Properties

Label 539.2.f.c.295.1
Level $539$
Weight $2$
Character 539.295
Analytic conductor $4.304$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(148,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.37515625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{5}]$

Embedding invariants

Embedding label 295.1
Root \(1.10362 + 0.884319i\) of defining polynomial
Character \(\chi\) \(=\) 539.295
Dual form 539.2.f.c.148.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.730563 + 2.24844i) q^{2} +(-2.90373 - 2.10968i) q^{4} +(3.03958 - 2.20838i) q^{8} +(-0.927051 + 2.85317i) q^{9} +(-1.89823 + 2.71970i) q^{11} +(0.526564 + 1.62060i) q^{16} +(-5.73791 - 4.16884i) q^{18} +(-4.72830 - 6.25495i) q^{22} -9.58240 q^{23} +(4.04508 - 2.93893i) q^{25} +(-8.64279 - 6.27935i) q^{29} +3.48575 q^{32} +(8.71119 - 6.32905i) q^{36} +(1.10547 + 0.803169i) q^{37} -8.74072 q^{43} +(11.2496 - 3.89261i) q^{44} +(7.00055 - 21.5455i) q^{46} +(3.65281 + 11.2422i) q^{50} +(-4.06518 + 12.5113i) q^{53} +(20.4328 - 14.8453i) q^{58} +(-3.59968 + 11.0787i) q^{64} +16.3336 q^{67} +(3.08300 + 9.48849i) q^{71} +(3.48305 + 10.7197i) q^{72} +(-2.61349 + 1.89881i) q^{74} +(-3.90147 + 12.0075i) q^{79} +(-7.28115 - 5.29007i) q^{81} +(6.38565 - 19.6530i) q^{86} +(0.236325 + 12.4587i) q^{88} +(27.8247 + 20.2158i) q^{92} +(-6.00000 - 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} + 16 q^{8} + 6 q^{9} - 4 q^{11} - 28 q^{16} - 9 q^{18} - 4 q^{22} - 16 q^{23} + 10 q^{25} - 4 q^{29} + 100 q^{32} - 6 q^{36} - 18 q^{37} + 24 q^{43} + 9 q^{44} - 31 q^{46} + 10 q^{50}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730563 + 2.24844i −0.516586 + 1.58989i 0.263792 + 0.964580i \(0.415027\pi\)
−0.780378 + 0.625308i \(0.784973\pi\)
\(3\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(4\) −2.90373 2.10968i −1.45187 1.05484i
\(5\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.03958 2.20838i 1.07465 0.780782i
\(9\) −0.927051 + 2.85317i −0.309017 + 0.951057i
\(10\) 0 0
\(11\) −1.89823 + 2.71970i −0.572336 + 0.820019i
\(12\) 0 0
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.526564 + 1.62060i 0.131641 + 0.405150i
\(17\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(18\) −5.73791 4.16884i −1.35244 0.982605i
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.72830 6.25495i −1.00808 1.33356i
\(23\) −9.58240 −1.99807 −0.999035 0.0439305i \(-0.986012\pi\)
−0.999035 + 0.0439305i \(0.986012\pi\)
\(24\) 0 0
\(25\) 4.04508 2.93893i 0.809017 0.587785i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.64279 6.27935i −1.60492 1.16605i −0.877132 0.480249i \(-0.840546\pi\)
−0.727793 0.685797i \(-0.759454\pi\)
\(30\) 0 0
\(31\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(32\) 3.48575 0.616199
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 8.71119 6.32905i 1.45187 1.05484i
\(37\) 1.10547 + 0.803169i 0.181738 + 0.132040i 0.674935 0.737878i \(-0.264172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(42\) 0 0
\(43\) −8.74072 −1.33295 −0.666474 0.745528i \(-0.732197\pi\)
−0.666474 + 0.745528i \(0.732197\pi\)
\(44\) 11.2496 3.89261i 1.69595 0.586833i
\(45\) 0 0
\(46\) 7.00055 21.5455i 1.03217 3.17671i
\(47\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.65281 + 11.2422i 0.516586 + 1.58989i
\(51\) 0 0
\(52\) 0 0
\(53\) −4.06518 + 12.5113i −0.558396 + 1.71857i 0.128407 + 0.991722i \(0.459014\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 20.4328 14.8453i 2.68296 1.94929i
\(59\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(60\) 0 0
\(61\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −3.59968 + 11.0787i −0.449961 + 1.38484i
\(65\) 0 0
\(66\) 0 0
\(67\) 16.3336 1.99547 0.997735 0.0672706i \(-0.0214291\pi\)
0.997735 + 0.0672706i \(0.0214291\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.08300 + 9.48849i 0.365885 + 1.12608i 0.949425 + 0.313993i \(0.101667\pi\)
−0.583541 + 0.812084i \(0.698333\pi\)
\(72\) 3.48305 + 10.7197i 0.410481 + 1.26333i
\(73\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(74\) −2.61349 + 1.89881i −0.303812 + 0.220732i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.90147 + 12.0075i −0.438950 + 1.35095i 0.450035 + 0.893011i \(0.351411\pi\)
−0.888985 + 0.457937i \(0.848589\pi\)
\(80\) 0 0
\(81\) −7.28115 5.29007i −0.809017 0.587785i
\(82\) 0 0
\(83\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.38565 19.6530i 0.688582 2.11924i
\(87\) 0 0
\(88\) 0.236325 + 12.4587i 0.0251923 + 1.32811i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 27.8247 + 20.2158i 2.90093 + 2.10765i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(98\) 0 0
\(99\) −6.00000 7.93725i −0.603023 0.797724i
\(100\) −17.9460 −1.79460
\(101\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(102\) 0 0
\(103\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −25.1611 18.2806i −2.44387 1.77557i
\(107\) −10.5739 + 7.68240i −1.02222 + 0.742685i −0.966736 0.255774i \(-0.917670\pi\)
−0.0554821 + 0.998460i \(0.517670\pi\)
\(108\) 0 0
\(109\) −8.34177 −0.798997 −0.399498 0.916734i \(-0.630816\pi\)
−0.399498 + 0.916734i \(0.630816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.7856 11.4689i 1.48498 1.07890i 0.509073 0.860724i \(-0.329988\pi\)
0.975909 0.218179i \(-0.0700116\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 11.8489 + 36.4671i 1.10014 + 3.38588i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.79348 10.3252i −0.344862 0.938653i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.11662 3.43661i −0.0990843 0.304950i 0.889212 0.457495i \(-0.151253\pi\)
−0.988297 + 0.152545i \(0.951253\pi\)
\(128\) −16.6399 12.0896i −1.47078 1.06858i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.9327 + 36.7252i −1.03083 + 3.17257i
\(135\) 0 0
\(136\) 0 0
\(137\) 6.34450 + 19.5264i 0.542047 + 1.66825i 0.727909 + 0.685674i \(0.240493\pi\)
−0.185861 + 0.982576i \(0.559507\pi\)
\(138\) 0 0
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −23.5866 −1.97935
\(143\) 0 0
\(144\) −5.11199 −0.426000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.51555 4.66437i −0.124577 0.383409i
\(149\) 6.79837 + 20.9232i 0.556944 + 1.71410i 0.690752 + 0.723092i \(0.257280\pi\)
−0.133808 + 0.991007i \(0.542720\pi\)
\(150\) 0 0
\(151\) −18.2245 + 13.2408i −1.48309 + 1.07752i −0.506540 + 0.862217i \(0.669076\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(158\) −24.1479 17.5444i −1.92110 1.39576i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 17.2137 12.5065i 1.35244 0.982605i
\(163\) 2.11662 6.51430i 0.165787 0.510239i −0.833307 0.552811i \(-0.813555\pi\)
0.999093 + 0.0425718i \(0.0135551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 0 0
\(169\) 10.5172 + 7.64121i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) 25.3807 + 18.4402i 1.93526 + 1.40605i
\(173\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.40707 1.64417i −0.407573 0.123934i
\(177\) 0 0
\(178\) 0 0
\(179\) −9.96326 + 7.23873i −0.744689 + 0.541048i −0.894176 0.447715i \(-0.852238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −29.1265 + 21.1616i −2.14723 + 1.56006i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.3570 + 13.3371i 1.32826 + 0.965040i 0.999789 + 0.0205267i \(0.00653431\pi\)
0.328474 + 0.944513i \(0.393466\pi\)
\(192\) 0 0
\(193\) −4.50169 13.8548i −0.324039 0.997288i −0.971873 0.235507i \(-0.924325\pi\)
0.647834 0.761781i \(-0.275675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.2550 1.94184 0.970918 0.239411i \(-0.0769543\pi\)
0.970918 + 0.239411i \(0.0769543\pi\)
\(198\) 22.2298 7.69198i 1.57980 0.546645i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 5.80508 17.8662i 0.410481 1.26333i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.88338 27.3402i 0.617437 1.90028i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.80563 + 5.55715i −0.124304 + 0.382570i −0.993774 0.111417i \(-0.964461\pi\)
0.869469 + 0.493987i \(0.164461\pi\)
\(212\) 38.1992 27.7533i 2.62353 1.90611i
\(213\) 0 0
\(214\) −9.54851 29.3873i −0.652723 2.00887i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.09419 18.7560i 0.412750 1.27032i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(224\) 0 0
\(225\) 4.63525 + 14.2658i 0.309017 + 0.951057i
\(226\) 14.2548 + 43.8717i 0.948213 + 2.91830i
\(227\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40.1377 −2.63517
\(233\) 6.79837 20.9232i 0.445376 1.37073i −0.436694 0.899610i \(-0.643851\pi\)
0.882071 0.471117i \(-0.156149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.3570 + 17.6964i −1.57552 + 1.14468i −0.653907 + 0.756575i \(0.726871\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 25.9869 0.986227i 1.67050 0.0633970i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(252\) 0 0
\(253\) 18.1896 26.0612i 1.14357 1.63845i
\(254\) 8.54279 0.536022
\(255\) 0 0
\(256\) 20.4911 14.8877i 1.28069 0.930479i
\(257\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 25.9284 18.8381i 1.60492 1.16605i
\(262\) 0 0
\(263\) 4.85603 0.299435 0.149718 0.988729i \(-0.452164\pi\)
0.149718 + 0.988729i \(0.452164\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −47.4284 34.4588i −2.89715 2.10490i
\(269\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(270\) 0 0
\(271\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −48.5389 −2.93234
\(275\) 0.314502 + 16.5801i 0.0189652 + 0.999820i
\(276\) 0 0
\(277\) −3.26675 + 10.0540i −0.196280 + 0.604088i 0.803679 + 0.595063i \(0.202873\pi\)
−0.999959 + 0.00902525i \(0.997127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.70331 26.7860i −0.519196 1.59792i −0.775515 0.631329i \(-0.782510\pi\)
0.256319 0.966592i \(-0.417490\pi\)
\(282\) 0 0
\(283\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(284\) 11.0655 34.0562i 0.656618 2.02086i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.23146 + 9.94542i −0.190416 + 0.586040i
\(289\) 13.7533 9.99235i 0.809017 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.13386 0.298400
\(297\) 0 0
\(298\) −52.0113 −3.01293
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −16.4571 50.6499i −0.947002 2.91457i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(312\) 0 0
\(313\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 36.6608 26.6356i 2.06233 1.49837i
\(317\) −0.136444 + 0.419931i −0.00766345 + 0.0235857i −0.954815 0.297200i \(-0.903947\pi\)
0.947152 + 0.320786i \(0.103947\pi\)
\(318\) 0 0
\(319\) 33.4839 11.5861i 1.87474 0.648698i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.98214 + 30.7219i 0.554563 + 1.70677i
\(325\) 0 0
\(326\) 13.1007 + 9.51821i 0.725580 + 0.527165i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −26.0143 −1.42988 −0.714939 0.699187i \(-0.753545\pi\)
−0.714939 + 0.699187i \(0.753545\pi\)
\(332\) 0 0
\(333\) −3.31640 + 2.40951i −0.181738 + 0.132040i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.7003 + 21.5785i 1.61788 + 1.17546i 0.817102 + 0.576493i \(0.195579\pi\)
0.800776 + 0.598964i \(0.204421\pi\)
\(338\) −24.8643 + 18.0650i −1.35244 + 0.982605i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −26.5681 + 19.3029i −1.43246 + 1.04074i
\(345\) 0 0
\(346\) 0 0
\(347\) −10.5040 32.3279i −0.563883 1.73545i −0.671248 0.741233i \(-0.734242\pi\)
0.107366 0.994220i \(-0.465758\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.61673 + 9.48017i −0.352673 + 0.505295i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −8.99708 27.6902i −0.475510 1.46347i
\(359\) −12.3777 8.99296i −0.653272 0.474630i 0.211112 0.977462i \(-0.432292\pi\)
−0.864384 + 0.502832i \(0.832292\pi\)
\(360\) 0 0
\(361\) −5.87132 + 18.0701i −0.309017 + 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(368\) −5.04575 15.5292i −0.263028 0.809517i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 9.72788 + 29.9393i 0.499688 + 1.53788i 0.809522 + 0.587090i \(0.199726\pi\)
−0.309834 + 0.950791i \(0.600274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −43.3986 + 31.5309i −2.22047 + 1.61326i
\(383\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.4404 1.75297
\(387\) 8.10309 24.9388i 0.411903 1.26771i
\(388\) 0 0
\(389\) −29.9038 21.7264i −1.51618 1.10157i −0.963338 0.268290i \(-0.913542\pi\)
−0.552847 0.833283i \(-0.686458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −19.9115 + 61.2812i −1.00313 + 3.08730i
\(395\) 0 0
\(396\) 0.677288 + 35.7057i 0.0340350 + 1.79428i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.89282 + 5.00793i 0.344641 + 0.250396i
\(401\) 4.65550 + 14.3282i 0.232484 + 0.715514i 0.997445 + 0.0714367i \(0.0227584\pi\)
−0.764961 + 0.644077i \(0.777242\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.28280 + 1.48194i −0.212290 + 0.0734570i
\(408\) 0 0
\(409\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 54.9830 + 39.9475i 2.70227 + 1.96331i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −32.1148 + 23.3327i −1.56518 + 1.13717i −0.633581 + 0.773676i \(0.718416\pi\)
−0.931597 + 0.363492i \(0.881584\pi\)
\(422\) −11.1758 8.11969i −0.544029 0.395260i
\(423\) 0 0
\(424\) 15.2734 + 47.0067i 0.741742 + 2.28285i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 46.9112 2.26754
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8056 + 39.4117i −0.616825 + 1.89839i −0.248963 + 0.968513i \(0.580090\pi\)
−0.367862 + 0.929880i \(0.619910\pi\)
\(432\) 0 0
\(433\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 24.2223 + 17.5985i 1.16004 + 0.842815i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.4997 + 17.0736i −1.11651 + 0.811190i −0.983676 0.179949i \(-0.942407\pi\)
−0.132831 + 0.991139i \(0.542407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.18900 22.1255i 0.339270 1.04417i −0.625310 0.780376i \(-0.715028\pi\)
0.964580 0.263790i \(-0.0849724\pi\)
\(450\) −35.4623 −1.67171
\(451\) 0 0
\(452\) −70.0328 −3.29406
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.18900 19.0478i −0.289509 0.891018i −0.985011 0.172493i \(-0.944818\pi\)
0.695501 0.718525i \(-0.255182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 2.73687 0.127193 0.0635967 0.997976i \(-0.479743\pi\)
0.0635967 + 0.997976i \(0.479743\pi\)
\(464\) 5.62532 17.3130i 0.261149 0.803734i
\(465\) 0 0
\(466\) 42.0780 + 30.5715i 1.94923 + 1.41620i
\(467\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.5919 23.7721i 0.762894 1.09304i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −31.9284 23.1973i −1.46190 1.06213i
\(478\) −21.9950 67.6935i −1.00603 3.09623i
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −10.7676 + 37.9846i −0.489437 + 1.72657i
\(485\) 0 0
\(486\) 0 0
\(487\) 34.4997 25.0655i 1.56333 1.13583i 0.630123 0.776495i \(-0.283004\pi\)
0.933210 0.359333i \(-0.116996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −35.5967 25.8626i −1.60646 1.16716i −0.873412 0.486983i \(-0.838097\pi\)
−0.733047 0.680178i \(-0.761903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.3570 21.3291i −1.31420 0.954821i −0.999985 0.00546838i \(-0.998259\pi\)
−0.314213 0.949352i \(-0.601741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 45.3085 + 59.9375i 2.01421 + 2.66455i
\(507\) 0 0
\(508\) −4.00779 + 12.3347i −0.177817 + 0.547265i
\(509\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 5.79221 + 17.8266i 0.255982 + 0.787831i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(522\) 23.4140 + 72.0608i 1.02480 + 3.15401i
\(523\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −3.54763 + 10.9185i −0.154684 + 0.476069i
\(527\) 0 0
\(528\) 0 0
\(529\) 68.8225 2.99228
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 49.6473 36.0709i 2.14444 1.55803i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.2668 43.9085i 0.613376 1.88778i 0.190138 0.981757i \(-0.439107\pi\)
0.423238 0.906019i \(-0.360893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.5967 + 25.8626i −1.52201 + 1.10580i −0.561525 + 0.827460i \(0.689785\pi\)
−0.960482 + 0.278343i \(0.910215\pi\)
\(548\) 22.7717 70.0842i 0.972760 2.99385i
\(549\) 0 0
\(550\) −37.5092 11.4057i −1.59940 0.486340i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −20.2193 14.6902i −0.859037 0.624127i
\(555\) 0 0
\(556\) 0 0
\(557\) −19.6428 14.2713i −0.832292 0.604695i 0.0879152 0.996128i \(-0.471980\pi\)
−0.920207 + 0.391433i \(0.871980\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 66.5852 2.80873
\(563\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 30.3252 + 22.0326i 1.27242 + 0.924467i
\(569\) −17.7984 + 12.9313i −0.746147 + 0.542107i −0.894630 0.446808i \(-0.852561\pi\)
0.148483 + 0.988915i \(0.452561\pi\)
\(570\) 0 0
\(571\) 24.7563 1.03602 0.518010 0.855374i \(-0.326673\pi\)
0.518010 + 0.855374i \(0.326673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −38.7616 + 28.1620i −1.61647 + 1.17444i
\(576\) −28.2723 20.5410i −1.17801 0.855876i
\(577\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(578\) 12.4196 + 38.2235i 0.516586 + 1.58989i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −26.3104 34.8054i −1.08967 1.44149i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.719515 + 2.21444i −0.0295719 + 0.0910129i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24.4008 75.0979i 0.999495 3.07613i
\(597\) 0 0
\(598\) 0 0
\(599\) −1.27212 3.91519i −0.0519775 0.159970i 0.921698 0.387907i \(-0.126802\pi\)
−0.973676 + 0.227937i \(0.926802\pi\)
\(600\) 0 0
\(601\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(602\) 0 0
\(603\) −15.1421 + 46.6026i −0.616634 + 1.89780i
\(604\) 80.8529 3.28986
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14.9284 + 10.8461i −0.602951 + 0.438069i −0.846925 0.531712i \(-0.821549\pi\)
0.243974 + 0.969782i \(0.421549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.2257 1.29736 0.648679 0.761062i \(-0.275322\pi\)
0.648679 + 0.761062i \(0.275322\pi\)
\(618\) 0 0
\(619\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.1742 8.84507i −0.484647 0.352117i 0.318475 0.947931i \(-0.396829\pi\)
−0.803122 + 0.595815i \(0.796829\pi\)
\(632\) 14.6583 + 45.1137i 0.583076 + 1.79452i
\(633\) 0 0
\(634\) −0.844509 0.613572i −0.0335398 0.0243681i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.58864 + 83.7509i 0.0628947 + 3.31573i
\(639\) −29.9304 −1.18403
\(640\) 0 0
\(641\) 4.78557 3.47692i 0.189019 0.137330i −0.489251 0.872143i \(-0.662730\pi\)
0.678270 + 0.734813i \(0.262730\pi\)
\(642\) 0 0
\(643\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(648\) −33.8141 −1.32835
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −19.8892 + 14.4504i −0.778922 + 0.565920i
\(653\) 27.6929 + 20.1201i 1.08371 + 0.787359i 0.978326 0.207072i \(-0.0663936\pi\)
0.105382 + 0.994432i \(0.466394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 19.0051 58.4917i 0.738655 2.27335i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −2.99479 9.21703i −0.116046 0.357153i
\(667\) 82.8187 + 60.1713i 3.20675 + 2.32984i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 15.3058 47.1065i 0.589996 1.81582i 0.0117883 0.999931i \(-0.496248\pi\)
0.578208 0.815890i \(-0.303752\pi\)
\(674\) −70.2160 + 51.0149i −2.70462 + 1.96502i
\(675\) 0 0
\(676\) −14.4186 44.3760i −0.554563 1.70677i
\(677\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 45.1792 1.72873 0.864366 0.502863i \(-0.167720\pi\)
0.864366 + 0.502863i \(0.167720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −4.60255 14.1652i −0.175471 0.540043i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 80.3612 3.05047
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8536 + 17.3306i −0.900937 + 0.654569i −0.938707 0.344717i \(-0.887975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −23.2976 30.8199i −0.878063 1.16157i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −16.1243 49.6254i −0.605560 1.86372i −0.492893 0.870090i \(-0.664061\pi\)
−0.112667 0.993633i \(-0.535939\pi\)
\(710\) 0 0
\(711\) −30.6425 22.2631i −1.14918 0.834932i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 44.2021 1.65191
\(717\) 0 0
\(718\) 29.2629 21.2607i 1.09208 0.793443i
\(719\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −36.3401 26.4026i −1.35244 0.982605i
\(723\) 0 0
\(724\) 0 0
\(725\) −53.4154 −1.98380
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 21.8435 15.8702i 0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −33.4018 −1.23121
\(737\) −31.0049 + 44.4225i −1.14208 + 1.63632i
\(738\) 0 0
\(739\) −0.300157 + 0.923789i −0.0110415 + 0.0339821i −0.956425 0.291977i \(-0.905687\pi\)
0.945384 + 0.325959i \(0.105687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.7056 45.2592i −0.539496 1.66040i −0.733729 0.679442i \(-0.762222\pi\)
0.194233 0.980955i \(-0.437778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −16.0724 + 49.4657i −0.588452 + 1.81107i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.8351 + 13.6845i −0.687303 + 0.499355i −0.875772 0.482724i \(-0.839647\pi\)
0.188469 + 0.982079i \(0.439647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.26681 + 25.4426i −0.300462 + 0.924728i 0.680869 + 0.732405i \(0.261602\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) −74.4236 −2.70319
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −25.1666 77.4548i −0.910495 2.80222i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.1575 + 49.7276i −0.581521 + 1.78974i
\(773\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(774\) 50.1535 + 36.4387i 1.80273 + 1.30976i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 70.6972 51.3645i 2.53462 1.84151i
\(779\) 0 0
\(780\) 0 0
\(781\) −31.6580 9.62648i −1.13281 0.344462i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(788\) −79.1411 57.4994i −2.81928 2.04833i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −35.7660 10.8756i −1.27089 0.386448i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 14.1001 10.2443i 0.498515 0.362192i
\(801\) 0 0
\(802\) −35.6171 −1.25768
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.1890 + 52.9023i 0.604333 + 1.85995i 0.501311 + 0.865267i \(0.332851\pi\)
0.103022 + 0.994679i \(0.467149\pi\)
\(810\) 0 0
\(811\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.203197 10.7123i −0.00712204 0.375465i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.7984 12.9313i −0.621168 0.451305i 0.232162 0.972677i \(-0.425420\pi\)
−0.853329 + 0.521373i \(0.825420\pi\)
\(822\) 0 0
\(823\) −10.9405 + 33.6713i −0.381361 + 1.17371i 0.557725 + 0.830026i \(0.311674\pi\)
−0.939086 + 0.343683i \(0.888326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.5967 41.8465i 0.472805 1.45514i −0.376090 0.926583i \(-0.622732\pi\)
0.848895 0.528562i \(-0.177268\pi\)
\(828\) −83.4741 + 60.6475i −2.90093 + 2.10765i
\(829\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) 0 0
\(841\) 26.3060 + 80.9615i 0.907103 + 2.79178i
\(842\) −29.0005 89.2542i −0.999422 3.07590i
\(843\) 0 0
\(844\) 16.9669 12.3272i 0.584024 0.424318i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −22.4164 −0.769784
\(849\) 0 0
\(850\) 0 0
\(851\) −10.5930 7.69629i −0.363124 0.263825i
\(852\) 0 0
\(853\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −15.1746 + 46.7025i −0.518656 + 1.59626i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −79.2595 57.5854i −2.69959 1.96137i
\(863\) 2.47214 + 7.60845i 0.0841525 + 0.258995i 0.984275 0.176642i \(-0.0565234\pi\)
−0.900123 + 0.435636i \(0.856523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.2508 33.4037i −0.856576 1.13314i
\(870\) 0 0
\(871\) 0 0
\(872\) −25.3555 + 18.4218i −0.858645 + 0.623842i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −36.9284 + 26.8300i −1.24698 + 0.905985i −0.998043 0.0625337i \(-0.980082\pi\)
−0.248939 + 0.968519i \(0.580082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 9.70820 7.05342i 0.326707 0.237367i −0.412325 0.911037i \(-0.635283\pi\)
0.739032 + 0.673670i \(0.235283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −21.2209 65.3111i −0.712929 2.19417i
\(887\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 28.2086 9.76078i 0.945025 0.326998i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 44.4958 + 32.3281i 1.48484 + 1.07880i
\(899\) 0 0
\(900\) 16.6369 51.2031i 0.554563 1.70677i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 22.6538 69.7212i 0.753454 2.31889i
\(905\) 0 0
\(906\) 0 0
\(907\) 7.28462 + 22.4198i 0.241882 + 0.744436i 0.996134 + 0.0878507i \(0.0279999\pi\)
−0.754252 + 0.656585i \(0.772000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.94427 15.2169i 0.163811 0.504159i −0.835136 0.550044i \(-0.814611\pi\)
0.998947 + 0.0458855i \(0.0146109\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 47.3493 1.56618
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.30234 + 19.3966i 0.207895 + 0.639835i 0.999582 + 0.0289084i \(0.00920311\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.83216 0.224640
\(926\) −1.99946 + 6.15370i −0.0657063 + 0.202223i
\(927\) 0 0
\(928\) −30.1266 21.8882i −0.988953 0.718516i
\(929\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −63.8821 + 46.4130i −2.09253 + 1.52031i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 41.3288 + 54.6728i 1.34371 + 1.77757i
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.8965 + 20.2680i 0.903655 + 0.656544i 0.939402 0.342817i \(-0.111381\pi\)
−0.0357473 + 0.999361i \(0.511381\pi\)
\(954\) 75.4834 54.8419i 2.44387 1.77557i
\(955\) 0 0
\(956\) 108.060 3.49490
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 25.0795 + 18.2213i 0.809017 + 0.587785i
\(962\) 0 0
\(963\) −12.1166 37.2911i −0.390453 1.20169i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 60.3531 1.94082 0.970412 0.241454i \(-0.0776244\pi\)
0.970412 + 0.241454i \(0.0776244\pi\)
\(968\) −34.3326 23.0068i −1.10349 0.739465i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.1541 + 95.8826i 0.998243 + 3.07228i
\(975\) 0 0
\(976\) 0 0
\(977\) −3.81100 + 11.7290i −0.121925 + 0.375245i −0.993328 0.115321i \(-0.963210\pi\)
0.871404 + 0.490567i \(0.163210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 7.73325 23.8005i 0.246904 0.759891i
\(982\) 84.1561 61.1430i 2.68553 1.95115i
\(983\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 83.7571 2.66332
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(998\) 69.4043 50.4252i 2.19695 1.59618i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.f.c.295.1 yes 8
7.2 even 3 539.2.q.d.361.2 16
7.3 odd 6 539.2.q.d.471.1 16
7.4 even 3 539.2.q.d.471.1 16
7.5 odd 6 539.2.q.d.361.2 16
7.6 odd 2 CM 539.2.f.c.295.1 yes 8
11.4 even 5 5929.2.a.bc.1.1 4
11.5 even 5 inner 539.2.f.c.148.1 8
11.7 odd 10 5929.2.a.bg.1.4 4
77.5 odd 30 539.2.q.d.214.1 16
77.16 even 15 539.2.q.d.214.1 16
77.27 odd 10 inner 539.2.f.c.148.1 8
77.38 odd 30 539.2.q.d.324.2 16
77.48 odd 10 5929.2.a.bc.1.1 4
77.60 even 15 539.2.q.d.324.2 16
77.62 even 10 5929.2.a.bg.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.148.1 8 11.5 even 5 inner
539.2.f.c.148.1 8 77.27 odd 10 inner
539.2.f.c.295.1 yes 8 1.1 even 1 trivial
539.2.f.c.295.1 yes 8 7.6 odd 2 CM
539.2.q.d.214.1 16 77.5 odd 30
539.2.q.d.214.1 16 77.16 even 15
539.2.q.d.324.2 16 77.38 odd 30
539.2.q.d.324.2 16 77.60 even 15
539.2.q.d.361.2 16 7.2 even 3
539.2.q.d.361.2 16 7.5 odd 6
539.2.q.d.471.1 16 7.3 odd 6
539.2.q.d.471.1 16 7.4 even 3
5929.2.a.bc.1.1 4 11.4 even 5
5929.2.a.bc.1.1 4 77.48 odd 10
5929.2.a.bg.1.4 4 11.7 odd 10
5929.2.a.bg.1.4 4 77.62 even 10