Properties

Label 539.2.f.c.246.2
Level $539$
Weight $2$
Character 539.246
Analytic conductor $4.304$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(148,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.37515625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{5}]$

Embedding invariants

Embedding label 246.2
Root \(-0.373058 + 1.36412i\) of defining polynomial
Character \(\chi\) \(=\) 539.246
Dual form 539.2.f.c.344.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78570 + 1.29738i) q^{2} +(0.887471 + 2.73136i) q^{4} +(-0.594713 + 1.83034i) q^{8} +(2.42705 + 1.76336i) q^{9} +(-0.0629004 + 3.31603i) q^{11} +(1.21023 - 0.879283i) q^{16} +(2.04623 + 6.29764i) q^{18} +(-4.41448 + 5.83981i) q^{22} -2.56038 q^{23} +(-1.54508 + 4.75528i) q^{25} +(-2.42225 - 7.45492i) q^{29} +7.15093 q^{32} +(-2.66241 + 8.19407i) q^{36} +(-3.68322 - 11.3358i) q^{37} +12.8185 q^{43} +(-9.11308 + 2.77108i) q^{44} +(-4.57206 - 3.32180i) q^{46} +(-8.92848 + 6.48692i) q^{50} +(-11.5776 - 8.41162i) q^{53} +(5.34649 - 16.4548i) q^{58} +(10.3489 + 7.51894i) q^{64} -12.5669 q^{67} +(12.9884 - 9.43662i) q^{71} +(-4.67094 + 3.39364i) q^{72} +(8.12975 - 25.0208i) q^{74} +(-2.31271 - 1.68028i) q^{79} +(2.78115 + 8.55951i) q^{81} +(22.8899 + 16.6305i) q^{86} +(-6.03205 - 2.08722i) q^{88} +(-2.27227 - 6.99331i) q^{92} +(-6.00000 + 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} + 16 q^{8} + 6 q^{9} - 4 q^{11} - 28 q^{16} - 9 q^{18} - 4 q^{22} - 16 q^{23} + 10 q^{25} - 4 q^{29} + 100 q^{32} - 6 q^{36} - 18 q^{37} + 24 q^{43} + 9 q^{44} - 31 q^{46} + 10 q^{50}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78570 + 1.29738i 1.26268 + 0.917389i 0.998886 0.0471903i \(-0.0150267\pi\)
0.263792 + 0.964580i \(0.415027\pi\)
\(3\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(4\) 0.887471 + 2.73136i 0.443736 + 1.36568i
\(5\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.594713 + 1.83034i −0.210263 + 0.647123i
\(9\) 2.42705 + 1.76336i 0.809017 + 0.587785i
\(10\) 0 0
\(11\) −0.0629004 + 3.31603i −0.0189652 + 0.999820i
\(12\) 0 0
\(13\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.21023 0.879283i 0.302557 0.219821i
\(17\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(18\) 2.04623 + 6.29764i 0.482300 + 1.48437i
\(19\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.41448 + 5.83981i −0.941171 + 1.24505i
\(23\) −2.56038 −0.533877 −0.266938 0.963714i \(-0.586012\pi\)
−0.266938 + 0.963714i \(0.586012\pi\)
\(24\) 0 0
\(25\) −1.54508 + 4.75528i −0.309017 + 0.951057i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.42225 7.45492i −0.449801 1.38434i −0.877132 0.480249i \(-0.840546\pi\)
0.427331 0.904095i \(-0.359454\pi\)
\(30\) 0 0
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 7.15093 1.26412
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −2.66241 + 8.19407i −0.443736 + 1.36568i
\(37\) −3.68322 11.3358i −0.605517 1.86359i −0.493197 0.869918i \(-0.664172\pi\)
−0.112320 0.993672i \(-0.535828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(42\) 0 0
\(43\) 12.8185 1.95480 0.977399 0.211402i \(-0.0678028\pi\)
0.977399 + 0.211402i \(0.0678028\pi\)
\(44\) −9.11308 + 2.77108i −1.37385 + 0.417756i
\(45\) 0 0
\(46\) −4.57206 3.32180i −0.674114 0.489773i
\(47\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −8.92848 + 6.48692i −1.26268 + 0.917389i
\(51\) 0 0
\(52\) 0 0
\(53\) −11.5776 8.41162i −1.59031 1.15542i −0.903503 0.428581i \(-0.859014\pi\)
−0.686803 0.726844i \(-0.740986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.34649 16.4548i 0.702029 2.16062i
\(59\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 10.3489 + 7.51894i 1.29362 + 0.939868i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.5669 −1.53529 −0.767644 0.640877i \(-0.778571\pi\)
−0.767644 + 0.640877i \(0.778571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9884 9.43662i 1.54144 1.11992i 0.592014 0.805928i \(-0.298333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) −4.67094 + 3.39364i −0.550475 + 0.399944i
\(73\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(74\) 8.12975 25.0208i 0.945064 2.90861i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.31271 1.68028i −0.260200 0.189046i 0.450035 0.893011i \(-0.351411\pi\)
−0.710235 + 0.703964i \(0.751411\pi\)
\(80\) 0 0
\(81\) 2.78115 + 8.55951i 0.309017 + 0.951057i
\(82\) 0 0
\(83\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 22.8899 + 16.6305i 2.46828 + 1.79331i
\(87\) 0 0
\(88\) −6.03205 2.08722i −0.643019 0.222498i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.27227 6.99331i −0.236900 0.729103i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(98\) 0 0
\(99\) −6.00000 + 7.93725i −0.603023 + 0.797724i
\(100\) −14.3596 −1.43596
\(101\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(102\) 0 0
\(103\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.76098 30.0412i −0.948070 2.91786i
\(107\) −3.46496 + 10.6641i −0.334971 + 1.03093i 0.631766 + 0.775159i \(0.282330\pi\)
−0.966736 + 0.255774i \(0.917670\pi\)
\(108\) 0 0
\(109\) 15.6273 1.49683 0.748414 0.663232i \(-0.230816\pi\)
0.748414 + 0.663232i \(0.230816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34450 10.2933i 0.314624 0.968314i −0.661285 0.750135i \(-0.729988\pi\)
0.975909 0.218179i \(-0.0700116\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 18.2124 13.2321i 1.69098 1.22857i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9921 0.417159i −0.999281 0.0379235i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.2142 + 11.7803i −1.43878 + 1.04533i −0.450479 + 0.892787i \(0.648747\pi\)
−0.988297 + 0.152545i \(0.951253\pi\)
\(128\) 4.30558 + 13.2512i 0.380563 + 1.17125i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −22.4406 16.3041i −1.93857 1.40846i
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7856 + 10.0158i −1.17778 + 0.855708i −0.991920 0.126868i \(-0.959507\pi\)
−0.185861 + 0.982576i \(0.559507\pi\)
\(138\) 0 0
\(139\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 35.4363 2.97374
\(143\) 0 0
\(144\) 4.48778 0.373981
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 27.6933 20.1203i 2.27637 1.65388i
\(149\) −17.7984 + 12.9313i −1.45810 + 1.05937i −0.474247 + 0.880392i \(0.657280\pi\)
−0.983853 + 0.178979i \(0.942720\pi\)
\(150\) 0 0
\(151\) −0.736662 + 2.26721i −0.0599487 + 0.184503i −0.976546 0.215308i \(-0.930924\pi\)
0.916597 + 0.399811i \(0.130924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(158\) −1.94983 6.00095i −0.155120 0.477410i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −6.13868 + 18.8929i −0.482300 + 1.48437i
\(163\) 17.2142 + 12.5068i 1.34832 + 0.979611i 0.999093 + 0.0425718i \(0.0135551\pi\)
0.349225 + 0.937039i \(0.386445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(168\) 0 0
\(169\) −4.01722 12.3637i −0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 11.3760 + 35.0118i 0.867414 + 2.66963i
\(173\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.83960 + 4.06846i 0.214043 + 0.306672i
\(177\) 0 0
\(178\) 0 0
\(179\) 8.15763 25.1066i 0.609730 1.87656i 0.149487 0.988764i \(-0.452238\pi\)
0.460243 0.887793i \(-0.347762\pi\)
\(180\) 0 0
\(181\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.52269 4.68637i 0.112254 0.345484i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.80563 + 8.63483i 0.203008 + 0.624795i 0.999789 + 0.0205267i \(0.00653431\pi\)
−0.796781 + 0.604268i \(0.793466\pi\)
\(192\) 0 0
\(193\) 1.71612 1.24683i 0.123529 0.0897489i −0.524305 0.851530i \(-0.675675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.03059 0.144674 0.0723369 0.997380i \(-0.476954\pi\)
0.0723369 + 0.997380i \(0.476954\pi\)
\(198\) −21.0118 + 6.38922i −1.49325 + 0.454062i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −7.78490 5.65606i −0.550475 0.399944i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.21418 4.51486i −0.431915 0.313805i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.3570 + 16.9698i 1.60796 + 1.16825i 0.869469 + 0.493987i \(0.164461\pi\)
0.738490 + 0.674264i \(0.235539\pi\)
\(212\) 12.7003 39.0876i 0.872263 2.68455i
\(213\) 0 0
\(214\) −20.0228 + 14.5474i −1.36873 + 0.994439i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 27.9057 + 20.2747i 1.89001 + 1.37317i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(224\) 0 0
\(225\) −12.1353 + 8.81678i −0.809017 + 0.587785i
\(226\) 19.3267 14.0416i 1.28559 0.934036i
\(227\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(228\) 0 0
\(229\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.0856 0.990417
\(233\) −17.7984 12.9313i −1.16601 0.847156i −0.175484 0.984482i \(-0.556149\pi\)
−0.990526 + 0.137326i \(0.956149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.80563 + 27.1009i −0.569589 + 1.75301i 0.0843185 + 0.996439i \(0.473129\pi\)
−0.653907 + 0.756575i \(0.726871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −19.0873 15.0059i −1.22698 0.964615i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(252\) 0 0
\(253\) 0.161049 8.49030i 0.0101251 0.533781i
\(254\) −44.2372 −2.77569
\(255\) 0 0
\(256\) −1.59757 + 4.91683i −0.0998484 + 0.307302i
\(257\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7.26675 22.3648i 0.449801 1.38434i
\(262\) 0 0
\(263\) −22.7783 −1.40457 −0.702284 0.711897i \(-0.747836\pi\)
−0.702284 + 0.711897i \(0.747836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −11.1527 34.3246i −0.681262 2.09671i
\(269\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(270\) 0 0
\(271\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −37.6112 −2.27217
\(275\) −15.6715 5.42265i −0.945025 0.326998i
\(276\) 0 0
\(277\) 26.9284 + 19.5646i 1.61797 + 1.17552i 0.814289 + 0.580460i \(0.197127\pi\)
0.803679 + 0.595063i \(0.202873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −27.0823 + 19.6764i −1.61559 + 1.17380i −0.775515 + 0.631329i \(0.782510\pi\)
−0.840077 + 0.542467i \(0.817490\pi\)
\(282\) 0 0
\(283\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(284\) 37.3016 + 27.1012i 2.21344 + 1.60816i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 17.3557 + 12.6096i 1.02269 + 0.743030i
\(289\) −5.25329 + 16.1680i −0.309017 + 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 22.9388 1.33329
\(297\) 0 0
\(298\) −48.5593 −2.81297
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −4.25690 + 3.09282i −0.244957 + 0.177972i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.53698 7.80803i 0.142716 0.439236i
\(317\) −17.2208 12.5116i −0.967215 0.702723i −0.0123997 0.999923i \(-0.503947\pi\)
−0.954815 + 0.297200i \(0.903947\pi\)
\(318\) 0 0
\(319\) 24.8731 7.56333i 1.39263 0.423465i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −20.9109 + 15.1926i −1.16171 + 0.844035i
\(325\) 0 0
\(326\) 14.5131 + 44.6668i 0.803808 + 2.47387i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.1571 0.888076 0.444038 0.896008i \(-0.353545\pi\)
0.444038 + 0.896008i \(0.353545\pi\)
\(332\) 0 0
\(333\) 11.0496 34.0073i 0.605517 1.86359i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.35579 10.3281i −0.182801 0.562605i 0.817102 0.576493i \(-0.195579\pi\)
−0.999904 + 0.0138879i \(0.995579\pi\)
\(338\) 8.86698 27.2898i 0.482300 1.48437i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −7.62332 + 23.4622i −0.411022 + 1.26499i
\(345\) 0 0
\(346\) 0 0
\(347\) −14.9958 + 10.8951i −0.805016 + 0.584878i −0.912381 0.409342i \(-0.865758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.449797 + 23.7127i −0.0239742 + 1.26389i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 47.1400 34.2492i 2.49143 1.81013i
\(359\) 11.6499 + 35.8546i 0.614856 + 1.89233i 0.403745 + 0.914872i \(0.367708\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) 15.3713 + 11.1679i 0.809017 + 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(368\) −3.09865 + 2.25130i −0.161528 + 0.117357i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −25.4997 + 18.5267i −1.30983 + 0.951650i −0.309834 + 0.950791i \(0.600274\pi\)
−1.00000 0.000859657i \(0.999726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.19270 + 19.0592i −0.316846 + 0.975152i
\(383\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.68208 0.238312
\(387\) 31.1111 + 22.6035i 1.58147 + 1.14900i
\(388\) 0 0
\(389\) −0.518410 1.59550i −0.0262844 0.0808951i 0.937054 0.349185i \(-0.113542\pi\)
−0.963338 + 0.268290i \(0.913542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 3.62602 + 2.63446i 0.182676 + 0.132722i
\(395\) 0 0
\(396\) −27.0043 9.34405i −1.35702 0.469556i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.31133 + 7.11355i 0.115567 + 0.355677i
\(401\) 24.7856 18.0078i 1.23773 0.899265i 0.240287 0.970702i \(-0.422758\pi\)
0.997445 + 0.0714367i \(0.0227584\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 37.8214 11.5006i 1.87474 0.570065i
\(408\) 0 0
\(409\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −5.23912 16.1244i −0.257489 0.792469i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 6.84802 21.0760i 0.333752 1.02718i −0.633581 0.773676i \(-0.718416\pi\)
0.967333 0.253507i \(-0.0815842\pi\)
\(422\) 19.6921 + 60.6059i 0.958594 + 2.95025i
\(423\) 0 0
\(424\) 22.2815 16.1884i 1.08208 0.786180i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −32.2024 −1.55656
\(429\) 0 0
\(430\) 0 0
\(431\) 12.3570 + 8.97786i 0.595214 + 0.432448i 0.844177 0.536065i \(-0.180090\pi\)
−0.248963 + 0.968513i \(0.580090\pi\)
\(432\) 0 0
\(433\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13.8688 + 42.6838i 0.664196 + 2.04418i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.72788 + 5.31786i −0.0820940 + 0.252659i −0.983676 0.179949i \(-0.942407\pi\)
0.901582 + 0.432608i \(0.142407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0711 24.0276i −1.56072 1.13393i −0.935413 0.353556i \(-0.884972\pi\)
−0.625310 0.780376i \(-0.715028\pi\)
\(450\) −33.1086 −1.56076
\(451\) 0 0
\(452\) 31.0829 1.46201
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.0711 24.7541i 1.59378 1.15795i 0.695501 0.718525i \(-0.255182\pi\)
0.898279 0.439425i \(-0.144818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 23.0299 1.07029 0.535145 0.844760i \(-0.320257\pi\)
0.535145 + 0.844760i \(0.320257\pi\)
\(464\) −9.48646 6.89232i −0.440398 0.319968i
\(465\) 0 0
\(466\) −15.0057 46.1827i −0.695124 2.13937i
\(467\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.806287 + 42.5064i −0.0370731 + 1.95445i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −13.2668 40.8309i −0.607443 1.86952i
\(478\) −50.8845 + 36.9698i −2.32740 + 1.69096i
\(479\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −8.61575 30.3935i −0.391625 1.38152i
\(485\) 0 0
\(486\) 0 0
\(487\) 12.7279 39.1724i 0.576755 1.77507i −0.0533681 0.998575i \(-0.516996\pi\)
0.630123 0.776495i \(-0.283004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5967 + 41.8465i 0.613613 + 1.88851i 0.420363 + 0.907356i \(0.361903\pi\)
0.193249 + 0.981150i \(0.438097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13.8056 42.4894i −0.618025 1.90208i −0.314213 0.949352i \(-0.601741\pi\)
−0.303812 0.952732i \(-0.598259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 11.3028 14.9522i 0.502469 0.664704i
\(507\) 0 0
\(508\) −46.5658 33.8320i −2.06602 1.50105i
\(509\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 13.3125 9.67211i 0.588336 0.427451i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(522\) 41.9919 30.5089i 1.83794 1.33534i
\(523\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −40.6751 29.5522i −1.77352 1.28854i
\(527\) 0 0
\(528\) 0 0
\(529\) −16.4444 −0.714976
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 7.47368 23.0016i 0.322814 0.993519i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −15.9284 11.5726i −0.684814 0.497546i 0.190138 0.981757i \(-0.439107\pi\)
−0.874951 + 0.484211i \(0.839107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.5967 41.8465i 0.581355 1.78923i −0.0320849 0.999485i \(-0.510215\pi\)
0.613440 0.789741i \(-0.289785\pi\)
\(548\) −39.5910 28.7646i −1.69124 1.22876i
\(549\) 0 0
\(550\) −20.9492 30.0151i −0.893277 1.27985i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 22.7031 + 69.8729i 0.964561 + 2.96861i
\(555\) 0 0
\(556\) 0 0
\(557\) −13.4223 41.3094i −0.568719 1.75034i −0.656634 0.754209i \(-0.728020\pi\)
0.0879152 0.996128i \(-0.471980\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −73.8886 −3.11680
\(563\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 9.54785 + 29.3853i 0.400619 + 1.23298i
\(569\) 6.79837 20.9232i 0.285003 0.877148i −0.701395 0.712773i \(-0.747439\pi\)
0.986398 0.164375i \(-0.0525608\pi\)
\(570\) 0 0
\(571\) 46.5287 1.94717 0.973583 0.228332i \(-0.0733271\pi\)
0.973583 + 0.228332i \(0.0733271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.95601 12.1753i 0.164977 0.507747i
\(576\) 11.8588 + 36.4977i 0.494118 + 1.52074i
\(577\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(578\) −30.3568 + 22.0555i −1.26268 + 0.917389i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 28.6214 37.8626i 1.18538 1.56811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −14.4249 10.4803i −0.592859 0.430737i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −51.1155 37.1376i −2.09377 1.52121i
\(597\) 0 0
\(598\) 0 0
\(599\) −36.4997 + 26.5186i −1.49134 + 1.08352i −0.517663 + 0.855584i \(0.673198\pi\)
−0.973676 + 0.227937i \(0.926802\pi\)
\(600\) 0 0
\(601\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(602\) 0 0
\(603\) −30.5004 22.1599i −1.24207 0.902419i
\(604\) −6.84633 −0.278573
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 3.73325 11.4898i 0.150784 0.464067i −0.846925 0.531712i \(-0.821549\pi\)
0.997709 + 0.0676456i \(0.0215487\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.84770 −0.154902 −0.0774512 0.996996i \(-0.524678\pi\)
−0.0774512 + 0.996996i \(0.524678\pi\)
\(618\) 0 0
\(619\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15.5241 + 47.7782i 0.618003 + 1.90202i 0.318475 + 0.947931i \(0.396829\pi\)
0.299528 + 0.954087i \(0.403171\pi\)
\(632\) 4.45088 3.23376i 0.177047 0.128632i
\(633\) 0 0
\(634\) −14.5187 44.6839i −0.576611 1.77463i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 54.2283 + 18.7641i 2.14692 + 0.742879i
\(639\) 48.1636 1.90532
\(640\) 0 0
\(641\) −7.65550 + 23.5612i −0.302374 + 0.930611i 0.678270 + 0.734813i \(0.262730\pi\)
−0.980644 + 0.195799i \(0.937270\pi\)
\(642\) 0 0
\(643\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(648\) −17.3208 −0.680425
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −18.8835 + 58.1175i −0.739536 + 2.27606i
\(653\) 7.88484 + 24.2670i 0.308558 + 0.949643i 0.978326 + 0.207072i \(0.0663936\pi\)
−0.669768 + 0.742571i \(0.733606\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 28.8517 + 20.9620i 1.12135 + 0.814712i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 63.8519 46.3911i 2.47421 1.79762i
\(667\) 6.20189 + 19.0874i 0.240138 + 0.739069i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.7653 + 28.8912i 1.53284 + 1.11367i 0.954633 + 0.297784i \(0.0962476\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 7.40704 22.7965i 0.285308 0.878089i
\(675\) 0 0
\(676\) 30.2046 21.9449i 1.16171 0.844035i
\(677\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.0364 −0.422295 −0.211147 0.977454i \(-0.567720\pi\)
−0.211147 + 0.977454i \(0.567720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 15.5133 11.2711i 0.591438 0.429705i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −40.9130 −1.55304
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.7423 48.4499i 0.594579 1.82993i 0.0377695 0.999286i \(-0.487975\pi\)
0.556810 0.830640i \(-0.312025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −25.5840 + 33.8444i −0.964233 + 1.27556i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −29.0896 + 21.1349i −1.09248 + 0.793736i −0.979817 0.199896i \(-0.935939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) −2.65013 8.15626i −0.0993876 0.305884i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 75.8148 2.83333
\(717\) 0 0
\(718\) −25.7141 + 79.1398i −0.959641 + 2.95347i
\(719\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 12.9594 + 39.8850i 0.482300 + 1.48437i
\(723\) 0 0
\(724\) 0 0
\(725\) 39.1928 1.45559
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −8.34346 + 25.6785i −0.309017 + 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −18.3091 −0.674883
\(737\) 0.790461 41.6721i 0.0291170 1.53501i
\(738\) 0 0
\(739\) −26.4857 19.2430i −0.974291 0.707864i −0.0178655 0.999840i \(-0.505687\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −43.7942 + 31.8183i −1.60665 + 1.16730i −0.733729 + 0.679442i \(0.762222\pi\)
−0.872923 + 0.487858i \(0.837778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 39.2853 + 28.5425i 1.43834 + 1.04501i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.3593 + 38.0379i −0.450996 + 1.38802i 0.424777 + 0.905298i \(0.360353\pi\)
−0.875772 + 0.482724i \(0.839647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −40.3760 29.3349i −1.46749 1.06619i −0.981332 0.192323i \(-0.938398\pi\)
−0.486158 0.873871i \(-0.661602\pi\)
\(758\) −69.5710 −2.52693
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −21.0949 + 15.3263i −0.763186 + 0.554487i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.92855 + 3.58080i 0.177382 + 0.128876i
\(773\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(774\) 26.2295 + 80.7261i 0.942799 + 2.90164i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.14426 3.52166i 0.0410236 0.126258i
\(779\) 0 0
\(780\) 0 0
\(781\) 30.4751 + 43.6635i 1.09049 + 1.56240i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(788\) 1.80209 + 5.54628i 0.0641969 + 0.197578i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −10.9596 15.7024i −0.389432 0.557961i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −11.0488 + 34.0047i −0.390634 + 1.20225i
\(801\) 0 0
\(802\) 67.6225 2.38783
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.0711 + 16.7622i −0.811138 + 0.589326i −0.914160 0.405353i \(-0.867149\pi\)
0.103022 + 0.994679i \(0.467149\pi\)
\(810\) 0 0
\(811\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 82.4583 + 28.5323i 2.89016 + 1.00006i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.79837 + 20.9232i 0.237265 + 0.730226i 0.996813 + 0.0797750i \(0.0254202\pi\)
−0.759548 + 0.650451i \(0.774580\pi\)
\(822\) 0 0
\(823\) −1.70206 1.23662i −0.0593301 0.0431058i 0.557725 0.830026i \(-0.311674\pi\)
−0.617055 + 0.786920i \(0.711674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.5967 25.8626i −1.23782 0.899329i −0.240369 0.970682i \(-0.577268\pi\)
−0.997451 + 0.0713526i \(0.977268\pi\)
\(828\) 6.81680 20.9799i 0.236900 0.729103i
\(829\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(840\) 0 0
\(841\) −26.2471 + 19.0696i −0.905071 + 0.657573i
\(842\) 39.5722 28.7509i 1.36375 0.990821i
\(843\) 0 0
\(844\) −25.6220 + 78.8564i −0.881946 + 2.71435i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −21.4077 −0.735145
\(849\) 0 0
\(850\) 0 0
\(851\) 9.43044 + 29.0239i 0.323271 + 0.994927i
\(852\) 0 0
\(853\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −17.4582 12.6841i −0.596709 0.433534i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.4180 + 32.0635i 0.354840 + 1.09209i
\(863\) −6.47214 + 4.70228i −0.220314 + 0.160068i −0.692468 0.721449i \(-0.743477\pi\)
0.472154 + 0.881516i \(0.343477\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.71733 7.56332i 0.193947 0.256568i
\(870\) 0 0
\(871\) 0 0
\(872\) −9.29379 + 28.6033i −0.314727 + 0.968631i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.2668 + 56.2193i −0.616824 + 1.89839i −0.248939 + 0.968519i \(0.580082\pi\)
−0.367885 + 0.929871i \(0.619918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −3.70820 + 11.4127i −0.124791 + 0.384067i −0.993863 0.110619i \(-0.964717\pi\)
0.869072 + 0.494686i \(0.164717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −9.98478 + 7.25436i −0.335445 + 0.243715i
\(887\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −28.5585 + 8.68399i −0.956746 + 0.290924i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −27.8820 85.8120i −0.930434 2.86358i
\(899\) 0 0
\(900\) −34.8514 25.3211i −1.16171 0.844035i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 16.8512 + 12.2431i 0.560464 + 0.407201i
\(905\) 0 0
\(906\) 0 0
\(907\) 41.7868 30.3599i 1.38751 1.00808i 0.391373 0.920232i \(-0.372000\pi\)
0.996134 0.0878507i \(-0.0279999\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.9443 9.40456i −0.428863 0.311587i 0.352331 0.935875i \(-0.385389\pi\)
−0.781194 + 0.624288i \(0.785389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 92.9563 3.07472
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.8026 + 10.0282i −0.455306 + 0.330799i −0.791687 0.610927i \(-0.790797\pi\)
0.336381 + 0.941726i \(0.390797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 59.5957 1.95949
\(926\) 41.1244 + 29.8786i 1.35143 + 0.981872i
\(927\) 0 0
\(928\) −17.3214 53.3097i −0.568601 1.74998i
\(929\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.5244 60.0898i 0.639542 1.96831i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −56.5869 + 74.8575i −1.83980 + 2.43383i
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.7590 + 36.1906i 0.380913 + 1.17233i 0.939402 + 0.342817i \(0.111381\pi\)
−0.558489 + 0.829512i \(0.688619\pi\)
\(954\) 29.2829 90.1236i 0.948070 2.91786i
\(955\) 0 0
\(956\) −81.8370 −2.64680
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) 0 0
\(963\) −27.2142 + 19.7723i −0.876965 + 0.637152i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.9320 1.05902 0.529511 0.848303i \(-0.322376\pi\)
0.529511 + 0.848303i \(0.322376\pi\)
\(968\) 7.30068 19.8712i 0.234653 0.638683i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 73.5498 53.4370i 2.35669 1.71223i
\(975\) 0 0
\(976\) 0 0
\(977\) −44.0711 32.0196i −1.40996 1.02440i −0.993328 0.115321i \(-0.963210\pi\)
−0.416632 0.909075i \(-0.636790\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 37.9284 + 27.5566i 1.21096 + 0.879813i
\(982\) −30.0113 + 92.3653i −0.957699 + 2.94750i
\(983\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.8202 −1.04362
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(998\) 30.4724 93.7843i 0.964586 2.96869i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.f.c.246.2 8
7.2 even 3 539.2.q.d.312.2 16
7.3 odd 6 539.2.q.d.422.1 16
7.4 even 3 539.2.q.d.422.1 16
7.5 odd 6 539.2.q.d.312.2 16
7.6 odd 2 CM 539.2.f.c.246.2 8
11.3 even 5 inner 539.2.f.c.344.2 yes 8
11.5 even 5 5929.2.a.bc.1.2 4
11.6 odd 10 5929.2.a.bg.1.3 4
77.3 odd 30 539.2.q.d.520.2 16
77.6 even 10 5929.2.a.bg.1.3 4
77.25 even 15 539.2.q.d.520.2 16
77.27 odd 10 5929.2.a.bc.1.2 4
77.47 odd 30 539.2.q.d.410.1 16
77.58 even 15 539.2.q.d.410.1 16
77.69 odd 10 inner 539.2.f.c.344.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.2 8 1.1 even 1 trivial
539.2.f.c.246.2 8 7.6 odd 2 CM
539.2.f.c.344.2 yes 8 11.3 even 5 inner
539.2.f.c.344.2 yes 8 77.69 odd 10 inner
539.2.q.d.312.2 16 7.2 even 3
539.2.q.d.312.2 16 7.5 odd 6
539.2.q.d.410.1 16 77.47 odd 30
539.2.q.d.410.1 16 77.58 even 15
539.2.q.d.422.1 16 7.3 odd 6
539.2.q.d.422.1 16 7.4 even 3
539.2.q.d.520.2 16 77.3 odd 30
539.2.q.d.520.2 16 77.25 even 15
5929.2.a.bc.1.2 4 11.5 even 5
5929.2.a.bc.1.2 4 77.27 odd 10
5929.2.a.bg.1.3 4 11.6 odd 10
5929.2.a.bg.1.3 4 77.6 even 10