Properties

Label 539.2.e.h.177.1
Level $539$
Weight $2$
Character 539.177
Analytic conductor $4.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(67,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 539.177
Dual form 539.2.e.h.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(-0.500000 + 0.866025i) q^{5} +2.00000 q^{6} +(1.00000 - 1.73205i) q^{9} +(1.00000 + 1.73205i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(1.00000 - 1.73205i) q^{12} +4.00000 q^{13} -1.00000 q^{15} +(2.00000 - 3.46410i) q^{16} +(1.00000 + 1.73205i) q^{17} +(-2.00000 - 3.46410i) q^{18} +2.00000 q^{20} -2.00000 q^{22} +(0.500000 - 0.866025i) q^{23} +(2.00000 + 3.46410i) q^{25} +(4.00000 - 6.92820i) q^{26} +5.00000 q^{27} +(-1.00000 + 1.73205i) q^{30} +(-3.50000 - 6.06218i) q^{31} +(-4.00000 - 6.92820i) q^{32} +(0.500000 - 0.866025i) q^{33} +4.00000 q^{34} -4.00000 q^{36} +(-1.50000 + 2.59808i) q^{37} +(2.00000 + 3.46410i) q^{39} -8.00000 q^{41} -6.00000 q^{43} +(-1.00000 + 1.73205i) q^{44} +(1.00000 + 1.73205i) q^{45} +(-1.00000 - 1.73205i) q^{46} +(-4.00000 + 6.92820i) q^{47} +4.00000 q^{48} +8.00000 q^{50} +(-1.00000 + 1.73205i) q^{51} +(-4.00000 - 6.92820i) q^{52} +(3.00000 + 5.19615i) q^{53} +(5.00000 - 8.66025i) q^{54} +1.00000 q^{55} +(-2.50000 - 4.33013i) q^{59} +(1.00000 + 1.73205i) q^{60} +(-6.00000 + 10.3923i) q^{61} -14.0000 q^{62} -8.00000 q^{64} +(-2.00000 + 3.46410i) q^{65} +(-1.00000 - 1.73205i) q^{66} +(3.50000 + 6.06218i) q^{67} +(2.00000 - 3.46410i) q^{68} +1.00000 q^{69} -3.00000 q^{71} +(-2.00000 - 3.46410i) q^{73} +(3.00000 + 5.19615i) q^{74} +(-2.00000 + 3.46410i) q^{75} +8.00000 q^{78} +(5.00000 - 8.66025i) q^{79} +(2.00000 + 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-8.00000 + 13.8564i) q^{82} -6.00000 q^{83} -2.00000 q^{85} +(-6.00000 + 10.3923i) q^{86} +(-7.50000 + 12.9904i) q^{89} +4.00000 q^{90} -2.00000 q^{92} +(3.50000 - 6.06218i) q^{93} +(8.00000 + 13.8564i) q^{94} +(4.00000 - 6.92820i) q^{96} -7.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} - 2 q^{4} - q^{5} + 4 q^{6} + 2 q^{9} + 2 q^{10} - q^{11} + 2 q^{12} + 8 q^{13} - 2 q^{15} + 4 q^{16} + 2 q^{17} - 4 q^{18} + 4 q^{20} - 4 q^{22} + q^{23} + 4 q^{25} + 8 q^{26}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 2.00000 0.816497
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 1.00000 + 1.73205i 0.316228 + 0.547723i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 1.00000 1.73205i 0.288675 0.500000i
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) −2.00000 3.46410i −0.471405 0.816497i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i \(-0.800087\pi\)
0.913434 + 0.406986i \(0.133420\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 4.00000 6.92820i 0.784465 1.35873i
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −1.00000 + 1.73205i −0.182574 + 0.316228i
\(31\) −3.50000 6.06218i −0.628619 1.08880i −0.987829 0.155543i \(-0.950287\pi\)
0.359211 0.933257i \(-0.383046\pi\)
\(32\) −4.00000 6.92820i −0.707107 1.22474i
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 2.00000 + 3.46410i 0.320256 + 0.554700i
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) −1.00000 + 1.73205i −0.150756 + 0.261116i
\(45\) 1.00000 + 1.73205i 0.149071 + 0.258199i
\(46\) −1.00000 1.73205i −0.147442 0.255377i
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 4.00000 0.577350
\(49\) 0 0
\(50\) 8.00000 1.13137
\(51\) −1.00000 + 1.73205i −0.140028 + 0.242536i
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 5.00000 8.66025i 0.680414 1.17851i
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.50000 4.33013i −0.325472 0.563735i 0.656136 0.754643i \(-0.272190\pi\)
−0.981608 + 0.190909i \(0.938857\pi\)
\(60\) 1.00000 + 1.73205i 0.129099 + 0.223607i
\(61\) −6.00000 + 10.3923i −0.768221 + 1.33060i 0.170305 + 0.985391i \(0.445525\pi\)
−0.938527 + 0.345207i \(0.887809\pi\)
\(62\) −14.0000 −1.77800
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −2.00000 + 3.46410i −0.248069 + 0.429669i
\(66\) −1.00000 1.73205i −0.123091 0.213201i
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 2.00000 3.46410i 0.242536 0.420084i
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) −2.00000 3.46410i −0.234082 0.405442i 0.724923 0.688830i \(-0.241875\pi\)
−0.959006 + 0.283387i \(0.908542\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) −2.00000 + 3.46410i −0.230940 + 0.400000i
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) 5.00000 8.66025i 0.562544 0.974355i −0.434730 0.900561i \(-0.643156\pi\)
0.997274 0.0737937i \(-0.0235106\pi\)
\(80\) 2.00000 + 3.46410i 0.223607 + 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −8.00000 + 13.8564i −0.883452 + 1.53018i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −6.00000 + 10.3923i −0.646997 + 1.12063i
\(87\) 0 0
\(88\) 0 0
\(89\) −7.50000 + 12.9904i −0.794998 + 1.37698i 0.127842 + 0.991795i \(0.459195\pi\)
−0.922840 + 0.385183i \(0.874138\pi\)
\(90\) 4.00000 0.421637
\(91\) 0 0
\(92\) −2.00000 −0.208514
\(93\) 3.50000 6.06218i 0.362933 0.628619i
\(94\) 8.00000 + 13.8564i 0.825137 + 1.42918i
\(95\) 0 0
\(96\) 4.00000 6.92820i 0.408248 0.707107i
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 4.00000 6.92820i 0.400000 0.692820i
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 2.00000 + 3.46410i 0.198030 + 0.342997i
\(103\) 8.00000 13.8564i 0.788263 1.36531i −0.138767 0.990325i \(-0.544314\pi\)
0.927030 0.374987i \(-0.122353\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) −9.00000 + 15.5885i −0.870063 + 1.50699i −0.00813215 + 0.999967i \(0.502589\pi\)
−0.861931 + 0.507026i \(0.830745\pi\)
\(108\) −5.00000 8.66025i −0.481125 0.833333i
\(109\) −5.00000 8.66025i −0.478913 0.829502i 0.520794 0.853682i \(-0.325636\pi\)
−0.999708 + 0.0241802i \(0.992302\pi\)
\(110\) 1.00000 1.73205i 0.0953463 0.165145i
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) 0.500000 + 0.866025i 0.0466252 + 0.0807573i
\(116\) 0 0
\(117\) 4.00000 6.92820i 0.369800 0.640513i
\(118\) −10.0000 −0.920575
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 12.0000 + 20.7846i 1.08643 + 1.88175i
\(123\) −4.00000 6.92820i −0.360668 0.624695i
\(124\) −7.00000 + 12.1244i −0.628619 + 1.08880i
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) −3.00000 5.19615i −0.264135 0.457496i
\(130\) 4.00000 + 6.92820i 0.350823 + 0.607644i
\(131\) 9.00000 15.5885i 0.786334 1.36197i −0.141865 0.989886i \(-0.545310\pi\)
0.928199 0.372084i \(-0.121357\pi\)
\(132\) −2.00000 −0.174078
\(133\) 0 0
\(134\) 14.0000 1.20942
\(135\) −2.50000 + 4.33013i −0.215166 + 0.372678i
\(136\) 0 0
\(137\) 3.50000 + 6.06218i 0.299025 + 0.517927i 0.975913 0.218159i \(-0.0700052\pi\)
−0.676888 + 0.736086i \(0.736672\pi\)
\(138\) 1.00000 1.73205i 0.0851257 0.147442i
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) −2.00000 3.46410i −0.167248 0.289683i
\(144\) −4.00000 6.92820i −0.333333 0.577350i
\(145\) 0 0
\(146\) −8.00000 −0.662085
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) 5.00000 8.66025i 0.409616 0.709476i −0.585231 0.810867i \(-0.698996\pi\)
0.994847 + 0.101391i \(0.0323294\pi\)
\(150\) 4.00000 + 6.92820i 0.326599 + 0.565685i
\(151\) −1.00000 1.73205i −0.0813788 0.140952i 0.822464 0.568818i \(-0.192599\pi\)
−0.903842 + 0.427865i \(0.859266\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) 7.00000 0.562254
\(156\) 4.00000 6.92820i 0.320256 0.554700i
\(157\) 3.50000 + 6.06218i 0.279330 + 0.483814i 0.971219 0.238190i \(-0.0765542\pi\)
−0.691888 + 0.722005i \(0.743221\pi\)
\(158\) −10.0000 17.3205i −0.795557 1.37795i
\(159\) −3.00000 + 5.19615i −0.237915 + 0.412082i
\(160\) 8.00000 0.632456
\(161\) 0 0
\(162\) −2.00000 −0.157135
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 8.00000 + 13.8564i 0.624695 + 1.08200i
\(165\) 0.500000 + 0.866025i 0.0389249 + 0.0674200i
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −2.00000 + 3.46410i −0.153393 + 0.265684i
\(171\) 0 0
\(172\) 6.00000 + 10.3923i 0.457496 + 0.792406i
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 2.50000 4.33013i 0.187912 0.325472i
\(178\) 15.0000 + 25.9808i 1.12430 + 1.94734i
\(179\) 7.50000 + 12.9904i 0.560576 + 0.970947i 0.997446 + 0.0714220i \(0.0227537\pi\)
−0.436870 + 0.899525i \(0.643913\pi\)
\(180\) 2.00000 3.46410i 0.149071 0.258199i
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) −12.0000 −0.887066
\(184\) 0 0
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) −7.00000 12.1244i −0.513265 0.889001i
\(187\) 1.00000 1.73205i 0.0731272 0.126660i
\(188\) 16.0000 1.16692
\(189\) 0 0
\(190\) 0 0
\(191\) −8.50000 + 14.7224i −0.615038 + 1.06528i 0.375339 + 0.926887i \(0.377526\pi\)
−0.990378 + 0.138390i \(0.955807\pi\)
\(192\) −4.00000 6.92820i −0.288675 0.500000i
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) −7.00000 + 12.1244i −0.502571 + 0.870478i
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −2.00000 + 3.46410i −0.142134 + 0.246183i
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) −3.50000 + 6.06218i −0.246871 + 0.427593i
\(202\) −4.00000 −0.281439
\(203\) 0 0
\(204\) 4.00000 0.280056
\(205\) 4.00000 6.92820i 0.279372 0.483887i
\(206\) −16.0000 27.7128i −1.11477 1.93084i
\(207\) −1.00000 1.73205i −0.0695048 0.120386i
\(208\) 8.00000 13.8564i 0.554700 0.960769i
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 6.00000 10.3923i 0.412082 0.713746i
\(213\) −1.50000 2.59808i −0.102778 0.178017i
\(214\) 18.0000 + 31.1769i 1.23045 + 2.13121i
\(215\) 3.00000 5.19615i 0.204598 0.354375i
\(216\) 0 0
\(217\) 0 0
\(218\) −20.0000 −1.35457
\(219\) 2.00000 3.46410i 0.135147 0.234082i
\(220\) −1.00000 1.73205i −0.0674200 0.116775i
\(221\) 4.00000 + 6.92820i 0.269069 + 0.466041i
\(222\) −3.00000 + 5.19615i −0.201347 + 0.348743i
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 9.00000 15.5885i 0.598671 1.03693i
\(227\) −9.00000 15.5885i −0.597351 1.03464i −0.993210 0.116331i \(-0.962887\pi\)
0.395860 0.918311i \(-0.370447\pi\)
\(228\) 0 0
\(229\) −7.50000 + 12.9904i −0.495614 + 0.858429i −0.999987 0.00505719i \(-0.998390\pi\)
0.504373 + 0.863486i \(0.331724\pi\)
\(230\) 2.00000 0.131876
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 + 20.7846i −0.786146 + 1.36165i 0.142166 + 0.989843i \(0.454593\pi\)
−0.928312 + 0.371802i \(0.878740\pi\)
\(234\) −8.00000 13.8564i −0.522976 0.905822i
\(235\) −4.00000 6.92820i −0.260931 0.451946i
\(236\) −5.00000 + 8.66025i −0.325472 + 0.563735i
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) −2.00000 + 3.46410i −0.129099 + 0.223607i
\(241\) 4.00000 + 6.92820i 0.257663 + 0.446285i 0.965615 0.259975i \(-0.0837143\pi\)
−0.707953 + 0.706260i \(0.750381\pi\)
\(242\) 1.00000 + 1.73205i 0.0642824 + 0.111340i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 24.0000 1.53644
\(245\) 0 0
\(246\) −16.0000 −1.02012
\(247\) 0 0
\(248\) 0 0
\(249\) −3.00000 5.19615i −0.190117 0.329293i
\(250\) −9.00000 + 15.5885i −0.569210 + 0.985901i
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) 8.00000 13.8564i 0.501965 0.869428i
\(255\) −1.00000 1.73205i −0.0626224 0.108465i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 1.00000 1.73205i 0.0623783 0.108042i −0.833150 0.553047i \(-0.813465\pi\)
0.895528 + 0.445005i \(0.146798\pi\)
\(258\) −12.0000 −0.747087
\(259\) 0 0
\(260\) 8.00000 0.496139
\(261\) 0 0
\(262\) −18.0000 31.1769i −1.11204 1.92612i
\(263\) −7.00000 12.1244i −0.431638 0.747620i 0.565376 0.824833i \(-0.308731\pi\)
−0.997015 + 0.0772134i \(0.975398\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) −15.0000 −0.917985
\(268\) 7.00000 12.1244i 0.427593 0.740613i
\(269\) −5.00000 8.66025i −0.304855 0.528025i 0.672374 0.740212i \(-0.265275\pi\)
−0.977229 + 0.212187i \(0.931941\pi\)
\(270\) 5.00000 + 8.66025i 0.304290 + 0.527046i
\(271\) 14.0000 24.2487i 0.850439 1.47300i −0.0303728 0.999539i \(-0.509669\pi\)
0.880812 0.473466i \(-0.156997\pi\)
\(272\) 8.00000 0.485071
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) −1.00000 1.73205i −0.0601929 0.104257i
\(277\) 1.00000 + 1.73205i 0.0600842 + 0.104069i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(278\) 10.0000 17.3205i 0.599760 1.03882i
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) −8.00000 + 13.8564i −0.476393 + 0.825137i
\(283\) −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i \(-0.204600\pi\)
−0.919327 + 0.393494i \(0.871266\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) 0 0
\(288\) −16.0000 −0.942809
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) −3.50000 6.06218i −0.205174 0.355371i
\(292\) −4.00000 + 6.92820i −0.234082 + 0.405442i
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) 5.00000 0.291111
\(296\) 0 0
\(297\) −2.50000 4.33013i −0.145065 0.251259i
\(298\) −10.0000 17.3205i −0.579284 1.00335i
\(299\) 2.00000 3.46410i 0.115663 0.200334i
\(300\) 8.00000 0.461880
\(301\) 0 0
\(302\) −4.00000 −0.230174
\(303\) 1.00000 1.73205i 0.0574485 0.0995037i
\(304\) 0 0
\(305\) −6.00000 10.3923i −0.343559 0.595062i
\(306\) 4.00000 6.92820i 0.228665 0.396059i
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 7.00000 12.1244i 0.397573 0.688617i
\(311\) −6.00000 10.3923i −0.340229 0.589294i 0.644246 0.764818i \(-0.277171\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) −20.0000 −1.12509
\(317\) −6.50000 + 11.2583i −0.365076 + 0.632331i −0.988788 0.149323i \(-0.952290\pi\)
0.623712 + 0.781654i \(0.285624\pi\)
\(318\) 6.00000 + 10.3923i 0.336463 + 0.582772i
\(319\) 0 0
\(320\) 4.00000 6.92820i 0.223607 0.387298i
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 + 1.73205i −0.0555556 + 0.0962250i
\(325\) 8.00000 + 13.8564i 0.443760 + 0.768615i
\(326\) 4.00000 + 6.92820i 0.221540 + 0.383718i
\(327\) 5.00000 8.66025i 0.276501 0.478913i
\(328\) 0 0
\(329\) 0 0
\(330\) 2.00000 0.110096
\(331\) −3.50000 + 6.06218i −0.192377 + 0.333207i −0.946038 0.324057i \(-0.894953\pi\)
0.753660 + 0.657264i \(0.228286\pi\)
\(332\) 6.00000 + 10.3923i 0.329293 + 0.570352i
\(333\) 3.00000 + 5.19615i 0.164399 + 0.284747i
\(334\) −12.0000 + 20.7846i −0.656611 + 1.13728i
\(335\) −7.00000 −0.382451
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 3.00000 5.19615i 0.163178 0.282633i
\(339\) 4.50000 + 7.79423i 0.244406 + 0.423324i
\(340\) 2.00000 + 3.46410i 0.108465 + 0.187867i
\(341\) −3.50000 + 6.06218i −0.189536 + 0.328285i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.500000 + 0.866025i −0.0269191 + 0.0466252i
\(346\) −6.00000 10.3923i −0.322562 0.558694i
\(347\) −14.0000 24.2487i −0.751559 1.30174i −0.947067 0.321037i \(-0.895969\pi\)
0.195507 0.980702i \(-0.437365\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 20.0000 1.06752
\(352\) −4.00000 + 6.92820i −0.213201 + 0.369274i
\(353\) 10.5000 + 18.1865i 0.558859 + 0.967972i 0.997592 + 0.0693543i \(0.0220939\pi\)
−0.438733 + 0.898617i \(0.644573\pi\)
\(354\) −5.00000 8.66025i −0.265747 0.460287i
\(355\) 1.50000 2.59808i 0.0796117 0.137892i
\(356\) 30.0000 1.59000
\(357\) 0 0
\(358\) 30.0000 1.58555
\(359\) 10.0000 17.3205i 0.527780 0.914141i −0.471696 0.881761i \(-0.656358\pi\)
0.999476 0.0323801i \(-0.0103087\pi\)
\(360\) 0 0
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) 7.00000 12.1244i 0.367912 0.637242i
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) −12.0000 + 20.7846i −0.627250 + 1.08643i
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) −8.00000 + 13.8564i −0.416463 + 0.721336i
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) −14.0000 −0.725866
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) −4.50000 7.79423i −0.232379 0.402492i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.00000 −0.256833 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(380\) 0 0
\(381\) 4.00000 + 6.92820i 0.204926 + 0.354943i
\(382\) 17.0000 + 29.4449i 0.869796 + 1.50653i
\(383\) 0.500000 0.866025i 0.0255488 0.0442518i −0.852968 0.521963i \(-0.825200\pi\)
0.878517 + 0.477711i \(0.158533\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8.00000 −0.407189
\(387\) −6.00000 + 10.3923i −0.304997 + 0.528271i
\(388\) 7.00000 + 12.1244i 0.355371 + 0.615521i
\(389\) 7.50000 + 12.9904i 0.380265 + 0.658638i 0.991100 0.133120i \(-0.0424994\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(390\) −4.00000 + 6.92820i −0.202548 + 0.350823i
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) −2.00000 + 3.46410i −0.100759 + 0.174519i
\(395\) 5.00000 + 8.66025i 0.251577 + 0.435745i
\(396\) 2.00000 + 3.46410i 0.100504 + 0.174078i
\(397\) 1.00000 1.73205i 0.0501886 0.0869291i −0.839840 0.542834i \(-0.817351\pi\)
0.890028 + 0.455905i \(0.150684\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) −1.00000 + 1.73205i −0.0499376 + 0.0864945i −0.889914 0.456129i \(-0.849236\pi\)
0.839976 + 0.542623i \(0.182569\pi\)
\(402\) 7.00000 + 12.1244i 0.349128 + 0.604708i
\(403\) −14.0000 24.2487i −0.697390 1.20791i
\(404\) −2.00000 + 3.46410i −0.0995037 + 0.172345i
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 3.00000 0.148704
\(408\) 0 0
\(409\) 15.0000 + 25.9808i 0.741702 + 1.28467i 0.951720 + 0.306968i \(0.0993146\pi\)
−0.210017 + 0.977698i \(0.567352\pi\)
\(410\) −8.00000 13.8564i −0.395092 0.684319i
\(411\) −3.50000 + 6.06218i −0.172642 + 0.299025i
\(412\) −32.0000 −1.57653
\(413\) 0 0
\(414\) −4.00000 −0.196589
\(415\) 3.00000 5.19615i 0.147264 0.255069i
\(416\) −16.0000 27.7128i −0.784465 1.35873i
\(417\) 5.00000 + 8.66025i 0.244851 + 0.424094i
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 12.0000 20.7846i 0.584151 1.01178i
\(423\) 8.00000 + 13.8564i 0.388973 + 0.673722i
\(424\) 0 0
\(425\) −4.00000 + 6.92820i −0.194029 + 0.336067i
\(426\) −6.00000 −0.290701
\(427\) 0 0
\(428\) 36.0000 1.74013
\(429\) 2.00000 3.46410i 0.0965609 0.167248i
\(430\) −6.00000 10.3923i −0.289346 0.501161i
\(431\) 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 10.0000 17.3205i 0.481125 0.833333i
\(433\) −11.0000 −0.528626 −0.264313 0.964437i \(-0.585145\pi\)
−0.264313 + 0.964437i \(0.585145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.0000 + 17.3205i −0.478913 + 0.829502i
\(437\) 0 0
\(438\) −4.00000 6.92820i −0.191127 0.331042i
\(439\) −20.0000 + 34.6410i −0.954548 + 1.65333i −0.219149 + 0.975691i \(0.570328\pi\)
−0.735399 + 0.677634i \(0.763005\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 16.0000 0.761042
\(443\) 5.50000 9.52628i 0.261313 0.452607i −0.705278 0.708931i \(-0.749178\pi\)
0.966591 + 0.256323i \(0.0825112\pi\)
\(444\) 3.00000 + 5.19615i 0.142374 + 0.246598i
\(445\) −7.50000 12.9904i −0.355534 0.615803i
\(446\) 19.0000 32.9090i 0.899676 1.55828i
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) 35.0000 1.65175 0.825876 0.563852i \(-0.190681\pi\)
0.825876 + 0.563852i \(0.190681\pi\)
\(450\) 8.00000 13.8564i 0.377124 0.653197i
\(451\) 4.00000 + 6.92820i 0.188353 + 0.326236i
\(452\) −9.00000 15.5885i −0.423324 0.733219i
\(453\) 1.00000 1.73205i 0.0469841 0.0813788i
\(454\) −36.0000 −1.68956
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000 10.3923i 0.280668 0.486132i −0.690881 0.722968i \(-0.742777\pi\)
0.971549 + 0.236837i \(0.0761106\pi\)
\(458\) 15.0000 + 25.9808i 0.700904 + 1.21400i
\(459\) 5.00000 + 8.66025i 0.233380 + 0.404226i
\(460\) 1.00000 1.73205i 0.0466252 0.0807573i
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) −11.0000 −0.511213 −0.255607 0.966781i \(-0.582275\pi\)
−0.255607 + 0.966781i \(0.582275\pi\)
\(464\) 0 0
\(465\) 3.50000 + 6.06218i 0.162309 + 0.281127i
\(466\) 24.0000 + 41.5692i 1.11178 + 1.92566i
\(467\) 13.5000 23.3827i 0.624705 1.08202i −0.363892 0.931441i \(-0.618552\pi\)
0.988598 0.150581i \(-0.0481143\pi\)
\(468\) −16.0000 −0.739600
\(469\) 0 0
\(470\) −16.0000 −0.738025
\(471\) −3.50000 + 6.06218i −0.161271 + 0.279330i
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 10.0000 17.3205i 0.459315 0.795557i
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) −30.0000 + 51.9615i −1.37217 + 2.37666i
\(479\) −10.0000 17.3205i −0.456912 0.791394i 0.541884 0.840453i \(-0.317711\pi\)
−0.998796 + 0.0490589i \(0.984378\pi\)
\(480\) 4.00000 + 6.92820i 0.182574 + 0.316228i
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) 16.0000 0.728780
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) 3.50000 6.06218i 0.158927 0.275269i
\(486\) −16.0000 27.7128i −0.725775 1.25708i
\(487\) −11.5000 19.9186i −0.521115 0.902597i −0.999698 0.0245553i \(-0.992183\pi\)
0.478584 0.878042i \(-0.341150\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) −8.00000 + 13.8564i −0.360668 + 0.624695i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 1.73205i 0.0449467 0.0778499i
\(496\) −28.0000 −1.25724
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) −10.0000 + 17.3205i −0.447661 + 0.775372i −0.998233 0.0594153i \(-0.981076\pi\)
0.550572 + 0.834788i \(0.314410\pi\)
\(500\) 9.00000 + 15.5885i 0.402492 + 0.697137i
\(501\) −6.00000 10.3923i −0.268060 0.464294i
\(502\) −23.0000 + 39.8372i −1.02654 + 1.77802i
\(503\) −26.0000 −1.15928 −0.579641 0.814872i \(-0.696807\pi\)
−0.579641 + 0.814872i \(0.696807\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) −1.00000 + 1.73205i −0.0444554 + 0.0769991i
\(507\) 1.50000 + 2.59808i 0.0666173 + 0.115385i
\(508\) −8.00000 13.8564i −0.354943 0.614779i
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) −4.00000 −0.177123
\(511\) 0 0
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) −2.00000 3.46410i −0.0882162 0.152795i
\(515\) 8.00000 + 13.8564i 0.352522 + 0.610586i
\(516\) −6.00000 + 10.3923i −0.264135 + 0.457496i
\(517\) 8.00000 0.351840
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 1.50000 + 2.59808i 0.0657162 + 0.113824i 0.897011 0.442007i \(-0.145733\pi\)
−0.831295 + 0.555831i \(0.812400\pi\)
\(522\) 0 0
\(523\) 8.00000 13.8564i 0.349816 0.605898i −0.636401 0.771358i \(-0.719578\pi\)
0.986216 + 0.165460i \(0.0529109\pi\)
\(524\) −36.0000 −1.57267
\(525\) 0 0
\(526\) −28.0000 −1.22086
\(527\) 7.00000 12.1244i 0.304925 0.528145i
\(528\) −2.00000 3.46410i −0.0870388 0.150756i
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) −6.00000 + 10.3923i −0.260623 + 0.451413i
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) −32.0000 −1.38607
\(534\) −15.0000 + 25.9808i −0.649113 + 1.12430i
\(535\) −9.00000 15.5885i −0.389104 0.673948i
\(536\) 0 0
\(537\) −7.50000 + 12.9904i −0.323649 + 0.560576i
\(538\) −20.0000 −0.862261
\(539\) 0 0
\(540\) 10.0000 0.430331
\(541\) 4.00000 6.92820i 0.171973 0.297867i −0.767136 0.641484i \(-0.778319\pi\)
0.939110 + 0.343617i \(0.111652\pi\)
\(542\) −28.0000 48.4974i −1.20270 2.08314i
\(543\) 3.50000 + 6.06218i 0.150199 + 0.260153i
\(544\) 8.00000 13.8564i 0.342997 0.594089i
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 7.00000 12.1244i 0.299025 0.517927i
\(549\) 12.0000 + 20.7846i 0.512148 + 0.887066i
\(550\) −4.00000 6.92820i −0.170561 0.295420i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 4.00000 0.169944
\(555\) 1.50000 2.59808i 0.0636715 0.110282i
\(556\) −10.0000 17.3205i −0.424094 0.734553i
\(557\) 1.00000 + 1.73205i 0.0423714 + 0.0733893i 0.886433 0.462856i \(-0.153175\pi\)
−0.844062 + 0.536246i \(0.819842\pi\)
\(558\) −14.0000 + 24.2487i −0.592667 + 1.02653i
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 2.00000 0.0844401
\(562\) −18.0000 + 31.1769i −0.759284 + 1.31512i
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) 8.00000 + 13.8564i 0.336861 + 0.583460i
\(565\) −4.50000 + 7.79423i −0.189316 + 0.327906i
\(566\) −8.00000 −0.336265
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 14.0000 + 24.2487i 0.585882 + 1.01478i 0.994765 + 0.102190i \(0.0325850\pi\)
−0.408883 + 0.912587i \(0.634082\pi\)
\(572\) −4.00000 + 6.92820i −0.167248 + 0.289683i
\(573\) −17.0000 −0.710185
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) −8.00000 + 13.8564i −0.333333 + 0.577350i
\(577\) −16.5000 28.5788i −0.686904 1.18975i −0.972834 0.231502i \(-0.925636\pi\)
0.285930 0.958250i \(-0.407697\pi\)
\(578\) −13.0000 22.5167i −0.540729 0.936570i
\(579\) 2.00000 3.46410i 0.0831172 0.143963i
\(580\) 0 0
\(581\) 0 0
\(582\) −14.0000 −0.580319
\(583\) 3.00000 5.19615i 0.124247 0.215203i
\(584\) 0 0
\(585\) 4.00000 + 6.92820i 0.165380 + 0.286446i
\(586\) 24.0000 41.5692i 0.991431 1.71721i
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 5.00000 8.66025i 0.205847 0.356537i
\(591\) −1.00000 1.73205i −0.0411345 0.0712470i
\(592\) 6.00000 + 10.3923i 0.246598 + 0.427121i
\(593\) −22.0000 + 38.1051i −0.903432 + 1.56479i −0.0804231 + 0.996761i \(0.525627\pi\)
−0.823009 + 0.568029i \(0.807706\pi\)
\(594\) −10.0000 −0.410305
\(595\) 0 0
\(596\) −20.0000 −0.819232
\(597\) 0 0
\(598\) −4.00000 6.92820i −0.163572 0.283315i
\(599\) −20.0000 34.6410i −0.817178 1.41539i −0.907754 0.419504i \(-0.862204\pi\)
0.0905757 0.995890i \(-0.471129\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 14.0000 0.570124
\(604\) −2.00000 + 3.46410i −0.0813788 + 0.140952i
\(605\) −0.500000 0.866025i −0.0203279 0.0352089i
\(606\) −2.00000 3.46410i −0.0812444 0.140720i
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −24.0000 −0.971732
\(611\) −16.0000 + 27.7128i −0.647291 + 1.12114i
\(612\) −4.00000 6.92820i −0.161690 0.280056i
\(613\) 8.00000 + 13.8564i 0.323117 + 0.559655i 0.981129 0.193352i \(-0.0619359\pi\)
−0.658012 + 0.753007i \(0.728603\pi\)
\(614\) 8.00000 13.8564i 0.322854 0.559199i
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 16.0000 27.7128i 0.643614 1.11477i
\(619\) 12.5000 + 21.6506i 0.502417 + 0.870212i 0.999996 + 0.00279365i \(0.000889247\pi\)
−0.497579 + 0.867419i \(0.665777\pi\)
\(620\) −7.00000 12.1244i −0.281127 0.486926i
\(621\) 2.50000 4.33013i 0.100322 0.173762i
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 16.0000 0.640513
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −1.00000 1.73205i −0.0399680 0.0692267i
\(627\) 0 0
\(628\) 7.00000 12.1244i 0.279330 0.483814i
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) 6.00000 + 10.3923i 0.238479 + 0.413057i
\(634\) 13.0000 + 22.5167i 0.516296 + 0.894251i
\(635\) −4.00000 + 6.92820i −0.158735 + 0.274937i
\(636\) 12.0000 0.475831
\(637\) 0 0
\(638\) 0 0
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) −18.0000 + 31.1769i −0.710403 + 1.23045i
\(643\) 29.0000 1.14365 0.571824 0.820376i \(-0.306236\pi\)
0.571824 + 0.820376i \(0.306236\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) 3.50000 + 6.06218i 0.137599 + 0.238329i 0.926587 0.376080i \(-0.122728\pi\)
−0.788988 + 0.614408i \(0.789395\pi\)
\(648\) 0 0
\(649\) −2.50000 + 4.33013i −0.0981336 + 0.169972i
\(650\) 32.0000 1.25514
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) 20.5000 35.5070i 0.802227 1.38950i −0.115920 0.993259i \(-0.536982\pi\)
0.918147 0.396239i \(-0.129685\pi\)
\(654\) −10.0000 17.3205i −0.391031 0.677285i
\(655\) 9.00000 + 15.5885i 0.351659 + 0.609091i
\(656\) −16.0000 + 27.7128i −0.624695 + 1.08200i
\(657\) −8.00000 −0.312110
\(658\) 0 0
\(659\) 10.0000 0.389545 0.194772 0.980848i \(-0.437603\pi\)
0.194772 + 0.980848i \(0.437603\pi\)
\(660\) 1.00000 1.73205i 0.0389249 0.0674200i
\(661\) −18.5000 32.0429i −0.719567 1.24633i −0.961172 0.275951i \(-0.911007\pi\)
0.241605 0.970375i \(-0.422326\pi\)
\(662\) 7.00000 + 12.1244i 0.272063 + 0.471226i
\(663\) −4.00000 + 6.92820i −0.155347 + 0.269069i
\(664\) 0 0
\(665\) 0 0
\(666\) 12.0000 0.464991
\(667\) 0 0
\(668\) 12.0000 + 20.7846i 0.464294 + 0.804181i
\(669\) 9.50000 + 16.4545i 0.367291 + 0.636167i
\(670\) −7.00000 + 12.1244i −0.270434 + 0.468405i
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) −22.0000 + 38.1051i −0.847408 + 1.46775i
\(675\) 10.0000 + 17.3205i 0.384900 + 0.666667i
\(676\) −3.00000 5.19615i −0.115385 0.199852i
\(677\) 21.0000 36.3731i 0.807096 1.39793i −0.107772 0.994176i \(-0.534372\pi\)
0.914867 0.403755i \(-0.132295\pi\)
\(678\) 18.0000 0.691286
\(679\) 0 0
\(680\) 0 0
\(681\) 9.00000 15.5885i 0.344881 0.597351i
\(682\) 7.00000 + 12.1244i 0.268044 + 0.464266i
\(683\) 8.00000 + 13.8564i 0.306111 + 0.530201i 0.977508 0.210898i \(-0.0676386\pi\)
−0.671397 + 0.741098i \(0.734305\pi\)
\(684\) 0 0
\(685\) −7.00000 −0.267456
\(686\) 0 0
\(687\) −15.0000 −0.572286
\(688\) −12.0000 + 20.7846i −0.457496 + 0.792406i
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 1.00000 + 1.73205i 0.0380693 + 0.0659380i
\(691\) −8.50000 + 14.7224i −0.323355 + 0.560068i −0.981178 0.193105i \(-0.938144\pi\)
0.657823 + 0.753173i \(0.271478\pi\)
\(692\) −12.0000 −0.456172
\(693\) 0 0
\(694\) −56.0000 −2.12573
\(695\) −5.00000 + 8.66025i −0.189661 + 0.328502i
\(696\) 0 0
\(697\) −8.00000 13.8564i −0.303022 0.524849i
\(698\) 30.0000 51.9615i 1.13552 1.96677i
\(699\) −24.0000 −0.907763
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 20.0000 34.6410i 0.754851 1.30744i
\(703\) 0 0
\(704\) 4.00000 + 6.92820i 0.150756 + 0.261116i
\(705\) 4.00000 6.92820i 0.150649 0.260931i
\(706\) 42.0000 1.58069
\(707\) 0 0
\(708\) −10.0000 −0.375823
\(709\) 12.5000 21.6506i 0.469447 0.813107i −0.529943 0.848034i \(-0.677787\pi\)
0.999390 + 0.0349269i \(0.0111198\pi\)
\(710\) −3.00000 5.19615i −0.112588 0.195008i
\(711\) −10.0000 17.3205i −0.375029 0.649570i
\(712\) 0 0
\(713\) −7.00000 −0.262152
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 15.0000 25.9808i 0.560576 0.970947i
\(717\) −15.0000 25.9808i −0.560185 0.970269i
\(718\) −20.0000 34.6410i −0.746393 1.29279i
\(719\) −7.50000 + 12.9904i −0.279703 + 0.484459i −0.971311 0.237814i \(-0.923569\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(720\) 8.00000 0.298142
\(721\) 0 0
\(722\) 38.0000 1.41421
\(723\) −4.00000 + 6.92820i −0.148762 + 0.257663i
\(724\) −7.00000 12.1244i −0.260153 0.450598i
\(725\) 0 0
\(726\) −1.00000 + 1.73205i −0.0371135 + 0.0642824i
\(727\) 3.00000 0.111264 0.0556319 0.998451i \(-0.482283\pi\)
0.0556319 + 0.998451i \(0.482283\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 4.00000 6.92820i 0.148047 0.256424i
\(731\) −6.00000 10.3923i −0.221918 0.384373i
\(732\) 12.0000 + 20.7846i 0.443533 + 0.768221i
\(733\) 18.0000 31.1769i 0.664845 1.15155i −0.314482 0.949263i \(-0.601831\pi\)
0.979327 0.202282i \(-0.0648358\pi\)
\(734\) 34.0000 1.25496
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 3.50000 6.06218i 0.128924 0.223303i
\(738\) 16.0000 + 27.7128i 0.588968 + 1.02012i
\(739\) −25.0000 43.3013i −0.919640 1.59286i −0.799962 0.600050i \(-0.795147\pi\)
−0.119677 0.992813i \(-0.538186\pi\)
\(740\) −3.00000 + 5.19615i −0.110282 + 0.191014i
\(741\) 0 0
\(742\) 0 0
\(743\) 4.00000 0.146746 0.0733729 0.997305i \(-0.476624\pi\)
0.0733729 + 0.997305i \(0.476624\pi\)
\(744\) 0 0
\(745\) 5.00000 + 8.66025i 0.183186 + 0.317287i
\(746\) −26.0000 45.0333i −0.951928 1.64879i
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) −18.0000 −0.657267
\(751\) 11.5000 19.9186i 0.419641 0.726839i −0.576262 0.817265i \(-0.695489\pi\)
0.995903 + 0.0904254i \(0.0288227\pi\)
\(752\) 16.0000 + 27.7128i 0.583460 + 1.01058i
\(753\) −11.5000 19.9186i −0.419083 0.725874i
\(754\) 0 0
\(755\) 2.00000 0.0727875
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −5.00000 + 8.66025i −0.181608 + 0.314555i
\(759\) −0.500000 0.866025i −0.0181489 0.0314347i
\(760\) 0 0
\(761\) −6.00000 + 10.3923i −0.217500 + 0.376721i −0.954043 0.299670i \(-0.903123\pi\)
0.736543 + 0.676391i \(0.236457\pi\)
\(762\) 16.0000 0.579619
\(763\) 0 0
\(764\) 34.0000 1.23008
\(765\) −2.00000 + 3.46410i −0.0723102 + 0.125245i
\(766\) −1.00000 1.73205i −0.0361315 0.0625815i
\(767\) −10.0000 17.3205i −0.361079 0.625407i
\(768\) 8.00000 13.8564i 0.288675 0.500000i
\(769\) 20.0000 0.721218 0.360609 0.932717i \(-0.382569\pi\)
0.360609 + 0.932717i \(0.382569\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) −4.00000 + 6.92820i −0.143963 + 0.249351i
\(773\) 3.00000 + 5.19615i 0.107903 + 0.186893i 0.914920 0.403634i \(-0.132253\pi\)
−0.807018 + 0.590527i \(0.798920\pi\)
\(774\) 12.0000 + 20.7846i 0.431331 + 0.747087i
\(775\) 14.0000 24.2487i 0.502895 0.871039i
\(776\) 0 0
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) 0 0
\(780\) 4.00000 + 6.92820i 0.143223 + 0.248069i
\(781\) 1.50000 + 2.59808i 0.0536742 + 0.0929665i
\(782\) 2.00000 3.46410i 0.0715199 0.123876i
\(783\) 0 0
\(784\) 0 0
\(785\) −7.00000 −0.249841
\(786\) 18.0000 31.1769i 0.642039 1.11204i
\(787\) 16.0000 + 27.7128i 0.570338 + 0.987855i 0.996531 + 0.0832226i \(0.0265213\pi\)
−0.426193 + 0.904632i \(0.640145\pi\)
\(788\) 2.00000 + 3.46410i 0.0712470 + 0.123404i
\(789\) 7.00000 12.1244i 0.249207 0.431638i
\(790\) 20.0000 0.711568
\(791\) 0 0
\(792\) 0 0
\(793\) −24.0000 + 41.5692i −0.852265 + 1.47617i
\(794\) −2.00000 3.46410i −0.0709773 0.122936i
\(795\) −3.00000 5.19615i −0.106399 0.184289i
\(796\) 0 0
\(797\) 53.0000 1.87736 0.938678 0.344795i \(-0.112051\pi\)
0.938678 + 0.344795i \(0.112051\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 16.0000 27.7128i 0.565685 0.979796i
\(801\) 15.0000 + 25.9808i 0.529999 + 0.917985i
\(802\) 2.00000 + 3.46410i 0.0706225 + 0.122322i
\(803\) −2.00000 + 3.46410i −0.0705785 + 0.122245i
\(804\) 14.0000 0.493742
\(805\) 0 0
\(806\) −56.0000 −1.97252
\(807\) 5.00000 8.66025i 0.176008 0.304855i
\(808\) 0 0
\(809\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(810\) 1.00000 1.73205i 0.0351364 0.0608581i
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 28.0000 0.982003
\(814\) 3.00000 5.19615i 0.105150 0.182125i
\(815\) −2.00000 3.46410i −0.0700569 0.121342i
\(816\) 4.00000 + 6.92820i 0.140028 + 0.242536i
\(817\) 0 0
\(818\) 60.0000 2.09785
\(819\) 0 0
\(820\) −16.0000 −0.558744
\(821\) −11.0000 + 19.0526i −0.383903 + 0.664939i −0.991616 0.129217i \(-0.958754\pi\)
0.607714 + 0.794156i \(0.292087\pi\)
\(822\) 7.00000 + 12.1244i 0.244153 + 0.422885i
\(823\) −19.5000 33.7750i −0.679727 1.17732i −0.975063 0.221929i \(-0.928765\pi\)
0.295336 0.955394i \(-0.404569\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) −52.0000 −1.80822 −0.904109 0.427303i \(-0.859464\pi\)
−0.904109 + 0.427303i \(0.859464\pi\)
\(828\) −2.00000 + 3.46410i −0.0695048 + 0.120386i
\(829\) −12.5000 21.6506i −0.434143 0.751958i 0.563082 0.826401i \(-0.309615\pi\)
−0.997225 + 0.0744432i \(0.976282\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) −1.00000 + 1.73205i −0.0346896 + 0.0600842i
\(832\) −32.0000 −1.10940
\(833\) 0 0
\(834\) 20.0000 0.692543
\(835\) 6.00000 10.3923i 0.207639 0.359641i
\(836\) 0 0
\(837\) −17.5000 30.3109i −0.604888 1.04770i
\(838\) 20.0000 34.6410i 0.690889 1.19665i
\(839\) −5.00000 −0.172619 −0.0863096 0.996268i \(-0.527507\pi\)
−0.0863096 + 0.996268i \(0.527507\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 22.0000 38.1051i 0.758170 1.31319i
\(843\) −9.00000 15.5885i −0.309976 0.536895i
\(844\) −12.0000 20.7846i −0.413057 0.715436i
\(845\) −1.50000 + 2.59808i −0.0516016 + 0.0893765i
\(846\) 32.0000 1.10018
\(847\) 0 0
\(848\) 24.0000 0.824163
\(849\) 2.00000 3.46410i 0.0686398 0.118888i
\(850\) 8.00000 + 13.8564i 0.274398 + 0.475271i
\(851\) 1.50000 + 2.59808i 0.0514193 + 0.0890609i
\(852\) −3.00000 + 5.19615i −0.102778 + 0.178017i
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.00000 6.92820i −0.136637 0.236663i 0.789584 0.613642i \(-0.210296\pi\)
−0.926222 + 0.376979i \(0.876963\pi\)
\(858\) −4.00000 6.92820i −0.136558 0.236525i
\(859\) 7.50000 12.9904i 0.255897 0.443226i −0.709242 0.704965i \(-0.750963\pi\)
0.965139 + 0.261739i \(0.0842960\pi\)
\(860\) −12.0000 −0.409197
\(861\) 0 0
\(862\) 36.0000 1.22616
\(863\) −12.0000 + 20.7846i −0.408485 + 0.707516i −0.994720 0.102624i \(-0.967276\pi\)
0.586235 + 0.810141i \(0.300609\pi\)
\(864\) −20.0000 34.6410i −0.680414 1.17851i
\(865\) 3.00000 + 5.19615i 0.102003 + 0.176674i
\(866\) −11.0000 + 19.0526i −0.373795 + 0.647432i
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −10.0000 −0.339227
\(870\) 0 0
\(871\) 14.0000 + 24.2487i 0.474372 + 0.821636i
\(872\) 0 0
\(873\) −7.00000 + 12.1244i −0.236914 + 0.410347i
\(874\) 0 0
\(875\) 0 0
\(876\) −8.00000 −0.270295
\(877\) 6.00000 10.3923i 0.202606 0.350923i −0.746762 0.665092i \(-0.768392\pi\)
0.949367 + 0.314169i \(0.101726\pi\)
\(878\) 40.0000 + 69.2820i 1.34993 + 2.33816i
\(879\) 12.0000 + 20.7846i 0.404750 + 0.701047i
\(880\) 2.00000 3.46410i 0.0674200 0.116775i
\(881\) −43.0000 −1.44871 −0.724353 0.689429i \(-0.757862\pi\)
−0.724353 + 0.689429i \(0.757862\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 8.00000 13.8564i 0.269069 0.466041i
\(885\) 2.50000 + 4.33013i 0.0840366 + 0.145556i
\(886\) −11.0000 19.0526i −0.369552 0.640083i
\(887\) 11.0000 19.0526i 0.369344 0.639722i −0.620119 0.784508i \(-0.712916\pi\)
0.989463 + 0.144785i \(0.0462491\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −30.0000 −1.00560
\(891\) −0.500000 + 0.866025i −0.0167506 + 0.0290129i
\(892\) −19.0000 32.9090i −0.636167 1.10187i
\(893\) 0 0
\(894\) 10.0000 17.3205i 0.334450 0.579284i
\(895\) −15.0000 −0.501395
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 35.0000 60.6218i 1.16797 2.02297i
\(899\) 0 0
\(900\) −8.00000 13.8564i −0.266667 0.461880i
\(901\) −6.00000 + 10.3923i −0.199889 + 0.346218i
\(902\) 16.0000 0.532742
\(903\) 0 0
\(904\) 0 0
\(905\) −3.50000 + 6.06218i −0.116344 + 0.201514i
\(906\) −2.00000 3.46410i −0.0664455 0.115087i
\(907\) 6.00000 + 10.3923i 0.199227 + 0.345071i 0.948278 0.317441i \(-0.102824\pi\)
−0.749051 + 0.662512i \(0.769490\pi\)
\(908\) −18.0000 + 31.1769i −0.597351 + 1.03464i
\(909\) −4.00000 −0.132672
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 3.00000 + 5.19615i 0.0992855 + 0.171968i
\(914\) −12.0000 20.7846i −0.396925 0.687494i
\(915\) 6.00000 10.3923i 0.198354 0.343559i
\(916\) 30.0000 0.991228
\(917\) 0 0
\(918\) 20.0000 0.660098
\(919\) −5.00000 + 8.66025i −0.164935 + 0.285675i −0.936632 0.350315i \(-0.886075\pi\)
0.771697 + 0.635990i \(0.219408\pi\)
\(920\) 0 0
\(921\) 4.00000 + 6.92820i 0.131804 + 0.228292i
\(922\) 12.0000 20.7846i 0.395199 0.684505i
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) −11.0000 + 19.0526i −0.361482 + 0.626106i
\(927\) −16.0000 27.7128i −0.525509 0.910208i
\(928\) 0 0
\(929\) 15.0000 25.9808i 0.492134 0.852401i −0.507825 0.861460i \(-0.669550\pi\)
0.999959 + 0.00905914i \(0.00288365\pi\)
\(930\) 14.0000 0.459078
\(931\) 0 0
\(932\) 48.0000 1.57229
\(933\) 6.00000 10.3923i 0.196431 0.340229i
\(934\) −27.0000 46.7654i −0.883467 1.53021i
\(935\) 1.00000 + 1.73205i 0.0327035 + 0.0566441i
\(936\) 0 0
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) 0 0
\(939\) 1.00000 0.0326338
\(940\) −8.00000 + 13.8564i −0.260931 + 0.451946i
\(941\) −21.0000 36.3731i −0.684580 1.18573i −0.973568 0.228395i \(-0.926652\pi\)
0.288988 0.957333i \(-0.406681\pi\)
\(942\) 7.00000 + 12.1244i 0.228072 + 0.395033i
\(943\) −4.00000 + 6.92820i −0.130258 + 0.225613i
\(944\) −20.0000 −0.650945
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 13.5000 23.3827i 0.438691 0.759835i −0.558898 0.829237i \(-0.688776\pi\)
0.997589 + 0.0694014i \(0.0221089\pi\)
\(948\) −10.0000 17.3205i −0.324785 0.562544i
\(949\) −8.00000 13.8564i −0.259691 0.449798i
\(950\) 0 0
\(951\) −13.0000 −0.421554
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 12.0000 20.7846i 0.388514 0.672927i
\(955\) −8.50000 14.7224i −0.275054 0.476407i
\(956\) 30.0000 + 51.9615i 0.970269 + 1.68056i
\(957\) 0 0
\(958\) −40.0000 −1.29234
\(959\) 0 0
\(960\) 8.00000 0.258199
\(961\) −9.00000 + 15.5885i −0.290323 + 0.502853i
\(962\) 12.0000 + 20.7846i 0.386896 + 0.670123i
\(963\) 18.0000 + 31.1769i 0.580042 + 1.00466i
\(964\) 8.00000 13.8564i 0.257663 0.446285i
\(965\) 4.00000 0.128765
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −7.00000 12.1244i −0.224756 0.389290i
\(971\) −23.5000 + 40.7032i −0.754151 + 1.30623i 0.191644 + 0.981464i \(0.438618\pi\)
−0.945795 + 0.324763i \(0.894715\pi\)
\(972\) −32.0000 −1.02640
\(973\) 0 0
\(974\) −46.0000 −1.47394
\(975\) −8.00000 + 13.8564i −0.256205 + 0.443760i
\(976\) 24.0000 + 41.5692i 0.768221 + 1.33060i
\(977\) 13.5000 + 23.3827i 0.431903 + 0.748078i 0.997037 0.0769208i \(-0.0245089\pi\)
−0.565134 + 0.824999i \(0.691176\pi\)
\(978\) −4.00000 + 6.92820i −0.127906 + 0.221540i
\(979\) 15.0000 0.479402
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) −8.00000 + 13.8564i −0.255290 + 0.442176i
\(983\) −19.5000 33.7750i −0.621953 1.07725i −0.989122 0.147100i \(-0.953006\pi\)
0.367168 0.930155i \(-0.380327\pi\)
\(984\) 0 0
\(985\) 1.00000 1.73205i 0.0318626 0.0551877i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.00000 + 5.19615i −0.0953945 + 0.165228i
\(990\) −2.00000 3.46410i −0.0635642 0.110096i
\(991\) 4.00000 + 6.92820i 0.127064 + 0.220082i 0.922538 0.385906i \(-0.126111\pi\)
−0.795474 + 0.605988i \(0.792778\pi\)
\(992\) −28.0000 + 48.4974i −0.889001 + 1.53979i
\(993\) −7.00000 −0.222138
\(994\) 0 0
\(995\) 0 0
\(996\) −6.00000 + 10.3923i −0.190117 + 0.329293i
\(997\) −19.0000 32.9090i −0.601736 1.04224i −0.992558 0.121771i \(-0.961143\pi\)
0.390822 0.920466i \(-0.372191\pi\)
\(998\) 20.0000 + 34.6410i 0.633089 + 1.09654i
\(999\) −7.50000 + 12.9904i −0.237289 + 0.410997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.e.h.177.1 2
7.2 even 3 11.2.a.a.1.1 1
7.3 odd 6 539.2.e.g.67.1 2
7.4 even 3 inner 539.2.e.h.67.1 2
7.5 odd 6 539.2.a.a.1.1 1
7.6 odd 2 539.2.e.g.177.1 2
21.2 odd 6 99.2.a.d.1.1 1
21.5 even 6 4851.2.a.t.1.1 1
28.19 even 6 8624.2.a.j.1.1 1
28.23 odd 6 176.2.a.b.1.1 1
35.2 odd 12 275.2.b.a.199.1 2
35.9 even 6 275.2.a.b.1.1 1
35.23 odd 12 275.2.b.a.199.2 2
56.37 even 6 704.2.a.h.1.1 1
56.51 odd 6 704.2.a.c.1.1 1
63.2 odd 6 891.2.e.b.595.1 2
63.16 even 3 891.2.e.k.595.1 2
63.23 odd 6 891.2.e.b.298.1 2
63.58 even 3 891.2.e.k.298.1 2
77.2 odd 30 121.2.c.a.81.1 4
77.9 even 15 121.2.c.e.81.1 4
77.16 even 15 121.2.c.e.3.1 4
77.30 odd 30 121.2.c.a.9.1 4
77.37 even 15 121.2.c.e.27.1 4
77.51 odd 30 121.2.c.a.27.1 4
77.54 even 6 5929.2.a.h.1.1 1
77.58 even 15 121.2.c.e.9.1 4
77.65 odd 6 121.2.a.d.1.1 1
77.72 odd 30 121.2.c.a.3.1 4
84.23 even 6 1584.2.a.g.1.1 1
91.51 even 6 1859.2.a.b.1.1 1
105.2 even 12 2475.2.c.a.199.2 2
105.23 even 12 2475.2.c.a.199.1 2
105.44 odd 6 2475.2.a.a.1.1 1
112.37 even 12 2816.2.c.j.1409.2 2
112.51 odd 12 2816.2.c.f.1409.2 2
112.93 even 12 2816.2.c.j.1409.1 2
112.107 odd 12 2816.2.c.f.1409.1 2
119.16 even 6 3179.2.a.a.1.1 1
133.37 odd 6 3971.2.a.b.1.1 1
140.23 even 12 4400.2.b.h.4049.2 2
140.79 odd 6 4400.2.a.i.1.1 1
140.107 even 12 4400.2.b.h.4049.1 2
161.114 odd 6 5819.2.a.a.1.1 1
168.107 even 6 6336.2.a.bu.1.1 1
168.149 odd 6 6336.2.a.br.1.1 1
203.86 even 6 9251.2.a.d.1.1 1
231.65 even 6 1089.2.a.b.1.1 1
308.219 even 6 1936.2.a.i.1.1 1
385.219 odd 6 3025.2.a.a.1.1 1
616.219 even 6 7744.2.a.k.1.1 1
616.373 odd 6 7744.2.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.2.a.a.1.1 1 7.2 even 3
99.2.a.d.1.1 1 21.2 odd 6
121.2.a.d.1.1 1 77.65 odd 6
121.2.c.a.3.1 4 77.72 odd 30
121.2.c.a.9.1 4 77.30 odd 30
121.2.c.a.27.1 4 77.51 odd 30
121.2.c.a.81.1 4 77.2 odd 30
121.2.c.e.3.1 4 77.16 even 15
121.2.c.e.9.1 4 77.58 even 15
121.2.c.e.27.1 4 77.37 even 15
121.2.c.e.81.1 4 77.9 even 15
176.2.a.b.1.1 1 28.23 odd 6
275.2.a.b.1.1 1 35.9 even 6
275.2.b.a.199.1 2 35.2 odd 12
275.2.b.a.199.2 2 35.23 odd 12
539.2.a.a.1.1 1 7.5 odd 6
539.2.e.g.67.1 2 7.3 odd 6
539.2.e.g.177.1 2 7.6 odd 2
539.2.e.h.67.1 2 7.4 even 3 inner
539.2.e.h.177.1 2 1.1 even 1 trivial
704.2.a.c.1.1 1 56.51 odd 6
704.2.a.h.1.1 1 56.37 even 6
891.2.e.b.298.1 2 63.23 odd 6
891.2.e.b.595.1 2 63.2 odd 6
891.2.e.k.298.1 2 63.58 even 3
891.2.e.k.595.1 2 63.16 even 3
1089.2.a.b.1.1 1 231.65 even 6
1584.2.a.g.1.1 1 84.23 even 6
1859.2.a.b.1.1 1 91.51 even 6
1936.2.a.i.1.1 1 308.219 even 6
2475.2.a.a.1.1 1 105.44 odd 6
2475.2.c.a.199.1 2 105.23 even 12
2475.2.c.a.199.2 2 105.2 even 12
2816.2.c.f.1409.1 2 112.107 odd 12
2816.2.c.f.1409.2 2 112.51 odd 12
2816.2.c.j.1409.1 2 112.93 even 12
2816.2.c.j.1409.2 2 112.37 even 12
3025.2.a.a.1.1 1 385.219 odd 6
3179.2.a.a.1.1 1 119.16 even 6
3971.2.a.b.1.1 1 133.37 odd 6
4400.2.a.i.1.1 1 140.79 odd 6
4400.2.b.h.4049.1 2 140.107 even 12
4400.2.b.h.4049.2 2 140.23 even 12
4851.2.a.t.1.1 1 21.5 even 6
5819.2.a.a.1.1 1 161.114 odd 6
5929.2.a.h.1.1 1 77.54 even 6
6336.2.a.br.1.1 1 168.149 odd 6
6336.2.a.bu.1.1 1 168.107 even 6
7744.2.a.k.1.1 1 616.219 even 6
7744.2.a.x.1.1 1 616.373 odd 6
8624.2.a.j.1.1 1 28.19 even 6
9251.2.a.d.1.1 1 203.86 even 6