Properties

Label 539.2.f.c.148.1
Level $539$
Weight $2$
Character 539.148
Analytic conductor $4.304$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(148,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.148"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.37515625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{5}]$

Embedding invariants

Embedding label 148.1
Root \(1.10362 - 0.884319i\) of defining polynomial
Character \(\chi\) \(=\) 539.148
Dual form 539.2.f.c.295.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.730563 - 2.24844i) q^{2} +(-2.90373 + 2.10968i) q^{4} +(3.03958 + 2.20838i) q^{8} +(-0.927051 - 2.85317i) q^{9} +(-1.89823 - 2.71970i) q^{11} +(0.526564 - 1.62060i) q^{16} +(-5.73791 + 4.16884i) q^{18} +(-4.72830 + 6.25495i) q^{22} -9.58240 q^{23} +(4.04508 + 2.93893i) q^{25} +(-8.64279 + 6.27935i) q^{29} +3.48575 q^{32} +(8.71119 + 6.32905i) q^{36} +(1.10547 - 0.803169i) q^{37} -8.74072 q^{43} +(11.2496 + 3.89261i) q^{44} +(7.00055 + 21.5455i) q^{46} +(3.65281 - 11.2422i) q^{50} +(-4.06518 - 12.5113i) q^{53} +(20.4328 + 14.8453i) q^{58} +(-3.59968 - 11.0787i) q^{64} +16.3336 q^{67} +(3.08300 - 9.48849i) q^{71} +(3.48305 - 10.7197i) q^{72} +(-2.61349 - 1.89881i) q^{74} +(-3.90147 - 12.0075i) q^{79} +(-7.28115 + 5.29007i) q^{81} +(6.38565 + 19.6530i) q^{86} +(0.236325 - 12.4587i) q^{88} +(27.8247 - 20.2158i) q^{92} +(-6.00000 + 7.93725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} + 16 q^{8} + 6 q^{9} - 4 q^{11} - 28 q^{16} - 9 q^{18} - 4 q^{22} - 16 q^{23} + 10 q^{25} - 4 q^{29} + 100 q^{32} - 6 q^{36} - 18 q^{37} + 24 q^{43} + 9 q^{44} - 31 q^{46} + 10 q^{50}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730563 2.24844i −0.516586 1.58989i −0.780378 0.625308i \(-0.784973\pi\)
0.263792 0.964580i \(-0.415027\pi\)
\(3\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(4\) −2.90373 + 2.10968i −1.45187 + 1.05484i
\(5\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.03958 + 2.20838i 1.07465 + 0.780782i
\(9\) −0.927051 2.85317i −0.309017 0.951057i
\(10\) 0 0
\(11\) −1.89823 2.71970i −0.572336 0.820019i
\(12\) 0 0
\(13\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.526564 1.62060i 0.131641 0.405150i
\(17\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(18\) −5.73791 + 4.16884i −1.35244 + 0.982605i
\(19\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.72830 + 6.25495i −1.00808 + 1.33356i
\(23\) −9.58240 −1.99807 −0.999035 0.0439305i \(-0.986012\pi\)
−0.999035 + 0.0439305i \(0.986012\pi\)
\(24\) 0 0
\(25\) 4.04508 + 2.93893i 0.809017 + 0.587785i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.64279 + 6.27935i −1.60492 + 1.16605i −0.727793 + 0.685797i \(0.759454\pi\)
−0.877132 + 0.480249i \(0.840546\pi\)
\(30\) 0 0
\(31\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(32\) 3.48575 0.616199
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 8.71119 + 6.32905i 1.45187 + 1.05484i
\(37\) 1.10547 0.803169i 0.181738 0.132040i −0.493197 0.869918i \(-0.664172\pi\)
0.674935 + 0.737878i \(0.264172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(42\) 0 0
\(43\) −8.74072 −1.33295 −0.666474 0.745528i \(-0.732197\pi\)
−0.666474 + 0.745528i \(0.732197\pi\)
\(44\) 11.2496 + 3.89261i 1.69595 + 0.586833i
\(45\) 0 0
\(46\) 7.00055 + 21.5455i 1.03217 + 3.17671i
\(47\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.65281 11.2422i 0.516586 1.58989i
\(51\) 0 0
\(52\) 0 0
\(53\) −4.06518 12.5113i −0.558396 1.71857i −0.686803 0.726844i \(-0.740986\pi\)
0.128407 0.991722i \(-0.459014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 20.4328 + 14.8453i 2.68296 + 1.94929i
\(59\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −3.59968 11.0787i −0.449961 1.38484i
\(65\) 0 0
\(66\) 0 0
\(67\) 16.3336 1.99547 0.997735 0.0672706i \(-0.0214291\pi\)
0.997735 + 0.0672706i \(0.0214291\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.08300 9.48849i 0.365885 1.12608i −0.583541 0.812084i \(-0.698333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 3.48305 10.7197i 0.410481 1.26333i
\(73\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(74\) −2.61349 1.89881i −0.303812 0.220732i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.90147 12.0075i −0.438950 1.35095i −0.888985 0.457937i \(-0.848589\pi\)
0.450035 0.893011i \(-0.351411\pi\)
\(80\) 0 0
\(81\) −7.28115 + 5.29007i −0.809017 + 0.587785i
\(82\) 0 0
\(83\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.38565 + 19.6530i 0.688582 + 2.11924i
\(87\) 0 0
\(88\) 0.236325 12.4587i 0.0251923 1.32811i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 27.8247 20.2158i 2.90093 2.10765i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(98\) 0 0
\(99\) −6.00000 + 7.93725i −0.603023 + 0.797724i
\(100\) −17.9460 −1.79460
\(101\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(102\) 0 0
\(103\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −25.1611 + 18.2806i −2.44387 + 1.77557i
\(107\) −10.5739 7.68240i −1.02222 0.742685i −0.0554821 0.998460i \(-0.517670\pi\)
−0.966736 + 0.255774i \(0.917670\pi\)
\(108\) 0 0
\(109\) −8.34177 −0.798997 −0.399498 0.916734i \(-0.630816\pi\)
−0.399498 + 0.916734i \(0.630816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.7856 + 11.4689i 1.48498 + 1.07890i 0.975909 + 0.218179i \(0.0700116\pi\)
0.509073 + 0.860724i \(0.329988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 11.8489 36.4671i 1.10014 3.38588i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.79348 + 10.3252i −0.344862 + 0.938653i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.11662 + 3.43661i −0.0990843 + 0.304950i −0.988297 0.152545i \(-0.951253\pi\)
0.889212 + 0.457495i \(0.151253\pi\)
\(128\) −16.6399 + 12.0896i −1.47078 + 1.06858i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.9327 36.7252i −1.03083 3.17257i
\(135\) 0 0
\(136\) 0 0
\(137\) 6.34450 19.5264i 0.542047 1.66825i −0.185861 0.982576i \(-0.559507\pi\)
0.727909 0.685674i \(-0.240493\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −23.5866 −1.97935
\(143\) 0 0
\(144\) −5.11199 −0.426000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.51555 + 4.66437i −0.124577 + 0.383409i
\(149\) 6.79837 20.9232i 0.556944 1.71410i −0.133808 0.991007i \(-0.542720\pi\)
0.690752 0.723092i \(-0.257280\pi\)
\(150\) 0 0
\(151\) −18.2245 13.2408i −1.48309 1.07752i −0.976546 0.215308i \(-0.930924\pi\)
−0.506540 0.862217i \(-0.669076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(158\) −24.1479 + 17.5444i −1.92110 + 1.39576i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 17.2137 + 12.5065i 1.35244 + 0.982605i
\(163\) 2.11662 + 6.51430i 0.165787 + 0.510239i 0.999093 0.0425718i \(-0.0135551\pi\)
−0.833307 + 0.552811i \(0.813555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(168\) 0 0
\(169\) 10.5172 7.64121i 0.809017 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) 25.3807 18.4402i 1.93526 1.40605i
\(173\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.40707 + 1.64417i −0.407573 + 0.123934i
\(177\) 0 0
\(178\) 0 0
\(179\) −9.96326 7.23873i −0.744689 0.541048i 0.149487 0.988764i \(-0.452238\pi\)
−0.894176 + 0.447715i \(0.852238\pi\)
\(180\) 0 0
\(181\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −29.1265 21.1616i −2.14723 1.56006i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.3570 13.3371i 1.32826 0.965040i 0.328474 0.944513i \(-0.393466\pi\)
0.999789 0.0205267i \(-0.00653431\pi\)
\(192\) 0 0
\(193\) −4.50169 + 13.8548i −0.324039 + 0.997288i 0.647834 + 0.761781i \(0.275675\pi\)
−0.971873 + 0.235507i \(0.924325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.2550 1.94184 0.970918 0.239411i \(-0.0769543\pi\)
0.970918 + 0.239411i \(0.0769543\pi\)
\(198\) 22.2298 + 7.69198i 1.57980 + 0.546645i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 5.80508 + 17.8662i 0.410481 + 1.26333i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.88338 + 27.3402i 0.617437 + 1.90028i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.80563 5.55715i −0.124304 0.382570i 0.869469 0.493987i \(-0.164461\pi\)
−0.993774 + 0.111417i \(0.964461\pi\)
\(212\) 38.1992 + 27.7533i 2.62353 + 1.90611i
\(213\) 0 0
\(214\) −9.54851 + 29.3873i −0.652723 + 2.00887i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.09419 + 18.7560i 0.412750 + 1.27032i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(224\) 0 0
\(225\) 4.63525 14.2658i 0.309017 0.951057i
\(226\) 14.2548 43.8717i 0.948213 2.91830i
\(227\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(228\) 0 0
\(229\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40.1377 −2.63517
\(233\) 6.79837 + 20.9232i 0.445376 + 1.37073i 0.882071 + 0.471117i \(0.156149\pi\)
−0.436694 + 0.899610i \(0.643851\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.3570 17.6964i −1.57552 1.14468i −0.921614 0.388108i \(-0.873129\pi\)
−0.653907 0.756575i \(-0.726871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 25.9869 + 0.986227i 1.67050 + 0.0633970i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(252\) 0 0
\(253\) 18.1896 + 26.0612i 1.14357 + 1.63845i
\(254\) 8.54279 0.536022
\(255\) 0 0
\(256\) 20.4911 + 14.8877i 1.28069 + 0.930479i
\(257\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 25.9284 + 18.8381i 1.60492 + 1.16605i
\(262\) 0 0
\(263\) 4.85603 0.299435 0.149718 0.988729i \(-0.452164\pi\)
0.149718 + 0.988729i \(0.452164\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −47.4284 + 34.4588i −2.89715 + 2.10490i
\(269\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −48.5389 −2.93234
\(275\) 0.314502 16.5801i 0.0189652 0.999820i
\(276\) 0 0
\(277\) −3.26675 10.0540i −0.196280 0.604088i −0.999959 0.00902525i \(-0.997127\pi\)
0.803679 0.595063i \(-0.202873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.70331 + 26.7860i −0.519196 + 1.59792i 0.256319 + 0.966592i \(0.417490\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(284\) 11.0655 + 34.0562i 0.656618 + 2.02086i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.23146 9.94542i −0.190416 0.586040i
\(289\) 13.7533 + 9.99235i 0.809017 + 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.13386 0.298400
\(297\) 0 0
\(298\) −52.0113 −3.01293
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −16.4571 + 50.6499i −0.947002 + 2.91457i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 36.6608 + 26.6356i 2.06233 + 1.49837i
\(317\) −0.136444 0.419931i −0.00766345 0.0235857i 0.947152 0.320786i \(-0.103947\pi\)
−0.954815 + 0.297200i \(0.903947\pi\)
\(318\) 0 0
\(319\) 33.4839 + 11.5861i 1.87474 + 0.648698i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.98214 30.7219i 0.554563 1.70677i
\(325\) 0 0
\(326\) 13.1007 9.51821i 0.725580 0.527165i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −26.0143 −1.42988 −0.714939 0.699187i \(-0.753545\pi\)
−0.714939 + 0.699187i \(0.753545\pi\)
\(332\) 0 0
\(333\) −3.31640 2.40951i −0.181738 0.132040i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.7003 21.5785i 1.61788 1.17546i 0.800776 0.598964i \(-0.204421\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(338\) −24.8643 18.0650i −1.35244 0.982605i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −26.5681 19.3029i −1.43246 1.04074i
\(345\) 0 0
\(346\) 0 0
\(347\) −10.5040 + 32.3279i −0.563883 + 1.73545i 0.107366 + 0.994220i \(0.465758\pi\)
−0.671248 + 0.741233i \(0.734242\pi\)
\(348\) 0 0
\(349\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.61673 9.48017i −0.352673 0.505295i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −8.99708 + 27.6902i −0.475510 + 1.46347i
\(359\) −12.3777 + 8.99296i −0.653272 + 0.474630i −0.864384 0.502832i \(-0.832292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −5.87132 18.0701i −0.309017 0.951057i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(368\) −5.04575 + 15.5292i −0.263028 + 0.809517i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 9.72788 29.9393i 0.499688 1.53788i −0.309834 0.950791i \(-0.600274\pi\)
0.809522 0.587090i \(-0.199726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −43.3986 31.5309i −2.22047 1.61326i
\(383\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.4404 1.75297
\(387\) 8.10309 + 24.9388i 0.411903 + 1.26771i
\(388\) 0 0
\(389\) −29.9038 + 21.7264i −1.51618 + 1.10157i −0.552847 + 0.833283i \(0.686458\pi\)
−0.963338 + 0.268290i \(0.913542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −19.9115 61.2812i −1.00313 3.08730i
\(395\) 0 0
\(396\) 0.677288 35.7057i 0.0340350 1.79428i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.89282 5.00793i 0.344641 0.250396i
\(401\) 4.65550 14.3282i 0.232484 0.715514i −0.764961 0.644077i \(-0.777242\pi\)
0.997445 0.0714367i \(-0.0227584\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.28280 1.48194i −0.212290 0.0734570i
\(408\) 0 0
\(409\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 54.9830 39.9475i 2.70227 1.96331i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −32.1148 23.3327i −1.56518 1.13717i −0.931597 0.363492i \(-0.881584\pi\)
−0.633581 0.773676i \(-0.718416\pi\)
\(422\) −11.1758 + 8.11969i −0.544029 + 0.395260i
\(423\) 0 0
\(424\) 15.2734 47.0067i 0.741742 2.28285i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 46.9112 2.26754
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8056 39.4117i −0.616825 1.89839i −0.367862 0.929880i \(-0.619910\pi\)
−0.248963 0.968513i \(-0.580090\pi\)
\(432\) 0 0
\(433\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 24.2223 17.5985i 1.16004 0.842815i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.4997 17.0736i −1.11651 0.811190i −0.132831 0.991139i \(-0.542407\pi\)
−0.983676 + 0.179949i \(0.942407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.18900 + 22.1255i 0.339270 + 1.04417i 0.964580 + 0.263790i \(0.0849724\pi\)
−0.625310 + 0.780376i \(0.715028\pi\)
\(450\) −35.4623 −1.67171
\(451\) 0 0
\(452\) −70.0328 −3.29406
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.18900 + 19.0478i −0.289509 + 0.891018i 0.695501 + 0.718525i \(0.255182\pi\)
−0.985011 + 0.172493i \(0.944818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 2.73687 0.127193 0.0635967 0.997976i \(-0.479743\pi\)
0.0635967 + 0.997976i \(0.479743\pi\)
\(464\) 5.62532 + 17.3130i 0.261149 + 0.803734i
\(465\) 0 0
\(466\) 42.0780 30.5715i 1.94923 1.41620i
\(467\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.5919 + 23.7721i 0.762894 + 1.09304i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −31.9284 + 23.1973i −1.46190 + 1.06213i
\(478\) −21.9950 + 67.6935i −1.00603 + 3.09623i
\(479\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −10.7676 37.9846i −0.489437 1.72657i
\(485\) 0 0
\(486\) 0 0
\(487\) 34.4997 + 25.0655i 1.56333 + 1.13583i 0.933210 + 0.359333i \(0.116996\pi\)
0.630123 + 0.776495i \(0.283004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −35.5967 + 25.8626i −1.60646 + 1.16716i −0.733047 + 0.680178i \(0.761903\pi\)
−0.873412 + 0.486983i \(0.838097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.3570 + 21.3291i −1.31420 + 0.954821i −0.314213 + 0.949352i \(0.601741\pi\)
−0.999985 + 0.00546838i \(0.998259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 45.3085 59.9375i 2.01421 2.66455i
\(507\) 0 0
\(508\) −4.00779 12.3347i −0.177817 0.547265i
\(509\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 5.79221 17.8266i 0.255982 0.787831i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(522\) 23.4140 72.0608i 1.02480 3.15401i
\(523\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −3.54763 10.9185i −0.154684 0.476069i
\(527\) 0 0
\(528\) 0 0
\(529\) 68.8225 2.99228
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 49.6473 + 36.0709i 2.14444 + 1.55803i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.2668 + 43.9085i 0.613376 + 1.88778i 0.423238 + 0.906019i \(0.360893\pi\)
0.190138 + 0.981757i \(0.439107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.5967 25.8626i −1.52201 1.10580i −0.960482 0.278343i \(-0.910215\pi\)
−0.561525 0.827460i \(-0.689785\pi\)
\(548\) 22.7717 + 70.0842i 0.972760 + 2.99385i
\(549\) 0 0
\(550\) −37.5092 + 11.4057i −1.59940 + 0.486340i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −20.2193 + 14.6902i −0.859037 + 0.624127i
\(555\) 0 0
\(556\) 0 0
\(557\) −19.6428 + 14.2713i −0.832292 + 0.604695i −0.920207 0.391433i \(-0.871980\pi\)
0.0879152 + 0.996128i \(0.471980\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 66.5852 2.80873
\(563\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 30.3252 22.0326i 1.27242 0.924467i
\(569\) −17.7984 12.9313i −0.746147 0.542107i 0.148483 0.988915i \(-0.452561\pi\)
−0.894630 + 0.446808i \(0.852561\pi\)
\(570\) 0 0
\(571\) 24.7563 1.03602 0.518010 0.855374i \(-0.326673\pi\)
0.518010 + 0.855374i \(0.326673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −38.7616 28.1620i −1.61647 1.17444i
\(576\) −28.2723 + 20.5410i −1.17801 + 0.855876i
\(577\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(578\) 12.4196 38.2235i 0.516586 1.58989i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −26.3104 + 34.8054i −1.08967 + 1.44149i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.719515 2.21444i −0.0295719 0.0910129i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24.4008 + 75.0979i 0.999495 + 3.07613i
\(597\) 0 0
\(598\) 0 0
\(599\) −1.27212 + 3.91519i −0.0519775 + 0.159970i −0.973676 0.227937i \(-0.926802\pi\)
0.921698 + 0.387907i \(0.126802\pi\)
\(600\) 0 0
\(601\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(602\) 0 0
\(603\) −15.1421 46.6026i −0.616634 1.89780i
\(604\) 80.8529 3.28986
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14.9284 10.8461i −0.602951 0.438069i 0.243974 0.969782i \(-0.421549\pi\)
−0.846925 + 0.531712i \(0.821549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.2257 1.29736 0.648679 0.761062i \(-0.275322\pi\)
0.648679 + 0.761062i \(0.275322\pi\)
\(618\) 0 0
\(619\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.72542 + 23.7764i 0.309017 + 0.951057i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.1742 + 8.84507i −0.484647 + 0.352117i −0.803122 0.595815i \(-0.796829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 14.6583 45.1137i 0.583076 1.79452i
\(633\) 0 0
\(634\) −0.844509 + 0.613572i −0.0335398 + 0.0243681i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.58864 83.7509i 0.0628947 3.31573i
\(639\) −29.9304 −1.18403
\(640\) 0 0
\(641\) 4.78557 + 3.47692i 0.189019 + 0.137330i 0.678270 0.734813i \(-0.262730\pi\)
−0.489251 + 0.872143i \(0.662730\pi\)
\(642\) 0 0
\(643\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(648\) −33.8141 −1.32835
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −19.8892 14.4504i −0.778922 0.565920i
\(653\) 27.6929 20.1201i 1.08371 0.787359i 0.105382 0.994432i \(-0.466394\pi\)
0.978326 + 0.207072i \(0.0663936\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 19.0051 + 58.4917i 0.738655 + 2.27335i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −2.99479 + 9.21703i −0.116046 + 0.357153i
\(667\) 82.8187 60.1713i 3.20675 2.32984i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 15.3058 + 47.1065i 0.589996 + 1.81582i 0.578208 + 0.815890i \(0.303752\pi\)
0.0117883 + 0.999931i \(0.496248\pi\)
\(674\) −70.2160 51.0149i −2.70462 1.96502i
\(675\) 0 0
\(676\) −14.4186 + 44.3760i −0.554563 + 1.70677i
\(677\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 45.1792 1.72873 0.864366 0.502863i \(-0.167720\pi\)
0.864366 + 0.502863i \(0.167720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −4.60255 + 14.1652i −0.175471 + 0.540043i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 80.3612 3.05047
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8536 17.3306i −0.900937 0.654569i 0.0377695 0.999286i \(-0.487975\pi\)
−0.938707 + 0.344717i \(0.887975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −23.2976 + 30.8199i −0.878063 + 1.16157i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −16.1243 + 49.6254i −0.605560 + 1.86372i −0.112667 + 0.993633i \(0.535939\pi\)
−0.492893 + 0.870090i \(0.664061\pi\)
\(710\) 0 0
\(711\) −30.6425 + 22.2631i −1.14918 + 0.834932i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 44.2021 1.65191
\(717\) 0 0
\(718\) 29.2629 + 21.2607i 1.09208 + 0.793443i
\(719\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −36.3401 + 26.4026i −1.35244 + 0.982605i
\(723\) 0 0
\(724\) 0 0
\(725\) −53.4154 −1.98380
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 21.8435 + 15.8702i 0.809017 + 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −33.4018 −1.23121
\(737\) −31.0049 44.4225i −1.14208 1.63632i
\(738\) 0 0
\(739\) −0.300157 0.923789i −0.0110415 0.0339821i 0.945384 0.325959i \(-0.105687\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.7056 + 45.2592i −0.539496 + 1.66040i 0.194233 + 0.980955i \(0.437778\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −16.0724 49.4657i −0.588452 1.81107i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.8351 13.6845i −0.687303 0.499355i 0.188469 0.982079i \(-0.439647\pi\)
−0.875772 + 0.482724i \(0.839647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.26681 25.4426i −0.300462 0.924728i −0.981332 0.192323i \(-0.938398\pi\)
0.680869 0.732405i \(-0.261602\pi\)
\(758\) −74.4236 −2.70319
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −25.1666 + 77.4548i −0.910495 + 2.80222i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.1575 49.7276i −0.581521 1.78974i
\(773\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(774\) 50.1535 36.4387i 1.80273 1.30976i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 70.6972 + 51.3645i 2.53462 + 1.84151i
\(779\) 0 0
\(780\) 0 0
\(781\) −31.6580 + 9.62648i −1.13281 + 0.344462i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(788\) −79.1411 + 57.4994i −2.81928 + 2.04833i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −35.7660 + 10.8756i −1.27089 + 0.386448i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 14.1001 + 10.2443i 0.498515 + 0.362192i
\(801\) 0 0
\(802\) −35.6171 −1.25768
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.1890 52.9023i 0.604333 1.85995i 0.103022 0.994679i \(-0.467149\pi\)
0.501311 0.865267i \(-0.332851\pi\)
\(810\) 0 0
\(811\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.203197 + 10.7123i −0.00712204 + 0.375465i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.7984 + 12.9313i −0.621168 + 0.451305i −0.853329 0.521373i \(-0.825420\pi\)
0.232162 + 0.972677i \(0.425420\pi\)
\(822\) 0 0
\(823\) −10.9405 33.6713i −0.381361 1.17371i −0.939086 0.343683i \(-0.888326\pi\)
0.557725 0.830026i \(-0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.5967 + 41.8465i 0.472805 + 1.45514i 0.848895 + 0.528562i \(0.177268\pi\)
−0.376090 + 0.926583i \(0.622732\pi\)
\(828\) −83.4741 60.6475i −2.90093 2.10765i
\(829\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(840\) 0 0
\(841\) 26.3060 80.9615i 0.907103 2.79178i
\(842\) −29.0005 + 89.2542i −0.999422 + 3.07590i
\(843\) 0 0
\(844\) 16.9669 + 12.3272i 0.584024 + 0.424318i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −22.4164 −0.769784
\(849\) 0 0
\(850\) 0 0
\(851\) −10.5930 + 7.69629i −0.363124 + 0.263825i
\(852\) 0 0
\(853\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −15.1746 46.7025i −0.518656 1.59626i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −79.2595 + 57.5854i −2.69959 + 1.96137i
\(863\) 2.47214 7.60845i 0.0841525 0.258995i −0.900123 0.435636i \(-0.856523\pi\)
0.984275 + 0.176642i \(0.0565234\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.2508 + 33.4037i −0.856576 + 1.13314i
\(870\) 0 0
\(871\) 0 0
\(872\) −25.3555 18.4218i −0.858645 0.623842i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −36.9284 26.8300i −1.24698 0.905985i −0.248939 0.968519i \(-0.580082\pi\)
−0.998043 + 0.0625337i \(0.980082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 9.70820 + 7.05342i 0.326707 + 0.237367i 0.739032 0.673670i \(-0.235283\pi\)
−0.412325 + 0.911037i \(0.635283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −21.2209 + 65.3111i −0.712929 + 2.19417i
\(887\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 28.2086 + 9.76078i 0.945025 + 0.326998i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 44.4958 32.3281i 1.48484 1.07880i
\(899\) 0 0
\(900\) 16.6369 + 51.2031i 0.554563 + 1.70677i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 22.6538 + 69.7212i 0.753454 + 2.31889i
\(905\) 0 0
\(906\) 0 0
\(907\) 7.28462 22.4198i 0.241882 0.744436i −0.754252 0.656585i \(-0.772000\pi\)
0.996134 0.0878507i \(-0.0279999\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.94427 + 15.2169i 0.163811 + 0.504159i 0.998947 0.0458855i \(-0.0146109\pi\)
−0.835136 + 0.550044i \(0.814611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 47.3493 1.56618
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.30234 19.3966i 0.207895 0.639835i −0.791687 0.610927i \(-0.790797\pi\)
0.999582 0.0289084i \(-0.00920311\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.83216 0.224640
\(926\) −1.99946 6.15370i −0.0657063 0.202223i
\(927\) 0 0
\(928\) −30.1266 + 21.8882i −0.988953 + 0.718516i
\(929\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −63.8821 46.4130i −2.09253 1.52031i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 41.3288 54.6728i 1.34371 1.77757i
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.8965 20.2680i 0.903655 0.656544i −0.0357473 0.999361i \(-0.511381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) 75.4834 + 54.8419i 2.44387 + 1.77557i
\(955\) 0 0
\(956\) 108.060 3.49490
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 25.0795 18.2213i 0.809017 0.587785i
\(962\) 0 0
\(963\) −12.1166 + 37.2911i −0.390453 + 1.20169i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 60.3531 1.94082 0.970412 0.241454i \(-0.0776244\pi\)
0.970412 + 0.241454i \(0.0776244\pi\)
\(968\) −34.3326 + 23.0068i −1.10349 + 0.739465i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.1541 95.8826i 0.998243 3.07228i
\(975\) 0 0
\(976\) 0 0
\(977\) −3.81100 11.7290i −0.121925 0.375245i 0.871404 0.490567i \(-0.163210\pi\)
−0.993328 + 0.115321i \(0.963210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 7.73325 + 23.8005i 0.246904 + 0.759891i
\(982\) 84.1561 + 61.1430i 2.68553 + 1.95115i
\(983\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 83.7571 2.66332
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(998\) 69.4043 + 50.4252i 2.19695 + 1.59618i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.f.c.148.1 8
7.2 even 3 539.2.q.d.214.1 16
7.3 odd 6 539.2.q.d.324.2 16
7.4 even 3 539.2.q.d.324.2 16
7.5 odd 6 539.2.q.d.214.1 16
7.6 odd 2 CM 539.2.f.c.148.1 8
11.3 even 5 5929.2.a.bc.1.1 4
11.8 odd 10 5929.2.a.bg.1.4 4
11.9 even 5 inner 539.2.f.c.295.1 yes 8
77.9 even 15 539.2.q.d.361.2 16
77.20 odd 10 inner 539.2.f.c.295.1 yes 8
77.31 odd 30 539.2.q.d.471.1 16
77.41 even 10 5929.2.a.bg.1.4 4
77.53 even 15 539.2.q.d.471.1 16
77.69 odd 10 5929.2.a.bc.1.1 4
77.75 odd 30 539.2.q.d.361.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.148.1 8 1.1 even 1 trivial
539.2.f.c.148.1 8 7.6 odd 2 CM
539.2.f.c.295.1 yes 8 11.9 even 5 inner
539.2.f.c.295.1 yes 8 77.20 odd 10 inner
539.2.q.d.214.1 16 7.2 even 3
539.2.q.d.214.1 16 7.5 odd 6
539.2.q.d.324.2 16 7.3 odd 6
539.2.q.d.324.2 16 7.4 even 3
539.2.q.d.361.2 16 77.9 even 15
539.2.q.d.361.2 16 77.75 odd 30
539.2.q.d.471.1 16 77.31 odd 30
539.2.q.d.471.1 16 77.53 even 15
5929.2.a.bc.1.1 4 11.3 even 5
5929.2.a.bc.1.1 4 77.69 odd 10
5929.2.a.bg.1.4 4 11.8 odd 10
5929.2.a.bg.1.4 4 77.41 even 10