 0.997380i \(-0.476954\pi\)
0.0723369 + 0.997380i \(0.476954\pi\)
\(198\) −21.0118 6.38922i −1.49325 0.454062i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −7.78490 + 5.65606i −0.550475 + 0.399944i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.21418 + 4.51486i −0.431915 + 0.313805i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.3570 16.9698i 1.60796 1.16825i 0.738490 0.674264i \(-0.235539\pi\)
0.869469 0.493987i \(-0.164461\pi\)
\(212\) 12.7003 + 39.0876i 0.872263 + 2.68455i
\(213\) 0 0
\(214\) −20.0228 14.5474i −1.36873 0.994439i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 27.9057 20.2747i 1.89001 1.37317i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(224\) 0 0
\(225\) −12.1353 8.81678i −0.809017 0.587785i
\(226\) 19.3267 + 14.0416i 1.28559 + 0.934036i
\(227\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.0856 0.990417
\(233\) −17.7984 + 12.9313i −1.16601 + 0.847156i −0.990526 0.137326i \(-0.956149\pi\)
−0.175484 + 0.984482i \(0.556149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.80563 27.1009i −0.569589 1.75301i −0.653907 0.756575i \(-0.726871\pi\)
0.0843185 0.996439i \(-0.473129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −19.0873 + 15.0059i −1.22698 + 0.964615i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(252\) 0 0
\(253\) 0.161049 + 8.49030i 0.0101251 + 0.533781i
\(254\) −44.2372 −2.77569
\(255\) 0 0
\(256\) −1.59757 4.91683i −0.0998484 0.307302i
\(257\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7.26675 + 22.3648i 0.449801 + 1.38434i
\(262\) 0 0
\(263\) −22.7783 −1.40457 −0.702284 0.711897i \(-0.747836\pi\)
−0.702284 + 0.711897i \(0.747836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −11.1527 + 34.3246i −0.681262 + 2.09671i
\(269\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −37.6112 −2.27217
\(275\) −15.6715 + 5.42265i −0.945025 + 0.326998i
\(276\) 0 0
\(277\) 26.9284 19.5646i 1.61797 1.17552i 0.803679 0.595063i \(-0.202873\pi\)
0.814289 0.580460i \(-0.197127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −27.0823 19.6764i −1.61559 1.17380i −0.840077 0.542467i \(-0.817490\pi\)
−0.775515 0.631329i \(-0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(284\) 37.3016 27.1012i 2.21344 1.60816i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 17.3557 12.6096i 1.02269 0.743030i
\(289\) −5.25329 16.1680i −0.309017 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 22.9388 1.33329
\(297\) 0 0
\(298\) −48.5593 −2.81297
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −4.25690 3.09282i −0.244957 0.177972i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(312\) 0 0
\(313\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.53698 + 7.80803i 0.142716 + 0.439236i
\(317\) −17.2208 + 12.5116i −0.967215 + 0.702723i −0.954815 0.297200i \(-0.903947\pi\)
−0.0123997 + 0.999923i \(0.503947\pi\)
\(318\) 0 0
\(319\) 24.8731 + 7.56333i 1.39263 + 0.423465i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −20.9109 15.1926i −1.16171 0.844035i
\(325\) 0 0
\(326\) 14.5131 44.6668i 0.803808 2.47387i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.1571 0.888076 0.444038 0.896008i \(-0.353545\pi\)
0.444038 + 0.896008i \(0.353545\pi\)
\(332\) 0 0
\(333\) 11.0496 + 34.0073i 0.605517 + 1.86359i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.35579 + 10.3281i −0.182801 + 0.562605i −0.999904 0.0138879i \(-0.995579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 8.86698 + 27.2898i 0.482300 + 1.48437i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −7.62332 23.4622i −0.411022 1.26499i
\(345\) 0 0
\(346\) 0 0
\(347\) −14.9958 10.8951i −0.805016 0.584878i 0.107366 0.994220i \(-0.465758\pi\)
−0.912381 + 0.409342i \(0.865758\pi\)
\(348\) 0 0
\(349\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.449797 23.7127i −0.0239742 1.26389i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 47.1400 + 34.2492i 2.49143 + 1.81013i
\(359\) 11.6499 35.8546i 0.614856 1.89233i 0.211112 0.977462i \(-0.432292\pi\)
0.403745 0.914872i \(-0.367708\pi\)
\(360\) 0 0
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(368\) −3.09865 2.25130i −0.161528 0.117357i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −25.4997 18.5267i −1.30983 0.951650i −1.00000 0.000859657i \(-0.999726\pi\)
−0.309834 0.950791i \(-0.600274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.19270 19.0592i −0.316846 0.975152i
\(383\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.68208 0.238312
\(387\) 31.1111 22.6035i 1.58147 1.14900i
\(388\) 0 0
\(389\) −0.518410 + 1.59550i −0.0262844 + 0.0808951i −0.963338 0.268290i \(-0.913542\pi\)
0.937054 + 0.349185i \(0.113542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 3.62602 2.63446i 0.182676 0.132722i
\(395\) 0 0
\(396\) −27.0043 + 9.34405i −1.35702 + 0.469556i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.31133 7.11355i 0.115567 0.355677i
\(401\) 24.7856 + 18.0078i 1.23773 + 0.899265i 0.997445 0.0714367i \(-0.0227584\pi\)
0.240287 + 0.970702i \(0.422758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 37.8214 + 11.5006i 1.87474 + 0.570065i
\(408\) 0 0
\(409\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −5.23912 + 16.1244i −0.257489 + 0.792469i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 6.84802 + 21.0760i 0.333752 + 1.02718i 0.967333 + 0.253507i \(0.0815842\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 19.6921 60.6059i 0.958594 2.95025i
\(423\) 0 0
\(424\) 22.2815 + 16.1884i 1.08208 + 0.786180i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −32.2024 −1.55656
\(429\) 0 0
\(430\) 0 0
\(431\) 12.3570 8.97786i 0.595214 0.432448i −0.248963 0.968513i \(-0.580090\pi\)
0.844177 + 0.536065i \(0.180090\pi\)
\(432\) 0 0
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13.8688 42.6838i 0.664196 2.04418i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.72788 5.31786i −0.0820940 0.252659i 0.901582 0.432608i \(-0.142407\pi\)
−0.983676 + 0.179949i \(0.942407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0711 + 24.0276i −1.56072 + 1.13393i −0.625310 + 0.780376i \(0.715028\pi\)
−0.935413 + 0.353556i \(0.884972\pi\)
\(450\) −33.1086 −1.56076
\(451\) 0 0
\(452\) 31.0829 1.46201
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.0711 + 24.7541i 1.59378 + 1.15795i 0.898279 + 0.439425i \(0.144818\pi\)
0.695501 + 0.718525i \(0.255182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 23.0299 1.07029 0.535145 0.844760i \(-0.320257\pi\)
0.535145 + 0.844760i \(0.320257\pi\)
\(464\) −9.48646 + 6.89232i −0.440398 + 0.319968i
\(465\) 0 0
\(466\) −15.0057 + 46.1827i −0.695124 + 2.13937i
\(467\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.806287 42.5064i −0.0370731 1.95445i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −13.2668 + 40.8309i −0.607443 + 1.86952i
\(478\) −50.8845 36.9698i −2.32740 1.69096i
\(479\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −8.61575 + 30.3935i −0.391625 + 1.38152i
\(485\) 0 0
\(486\) 0 0
\(487\) 12.7279 + 39.1724i 0.576755 + 1.77507i 0.630123 + 0.776495i \(0.283004\pi\)
−0.0533681 + 0.998575i \(0.516996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 41.8465i 0.613613 1.88851i 0.193249 0.981150i \(-0.438097\pi\)
0.420363 0.907356i \(-0.361903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13.8056 + 42.4894i −0.618025 + 1.90208i −0.303812 + 0.952732i \(0.598259\pi\)
−0.314213 + 0.949352i \(0.601741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 11.3028 + 14.9522i 0.502469 + 0.664704i
\(507\) 0 0
\(508\) −46.5658 + 33.8320i −2.06602 + 1.50105i
\(509\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 13.3125 + 9.67211i 0.588336 + 0.427451i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(522\) 41.9919 + 30.5089i 1.83794 + 1.33534i
\(523\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −40.6751 + 29.5522i −1.77352 + 1.28854i
\(527\) 0 0
\(528\) 0 0
\(529\) −16.4444 −0.714976
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 7.47368 + 23.0016i 0.322814 + 0.993519i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −15.9284 + 11.5726i −0.684814 + 0.497546i −0.874951 0.484211i \(-0.839107\pi\)
0.190138 + 0.981757i \(0.439107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 + 41.8465i 0.581355 + 1.78923i 0.613440 + 0.789741i \(0.289785\pi\)
−0.0320849 + 0.999485i \(0.510215\pi\)
\(548\) −39.5910 + 28.7646i −1.69124 + 1.22876i
\(549\) 0 0
\(550\) −20.9492 + 30.0151i −0.893277 + 1.27985i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 22.7031 69.8729i 0.964561 2.96861i
\(555\) 0 0
\(556\) 0 0
\(557\) −13.4223 + 41.3094i −0.568719 + 1.75034i 0.0879152 + 0.996128i \(0.471980\pi\)
−0.656634 + 0.754209i \(0.728020\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −73.8886 −3.11680
\(563\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 9.54785 29.3853i 0.400619 1.23298i
\(569\) 6.79837 + 20.9232i 0.285003 + 0.877148i 0.986398 + 0.164375i \(0.0525608\pi\)
−0.701395 + 0.712773i \(0.747439\pi\)
\(570\) 0 0
\(571\) 46.5287 1.94717 0.973583 0.228332i \(-0.0733271\pi\)
0.973583 + 0.228332i \(0.0733271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.95601 + 12.1753i 0.164977 + 0.507747i
\(576\) 11.8588 36.4977i 0.494118 1.52074i
\(577\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(578\) −30.3568 22.0555i −1.26268 0.917389i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 28.6214 + 37.8626i 1.18538 + 1.56811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −14.4249 + 10.4803i −0.592859 + 0.430737i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −51.1155 + 37.1376i −2.09377 + 1.52121i
\(597\) 0 0
\(598\) 0 0
\(599\) −36.4997 26.5186i −1.49134 1.08352i −0.973676 0.227937i \(-0.926802\pi\)
−0.517663 0.855584i \(-0.673198\pi\)
\(600\) 0 0
\(601\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(602\) 0 0
\(603\) −30.5004 + 22.1599i −1.24207 + 0.902419i
\(604\) −6.84633 −0.278573
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 3.73325 + 11.4898i 0.150784 + 0.464067i 0.997709 0.0676456i \(-0.0215487\pi\)
−0.846925 + 0.531712i \(0.821549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.84770 −0.154902 −0.0774512 0.996996i \(-0.524678\pi\)
−0.0774512 + 0.996996i \(0.524678\pi\)
\(618\) 0 0
\(619\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.2254 + 14.6946i −0.809017 + 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15.5241 47.7782i 0.618003 1.90202i 0.299528 0.954087i \(-0.403171\pi\)
0.318475 0.947931i \(-0.396829\pi\)
\(632\) 4.45088 + 3.23376i 0.177047 + 0.128632i
\(633\) 0 0
\(634\) −14.5187 + 44.6839i −0.576611 + 1.77463i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 54.2283 18.7641i 2.14692 0.742879i
\(639\) 48.1636 1.90532
\(640\) 0 0
\(641\) −7.65550 23.5612i −0.302374 0.930611i −0.980644 0.195799i \(-0.937270\pi\)
0.678270 0.734813i \(-0.262730\pi\)
\(642\) 0 0
\(643\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(648\) −17.3208 −0.680425
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −18.8835 58.1175i −0.739536 2.27606i
\(653\) 7.88484 24.2670i 0.308558 0.949643i −0.669768 0.742571i \(-0.733606\pi\)
0.978326 0.207072i \(-0.0663936\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 28.8517 20.9620i 1.12135 0.814712i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 63.8519 + 46.3911i 2.47421 + 1.79762i
\(667\) 6.20189 19.0874i 0.240138 0.739069i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.7653 28.8912i 1.53284 1.11367i 0.578208 0.815890i \(-0.303752\pi\)
0.954633 0.297784i \(-0.0962476\pi\)
\(674\) 7.40704 + 22.7965i 0.285308 + 0.878089i
\(675\) 0 0
\(676\) 30.2046 + 21.9449i 1.16171 + 0.844035i
\(677\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.0364 −0.422295 −0.211147 0.977454i \(-0.567720\pi\)
−0.211147 + 0.977454i \(0.567720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 15.5133 + 11.2711i 0.591438 + 0.429705i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −40.9130 −1.55304
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.7423 + 48.4499i 0.594579 + 1.82993i 0.556810 + 0.830640i \(0.312025\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −25.5840 33.8444i −0.964233 1.27556i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −29.0896 21.1349i −1.09248 0.793736i −0.112667 0.993633i \(-0.535939\pi\)
−0.979817 + 0.199896i \(0.935939\pi\)
\(710\) 0 0
\(711\) −2.65013 + 8.15626i −0.0993876 + 0.305884i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 75.8148 2.83333
\(717\) 0 0
\(718\) −25.7141 79.1398i −0.959641 2.95347i
\(719\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 12.9594 39.8850i 0.482300 1.48437i
\(723\) 0 0
\(724\) 0 0
\(725\) 39.1928 1.45559
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 25.6785i −0.309017 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −18.3091 −0.674883
\(737\) 0.790461 + 41.6721i 0.0291170 + 1.53501i
\(738\) 0 0
\(739\) −26.4857 + 19.2430i −0.974291 + 0.707864i −0.956425 0.291977i \(-0.905687\pi\)
−0.0178655 + 0.999840i \(0.505687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −43.7942 31.8183i −1.60665 1.16730i −0.872923 0.487858i \(-0.837778\pi\)
−0.733729 0.679442i \(-0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 39.2853 28.5425i 1.43834 1.04501i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.3593 38.0379i −0.450996 1.38802i −0.875772 0.482724i \(-0.839647\pi\)
0.424777 0.905298i \(-0.360353\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −40.3760 + 29.3349i −1.46749 + 1.06619i −0.486158 + 0.873871i \(0.661602\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) −69.5710 −2.52693
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −21.0949 15.3263i −0.763186 0.554487i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.92855 3.58080i 0.177382 0.128876i
\(773\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(774\) 26.2295 80.7261i 0.942799 2.90164i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.14426 + 3.52166i 0.0410236 + 0.126258i
\(779\) 0 0
\(780\) 0 0
\(781\) 30.4751 43.6635i 1.09049 1.56240i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(788\) 1.80209 5.54628i 0.0641969 0.197578i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −10.9596 + 15.7024i −0.389432 + 0.557961i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −11.0488 34.0047i −0.390634 1.20225i
\(801\) 0 0
\(802\) 67.6225 2.38783
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.0711 16.7622i −0.811138 0.589326i 0.103022 0.994679i \(-0.467149\pi\)
−0.914160 + 0.405353i \(0.867149\pi\)
\(810\) 0 0
\(811\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 82.4583 28.5323i 2.89016 1.00006i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.79837 20.9232i 0.237265 0.730226i −0.759548 0.650451i \(-0.774580\pi\)
0.996813 0.0797750i \(-0.0254202\pi\)
\(822\) 0 0
\(823\) −1.70206 + 1.23662i −0.0593301 + 0.0431058i −0.617055 0.786920i \(-0.711674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 + 25.8626i −1.23782 + 0.899329i −0.997451 0.0713526i \(-0.977268\pi\)
−0.240369 + 0.970682i \(0.577268\pi\)
\(828\) 6.81680 + 20.9799i 0.236900 + 0.729103i
\(829\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(840\) 0 0
\(841\) −26.2471 19.0696i −0.905071 0.657573i
\(842\) 39.5722 + 28.7509i 1.36375 + 0.990821i
\(843\) 0 0
\(844\) −25.6220 78.8564i −0.881946 2.71435i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −21.4077 −0.735145
\(849\) 0 0
\(850\) 0 0
\(851\) 9.43044 29.0239i 0.323271 0.994927i
\(852\) 0 0
\(853\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −17.4582 + 12.6841i −0.596709 + 0.433534i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.4180 32.0635i 0.354840 1.09209i
\(863\) −6.47214 4.70228i −0.220314 0.160068i 0.472154 0.881516i \(-0.343477\pi\)
−0.692468 + 0.721449i \(0.743477\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.71733 + 7.56332i 0.193947 + 0.256568i
\(870\) 0 0
\(871\) 0 0
\(872\) −9.29379 28.6033i −0.314727 0.968631i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.2668 56.2193i −0.616824 1.89839i −0.367885 0.929871i \(-0.619918\pi\)
−0.248939 0.968519i \(-0.580082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 11.4127i −0.124791 0.384067i 0.869072 0.494686i \(-0.164717\pi\)
−0.993863 + 0.110619i \(0.964717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −9.98478 7.25436i −0.335445 0.243715i
\(887\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −28.5585 8.68399i −0.956746 0.290924i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −27.8820 + 85.8120i −0.930434 + 2.86358i
\(899\) 0 0
\(900\) −34.8514 + 25.3211i −1.16171 + 0.844035i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 16.8512 12.2431i 0.560464 0.407201i
\(905\) 0 0
\(906\) 0 0
\(907\) 41.7868 + 30.3599i 1.38751 + 1.00808i 0.996134 + 0.0878507i \(0.0279999\pi\)
0.391373 + 0.920232i \(0.372000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 + 9.40456i −0.428863 + 0.311587i −0.781194 0.624288i \(-0.785389\pi\)
0.352331 + 0.935875i \(0.385389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 92.9563 3.07472
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.8026 10.0282i −0.455306 0.330799i 0.336381 0.941726i \(-0.390797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 59.5957 1.95949
\(926\) 41.1244 29.8786i 1.35143 0.981872i
\(927\) 0 0
\(928\) −17.3214 + 53.3097i −0.568601 + 1.74998i
\(929\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.5244 + 60.0898i 0.639542 + 1.96831i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −56.5869 74.8575i −1.83980 2.43383i
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.7590 36.1906i 0.380913 1.17233i −0.558489 0.829512i \(-0.688619\pi\)
0.939402 0.342817i \(-0.111381\pi\)
\(954\) 29.2829 + 90.1236i 0.948070 + 2.91786i
\(955\) 0 0
\(956\) −81.8370 −2.64680
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.57953 + 29.4828i −0.309017 + 0.951057i
\(962\) 0 0
\(963\) −27.2142 19.7723i −0.876965 0.637152i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.9320 1.05902 0.529511 0.848303i \(-0.322376\pi\)
0.529511 + 0.848303i \(0.322376\pi\)
\(968\) 7.30068 + 19.8712i 0.234653 + 0.638683i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 73.5498 + 53.4370i 2.35669 + 1.71223i
\(975\) 0 0
\(976\) 0 0
\(977\) −44.0711 + 32.0196i −1.40996 + 1.02440i −0.416632 + 0.909075i \(0.636790\pi\)
−0.993328 + 0.115321i \(0.963210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 37.9284 27.5566i 1.21096 0.879813i
\(982\) −30.0113 92.3653i −0.957699 2.94750i
\(983\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.8202 −1.04362
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(998\) 30.4724 + 93.7843i 0.964586 + 2.96869i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.f.c.344.2 yes 8
7.2 even 3 539.2.q.d.410.1 16
7.3 odd 6 539.2.q.d.520.2 16
7.4 even 3 539.2.q.d.520.2 16
7.5 odd 6 539.2.q.d.410.1 16
7.6 odd 2 CM 539.2.f.c.344.2 yes 8
11.2 odd 10 5929.2.a.bg.1.3 4
11.4 even 5 inner 539.2.f.c.246.2 8
11.9 even 5 5929.2.a.bc.1.2 4
77.4 even 15 539.2.q.d.422.1 16
77.13 even 10 5929.2.a.bg.1.3 4
77.20 odd 10 5929.2.a.bc.1.2 4
77.26 odd 30 539.2.q.d.312.2 16
77.37 even 15 539.2.q.d.312.2 16
77.48 odd 10 inner 539.2.f.c.246.2 8
77.59 odd 30 539.2.q.d.422.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.2 8 11.4 even 5 inner
539.2.f.c.246.2 8 77.48 odd 10 inner
539.2.f.c.344.2 yes 8 1.1 even 1 trivial
539.2.f.c.344.2 yes 8 7.6 odd 2 CM
539.2.q.d.312.2 16 77.26 odd 30
539.2.q.d.312.2 16 77.37 even 15
539.2.q.d.410.1 16 7.2 even 3
539.2.q.d.410.1 16 7.5 odd 6
539.2.q.d.422.1 16 77.4 even 15
539.2.q.d.422.1 16 77.59 odd 30
539.2.q.d.520.2 16 7.3 odd 6
539.2.q.d.520.2 16 7.4 even 3
5929.2.a.bc.1.2 4 11.9 even 5
5929.2.a.bc.1.2 4 77.20 odd 10
5929.2.a.bg.1.3 4 11.2 odd 10
5929.2.a.bg.1.3 4 77.13 even 10