Properties

Label 539.2.e.b.67.1
Level $539$
Weight $2$
Character 539.67
Analytic conductor $4.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(67,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 539.67
Dual form 539.2.e.b.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.00000 - 1.73205i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{5} -2.00000 q^{6} -3.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.00000 + 1.73205i) q^{10} +(-0.500000 + 0.866025i) q^{11} +(-1.00000 - 1.73205i) q^{12} -4.00000 q^{13} -4.00000 q^{15} +(0.500000 + 0.866025i) q^{16} +(2.00000 - 3.46410i) q^{17} +(-0.500000 + 0.866025i) q^{18} -2.00000 q^{20} +1.00000 q^{22} +(2.00000 + 3.46410i) q^{23} +(-3.00000 + 5.19615i) q^{24} +(0.500000 - 0.866025i) q^{25} +(2.00000 + 3.46410i) q^{26} +4.00000 q^{27} -6.00000 q^{29} +(2.00000 + 3.46410i) q^{30} +(5.00000 - 8.66025i) q^{31} +(-2.50000 + 4.33013i) q^{32} +(1.00000 + 1.73205i) q^{33} -4.00000 q^{34} -1.00000 q^{36} +(3.00000 + 5.19615i) q^{37} +(-4.00000 + 6.92820i) q^{39} +(3.00000 + 5.19615i) q^{40} -4.00000 q^{41} +12.0000 q^{43} +(0.500000 + 0.866025i) q^{44} +(-1.00000 + 1.73205i) q^{45} +(2.00000 - 3.46410i) q^{46} +(-5.00000 - 8.66025i) q^{47} +2.00000 q^{48} -1.00000 q^{50} +(-4.00000 - 6.92820i) q^{51} +(-2.00000 + 3.46410i) q^{52} +(3.00000 - 5.19615i) q^{53} +(-2.00000 - 3.46410i) q^{54} +2.00000 q^{55} +(3.00000 + 5.19615i) q^{58} +(1.00000 - 1.73205i) q^{59} +(-2.00000 + 3.46410i) q^{60} -10.0000 q^{62} +7.00000 q^{64} +(4.00000 + 6.92820i) q^{65} +(1.00000 - 1.73205i) q^{66} +(-4.00000 + 6.92820i) q^{67} +(-2.00000 - 3.46410i) q^{68} +8.00000 q^{69} -12.0000 q^{71} +(1.50000 + 2.59808i) q^{72} +(-4.00000 + 6.92820i) q^{73} +(3.00000 - 5.19615i) q^{74} +(-1.00000 - 1.73205i) q^{75} +8.00000 q^{78} +(-4.00000 - 6.92820i) q^{79} +(1.00000 - 1.73205i) q^{80} +(5.50000 - 9.52628i) q^{81} +(2.00000 + 3.46410i) q^{82} -8.00000 q^{85} +(-6.00000 - 10.3923i) q^{86} +(-6.00000 + 10.3923i) q^{87} +(1.50000 - 2.59808i) q^{88} +(-3.00000 - 5.19615i) q^{89} +2.00000 q^{90} +4.00000 q^{92} +(-10.0000 - 17.3205i) q^{93} +(-5.00000 + 8.66025i) q^{94} +(5.00000 + 8.66025i) q^{96} +10.0000 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} + q^{4} - 2 q^{5} - 4 q^{6} - 6 q^{8} - q^{9} - 2 q^{10} - q^{11} - 2 q^{12} - 8 q^{13} - 8 q^{15} + q^{16} + 4 q^{17} - q^{18} - 4 q^{20} + 2 q^{22} + 4 q^{23} - 6 q^{24} + q^{25}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 1.00000 1.73205i 0.577350 1.00000i −0.418432 0.908248i \(-0.637420\pi\)
0.995782 0.0917517i \(-0.0292466\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) −2.00000 −0.816497
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.00000 + 1.73205i −0.316228 + 0.547723i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) −1.00000 1.73205i −0.288675 0.500000i
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 2.00000 3.46410i 0.485071 0.840168i −0.514782 0.857321i \(-0.672127\pi\)
0.999853 + 0.0171533i \(0.00546033\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) −3.00000 + 5.19615i −0.612372 + 1.06066i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 2.00000 + 3.46410i 0.365148 + 0.632456i
\(31\) 5.00000 8.66025i 0.898027 1.55543i 0.0680129 0.997684i \(-0.478334\pi\)
0.830014 0.557743i \(-0.188333\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i \(-0.00249486\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 0 0
\(39\) −4.00000 + 6.92820i −0.640513 + 1.10940i
\(40\) 3.00000 + 5.19615i 0.474342 + 0.821584i
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0.500000 + 0.866025i 0.0753778 + 0.130558i
\(45\) −1.00000 + 1.73205i −0.149071 + 0.258199i
\(46\) 2.00000 3.46410i 0.294884 0.510754i
\(47\) −5.00000 8.66025i −0.729325 1.26323i −0.957169 0.289530i \(-0.906501\pi\)
0.227844 0.973698i \(-0.426832\pi\)
\(48\) 2.00000 0.288675
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) −4.00000 6.92820i −0.560112 0.970143i
\(52\) −2.00000 + 3.46410i −0.277350 + 0.480384i
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) −2.00000 3.46410i −0.272166 0.471405i
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) 1.00000 1.73205i 0.130189 0.225494i −0.793560 0.608492i \(-0.791775\pi\)
0.923749 + 0.382998i \(0.125108\pi\)
\(60\) −2.00000 + 3.46410i −0.258199 + 0.447214i
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 4.00000 + 6.92820i 0.496139 + 0.859338i
\(66\) 1.00000 1.73205i 0.123091 0.213201i
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) −2.00000 3.46410i −0.242536 0.420084i
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) −4.00000 + 6.92820i −0.468165 + 0.810885i −0.999338 0.0363782i \(-0.988418\pi\)
0.531174 + 0.847263i \(0.321751\pi\)
\(74\) 3.00000 5.19615i 0.348743 0.604040i
\(75\) −1.00000 1.73205i −0.115470 0.200000i
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 1.00000 1.73205i 0.111803 0.193649i
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 2.00000 + 3.46410i 0.220863 + 0.382546i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) −6.00000 10.3923i −0.646997 1.12063i
\(87\) −6.00000 + 10.3923i −0.643268 + 1.11417i
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 2.00000 0.210819
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) −10.0000 17.3205i −1.03695 1.79605i
\(94\) −5.00000 + 8.66025i −0.515711 + 0.893237i
\(95\) 0 0
\(96\) 5.00000 + 8.66025i 0.510310 + 0.883883i
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −2.00000 + 3.46410i −0.199007 + 0.344691i −0.948207 0.317653i \(-0.897105\pi\)
0.749199 + 0.662344i \(0.230438\pi\)
\(102\) −4.00000 + 6.92820i −0.396059 + 0.685994i
\(103\) 7.00000 + 12.1244i 0.689730 + 1.19465i 0.971925 + 0.235291i \(0.0756043\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(104\) 12.0000 1.17670
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −6.00000 10.3923i −0.580042 1.00466i −0.995474 0.0950377i \(-0.969703\pi\)
0.415432 0.909624i \(-0.363630\pi\)
\(108\) 2.00000 3.46410i 0.192450 0.333333i
\(109\) 7.00000 12.1244i 0.670478 1.16130i −0.307290 0.951616i \(-0.599422\pi\)
0.977769 0.209687i \(-0.0672444\pi\)
\(110\) −1.00000 1.73205i −0.0953463 0.165145i
\(111\) 12.0000 1.13899
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 4.00000 6.92820i 0.373002 0.646058i
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) 2.00000 + 3.46410i 0.184900 + 0.320256i
\(118\) −2.00000 −0.184115
\(119\) 0 0
\(120\) 12.0000 1.09545
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) −4.00000 + 6.92820i −0.360668 + 0.624695i
\(124\) −5.00000 8.66025i −0.449013 0.777714i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) 12.0000 20.7846i 1.05654 1.82998i
\(130\) 4.00000 6.92820i 0.350823 0.607644i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 2.00000 0.174078
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) −4.00000 6.92820i −0.344265 0.596285i
\(136\) −6.00000 + 10.3923i −0.514496 + 0.891133i
\(137\) 5.00000 8.66025i 0.427179 0.739895i −0.569442 0.822031i \(-0.692841\pi\)
0.996621 + 0.0821359i \(0.0261741\pi\)
\(138\) −4.00000 6.92820i −0.340503 0.589768i
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) −20.0000 −1.68430
\(142\) 6.00000 + 10.3923i 0.503509 + 0.872103i
\(143\) 2.00000 3.46410i 0.167248 0.289683i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 6.00000 + 10.3923i 0.498273 + 0.863034i
\(146\) 8.00000 0.662085
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) 5.00000 + 8.66025i 0.409616 + 0.709476i 0.994847 0.101391i \(-0.0323294\pi\)
−0.585231 + 0.810867i \(0.698996\pi\)
\(150\) −1.00000 + 1.73205i −0.0816497 + 0.141421i
\(151\) 8.00000 13.8564i 0.651031 1.12762i −0.331842 0.943335i \(-0.607670\pi\)
0.982873 0.184284i \(-0.0589965\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 4.00000 + 6.92820i 0.320256 + 0.554700i
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) −4.00000 + 6.92820i −0.318223 + 0.551178i
\(159\) −6.00000 10.3923i −0.475831 0.824163i
\(160\) 10.0000 0.790569
\(161\) 0 0
\(162\) −11.0000 −0.864242
\(163\) 4.00000 + 6.92820i 0.313304 + 0.542659i 0.979076 0.203497i \(-0.0652307\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(164\) −2.00000 + 3.46410i −0.156174 + 0.270501i
\(165\) 2.00000 3.46410i 0.155700 0.269680i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 4.00000 + 6.92820i 0.306786 + 0.531369i
\(171\) 0 0
\(172\) 6.00000 10.3923i 0.457496 0.792406i
\(173\) 6.00000 + 10.3923i 0.456172 + 0.790112i 0.998755 0.0498898i \(-0.0158870\pi\)
−0.542583 + 0.840002i \(0.682554\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) −2.00000 3.46410i −0.150329 0.260378i
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 1.00000 + 1.73205i 0.0745356 + 0.129099i
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.00000 10.3923i −0.442326 0.766131i
\(185\) 6.00000 10.3923i 0.441129 0.764057i
\(186\) −10.0000 + 17.3205i −0.733236 + 1.27000i
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) 7.00000 12.1244i 0.505181 0.875000i
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) −5.00000 8.66025i −0.358979 0.621770i
\(195\) 16.0000 1.14578
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) −0.500000 0.866025i −0.0355335 0.0615457i
\(199\) −9.00000 + 15.5885i −0.637993 + 1.10504i 0.347879 + 0.937539i \(0.386902\pi\)
−0.985873 + 0.167497i \(0.946431\pi\)
\(200\) −1.50000 + 2.59808i −0.106066 + 0.183712i
\(201\) 8.00000 + 13.8564i 0.564276 + 0.977356i
\(202\) 4.00000 0.281439
\(203\) 0 0
\(204\) −8.00000 −0.560112
\(205\) 4.00000 + 6.92820i 0.279372 + 0.483887i
\(206\) 7.00000 12.1244i 0.487713 0.844744i
\(207\) 2.00000 3.46410i 0.139010 0.240772i
\(208\) −2.00000 3.46410i −0.138675 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) −12.0000 + 20.7846i −0.822226 + 1.42414i
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) −12.0000 20.7846i −0.818393 1.41750i
\(216\) −12.0000 −0.816497
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 8.00000 + 13.8564i 0.540590 + 0.936329i
\(220\) 1.00000 1.73205i 0.0674200 0.116775i
\(221\) −8.00000 + 13.8564i −0.538138 + 0.932083i
\(222\) −6.00000 10.3923i −0.402694 0.697486i
\(223\) −22.0000 −1.47323 −0.736614 0.676313i \(-0.763577\pi\)
−0.736614 + 0.676313i \(0.763577\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) −9.00000 15.5885i −0.598671 1.03693i
\(227\) 6.00000 10.3923i 0.398234 0.689761i −0.595274 0.803523i \(-0.702957\pi\)
0.993508 + 0.113761i \(0.0362899\pi\)
\(228\) 0 0
\(229\) 9.00000 + 15.5885i 0.594737 + 1.03011i 0.993584 + 0.113097i \(0.0360770\pi\)
−0.398847 + 0.917017i \(0.630590\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) 9.00000 + 15.5885i 0.589610 + 1.02123i 0.994283 + 0.106773i \(0.0340517\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(234\) 2.00000 3.46410i 0.130744 0.226455i
\(235\) −10.0000 + 17.3205i −0.652328 + 1.12987i
\(236\) −1.00000 1.73205i −0.0650945 0.112747i
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −2.00000 3.46410i −0.129099 0.223607i
\(241\) −10.0000 + 17.3205i −0.644157 + 1.11571i 0.340339 + 0.940303i \(0.389458\pi\)
−0.984496 + 0.175409i \(0.943875\pi\)
\(242\) −0.500000 + 0.866025i −0.0321412 + 0.0556702i
\(243\) −5.00000 8.66025i −0.320750 0.555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 8.00000 0.510061
\(247\) 0 0
\(248\) −15.0000 + 25.9808i −0.952501 + 1.64978i
\(249\) 0 0
\(250\) 6.00000 + 10.3923i 0.379473 + 0.657267i
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) −4.00000 6.92820i −0.250982 0.434714i
\(255\) −8.00000 + 13.8564i −0.500979 + 0.867722i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −7.00000 12.1244i −0.436648 0.756297i 0.560781 0.827964i \(-0.310501\pi\)
−0.997429 + 0.0716680i \(0.977168\pi\)
\(258\) −24.0000 −1.49417
\(259\) 0 0
\(260\) 8.00000 0.496139
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) 6.00000 10.3923i 0.370681 0.642039i
\(263\) −4.00000 + 6.92820i −0.246651 + 0.427211i −0.962594 0.270947i \(-0.912663\pi\)
0.715944 + 0.698158i \(0.245997\pi\)
\(264\) −3.00000 5.19615i −0.184637 0.319801i
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 4.00000 + 6.92820i 0.244339 + 0.423207i
\(269\) 5.00000 8.66025i 0.304855 0.528025i −0.672374 0.740212i \(-0.734725\pi\)
0.977229 + 0.212187i \(0.0680585\pi\)
\(270\) −4.00000 + 6.92820i −0.243432 + 0.421637i
\(271\) −2.00000 3.46410i −0.121491 0.210429i 0.798865 0.601511i \(-0.205434\pi\)
−0.920356 + 0.391082i \(0.872101\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) 0.500000 + 0.866025i 0.0301511 + 0.0522233i
\(276\) 4.00000 6.92820i 0.240772 0.417029i
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) −4.00000 6.92820i −0.239904 0.415526i
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 10.0000 + 17.3205i 0.595491 + 1.03142i
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) −6.00000 + 10.3923i −0.356034 + 0.616670i
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 0 0
\(288\) 5.00000 0.294628
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 6.00000 10.3923i 0.352332 0.610257i
\(291\) 10.0000 17.3205i 0.586210 1.01535i
\(292\) 4.00000 + 6.92820i 0.234082 + 0.405442i
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −9.00000 15.5885i −0.523114 0.906061i
\(297\) −2.00000 + 3.46410i −0.116052 + 0.201008i
\(298\) 5.00000 8.66025i 0.289642 0.501675i
\(299\) −8.00000 13.8564i −0.462652 0.801337i
\(300\) −2.00000 −0.115470
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) 4.00000 + 6.92820i 0.229794 + 0.398015i
\(304\) 0 0
\(305\) 0 0
\(306\) 2.00000 + 3.46410i 0.114332 + 0.198030i
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 10.0000 + 17.3205i 0.567962 + 0.983739i
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 12.0000 20.7846i 0.679366 1.17670i
\(313\) 1.00000 + 1.73205i 0.0565233 + 0.0979013i 0.892903 0.450250i \(-0.148665\pi\)
−0.836379 + 0.548151i \(0.815332\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 1.00000 + 1.73205i 0.0561656 + 0.0972817i 0.892741 0.450570i \(-0.148779\pi\)
−0.836576 + 0.547852i \(0.815446\pi\)
\(318\) −6.00000 + 10.3923i −0.336463 + 0.582772i
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) −7.00000 12.1244i −0.391312 0.677772i
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) −5.50000 9.52628i −0.305556 0.529238i
\(325\) −2.00000 + 3.46410i −0.110940 + 0.192154i
\(326\) 4.00000 6.92820i 0.221540 0.383718i
\(327\) −14.0000 24.2487i −0.774202 1.34096i
\(328\) 12.0000 0.662589
\(329\) 0 0
\(330\) −4.00000 −0.220193
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) 3.00000 5.19615i 0.164399 0.284747i
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 18.0000 31.1769i 0.977626 1.69330i
\(340\) −4.00000 + 6.92820i −0.216930 + 0.375735i
\(341\) 5.00000 + 8.66025i 0.270765 + 0.468979i
\(342\) 0 0
\(343\) 0 0
\(344\) −36.0000 −1.94099
\(345\) −8.00000 13.8564i −0.430706 0.746004i
\(346\) 6.00000 10.3923i 0.322562 0.558694i
\(347\) −2.00000 + 3.46410i −0.107366 + 0.185963i −0.914702 0.404128i \(-0.867575\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(348\) 6.00000 + 10.3923i 0.321634 + 0.557086i
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) −2.50000 4.33013i −0.133250 0.230797i
\(353\) −15.0000 + 25.9808i −0.798369 + 1.38282i 0.122308 + 0.992492i \(0.460970\pi\)
−0.920677 + 0.390324i \(0.872363\pi\)
\(354\) −2.00000 + 3.46410i −0.106299 + 0.184115i
\(355\) 12.0000 + 20.7846i 0.636894 + 1.10313i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −8.00000 13.8564i −0.422224 0.731313i 0.573933 0.818902i \(-0.305417\pi\)
−0.996157 + 0.0875892i \(0.972084\pi\)
\(360\) 3.00000 5.19615i 0.158114 0.273861i
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 5.00000 + 8.66025i 0.262794 + 0.455173i
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) 11.0000 19.0526i 0.574195 0.994535i −0.421933 0.906627i \(-0.638648\pi\)
0.996129 0.0879086i \(-0.0280183\pi\)
\(368\) −2.00000 + 3.46410i −0.104257 + 0.180579i
\(369\) 2.00000 + 3.46410i 0.104116 + 0.180334i
\(370\) −12.0000 −0.623850
\(371\) 0 0
\(372\) −20.0000 −1.03695
\(373\) 13.0000 + 22.5167i 0.673114 + 1.16587i 0.977016 + 0.213165i \(0.0683772\pi\)
−0.303902 + 0.952703i \(0.598289\pi\)
\(374\) 2.00000 3.46410i 0.103418 0.179124i
\(375\) −12.0000 + 20.7846i −0.619677 + 1.07331i
\(376\) 15.0000 + 25.9808i 0.773566 + 1.33986i
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 8.00000 13.8564i 0.409852 0.709885i
\(382\) −4.00000 + 6.92820i −0.204658 + 0.354478i
\(383\) 1.00000 + 1.73205i 0.0510976 + 0.0885037i 0.890443 0.455095i \(-0.150395\pi\)
−0.839345 + 0.543599i \(0.817061\pi\)
\(384\) 6.00000 0.306186
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) −6.00000 10.3923i −0.304997 0.528271i
\(388\) 5.00000 8.66025i 0.253837 0.439658i
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) −8.00000 13.8564i −0.405096 0.701646i
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) −11.0000 19.0526i −0.554172 0.959854i
\(395\) −8.00000 + 13.8564i −0.402524 + 0.697191i
\(396\) 0.500000 0.866025i 0.0251259 0.0435194i
\(397\) 11.0000 + 19.0526i 0.552074 + 0.956221i 0.998125 + 0.0612128i \(0.0194968\pi\)
−0.446051 + 0.895008i \(0.647170\pi\)
\(398\) 18.0000 0.902258
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 11.0000 + 19.0526i 0.549314 + 0.951439i 0.998322 + 0.0579116i \(0.0184442\pi\)
−0.449008 + 0.893528i \(0.648223\pi\)
\(402\) 8.00000 13.8564i 0.399004 0.691095i
\(403\) −20.0000 + 34.6410i −0.996271 + 1.72559i
\(404\) 2.00000 + 3.46410i 0.0995037 + 0.172345i
\(405\) −22.0000 −1.09319
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 12.0000 + 20.7846i 0.594089 + 1.02899i
\(409\) 12.0000 20.7846i 0.593362 1.02773i −0.400414 0.916334i \(-0.631134\pi\)
0.993776 0.111398i \(-0.0355330\pi\)
\(410\) 4.00000 6.92820i 0.197546 0.342160i
\(411\) −10.0000 17.3205i −0.493264 0.854358i
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) −4.00000 −0.196589
\(415\) 0 0
\(416\) 10.0000 17.3205i 0.490290 0.849208i
\(417\) 8.00000 13.8564i 0.391762 0.678551i
\(418\) 0 0
\(419\) −2.00000 −0.0977064 −0.0488532 0.998806i \(-0.515557\pi\)
−0.0488532 + 0.998806i \(0.515557\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 6.00000 + 10.3923i 0.292075 + 0.505889i
\(423\) −5.00000 + 8.66025i −0.243108 + 0.421076i
\(424\) −9.00000 + 15.5885i −0.437079 + 0.757042i
\(425\) −2.00000 3.46410i −0.0970143 0.168034i
\(426\) 24.0000 1.16280
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) −4.00000 6.92820i −0.193122 0.334497i
\(430\) −12.0000 + 20.7846i −0.578691 + 1.00232i
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 2.00000 + 3.46410i 0.0962250 + 0.166667i
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 24.0000 1.15071
\(436\) −7.00000 12.1244i −0.335239 0.580651i
\(437\) 0 0
\(438\) 8.00000 13.8564i 0.382255 0.662085i
\(439\) −10.0000 17.3205i −0.477274 0.826663i 0.522387 0.852709i \(-0.325042\pi\)
−0.999661 + 0.0260459i \(0.991708\pi\)
\(440\) −6.00000 −0.286039
\(441\) 0 0
\(442\) 16.0000 0.761042
\(443\) −2.00000 3.46410i −0.0950229 0.164584i 0.814595 0.580030i \(-0.196959\pi\)
−0.909618 + 0.415445i \(0.863626\pi\)
\(444\) 6.00000 10.3923i 0.284747 0.493197i
\(445\) −6.00000 + 10.3923i −0.284427 + 0.492642i
\(446\) 11.0000 + 19.0526i 0.520865 + 0.902165i
\(447\) 20.0000 0.945968
\(448\) 0 0
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0.500000 + 0.866025i 0.0235702 + 0.0408248i
\(451\) 2.00000 3.46410i 0.0941763 0.163118i
\(452\) 9.00000 15.5885i 0.423324 0.733219i
\(453\) −16.0000 27.7128i −0.751746 1.30206i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) −9.00000 15.5885i −0.421002 0.729197i 0.575036 0.818128i \(-0.304988\pi\)
−0.996038 + 0.0889312i \(0.971655\pi\)
\(458\) 9.00000 15.5885i 0.420542 0.728401i
\(459\) 8.00000 13.8564i 0.373408 0.646762i
\(460\) −4.00000 6.92820i −0.186501 0.323029i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) −20.0000 + 34.6410i −0.927478 + 1.60644i
\(466\) 9.00000 15.5885i 0.416917 0.722121i
\(467\) 15.0000 + 25.9808i 0.694117 + 1.20225i 0.970477 + 0.241192i \(0.0775384\pi\)
−0.276360 + 0.961054i \(0.589128\pi\)
\(468\) 4.00000 0.184900
\(469\) 0 0
\(470\) 20.0000 0.922531
\(471\) −14.0000 24.2487i −0.645086 1.11732i
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) −6.00000 + 10.3923i −0.275880 + 0.477839i
\(474\) 8.00000 + 13.8564i 0.367452 + 0.636446i
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −2.00000 + 3.46410i −0.0913823 + 0.158279i −0.908093 0.418769i \(-0.862462\pi\)
0.816711 + 0.577047i \(0.195795\pi\)
\(480\) 10.0000 17.3205i 0.456435 0.790569i
\(481\) −12.0000 20.7846i −0.547153 0.947697i
\(482\) 20.0000 0.910975
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) −10.0000 17.3205i −0.454077 0.786484i
\(486\) −5.00000 + 8.66025i −0.226805 + 0.392837i
\(487\) 14.0000 24.2487i 0.634401 1.09881i −0.352241 0.935909i \(-0.614580\pi\)
0.986642 0.162905i \(-0.0520863\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) 4.00000 + 6.92820i 0.180334 + 0.312348i
\(493\) −12.0000 + 20.7846i −0.540453 + 0.936092i
\(494\) 0 0
\(495\) −1.00000 1.73205i −0.0449467 0.0778499i
\(496\) 10.0000 0.449013
\(497\) 0 0
\(498\) 0 0
\(499\) 8.00000 + 13.8564i 0.358129 + 0.620298i 0.987648 0.156687i \(-0.0500814\pi\)
−0.629519 + 0.776985i \(0.716748\pi\)
\(500\) −6.00000 + 10.3923i −0.268328 + 0.464758i
\(501\) 0 0
\(502\) −1.00000 1.73205i −0.0446322 0.0773052i
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 2.00000 + 3.46410i 0.0889108 + 0.153998i
\(507\) 3.00000 5.19615i 0.133235 0.230769i
\(508\) 4.00000 6.92820i 0.177471 0.307389i
\(509\) 9.00000 + 15.5885i 0.398918 + 0.690946i 0.993593 0.113020i \(-0.0360525\pi\)
−0.594675 + 0.803966i \(0.702719\pi\)
\(510\) 16.0000 0.708492
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −7.00000 + 12.1244i −0.308757 + 0.534782i
\(515\) 14.0000 24.2487i 0.616914 1.06853i
\(516\) −12.0000 20.7846i −0.528271 0.914991i
\(517\) 10.0000 0.439799
\(518\) 0 0
\(519\) 24.0000 1.05348
\(520\) −12.0000 20.7846i −0.526235 0.911465i
\(521\) 3.00000 5.19615i 0.131432 0.227648i −0.792797 0.609486i \(-0.791376\pi\)
0.924229 + 0.381839i \(0.124709\pi\)
\(522\) 3.00000 5.19615i 0.131306 0.227429i
\(523\) 10.0000 + 17.3205i 0.437269 + 0.757373i 0.997478 0.0709788i \(-0.0226123\pi\)
−0.560208 + 0.828352i \(0.689279\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −20.0000 34.6410i −0.871214 1.50899i
\(528\) −1.00000 + 1.73205i −0.0435194 + 0.0753778i
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 6.00000 + 10.3923i 0.260623 + 0.451413i
\(531\) −2.00000 −0.0867926
\(532\) 0 0
\(533\) 16.0000 0.693037
\(534\) 6.00000 + 10.3923i 0.259645 + 0.449719i
\(535\) −12.0000 + 20.7846i −0.518805 + 0.898597i
\(536\) 12.0000 20.7846i 0.518321 0.897758i
\(537\) 12.0000 + 20.7846i 0.517838 + 0.896922i
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) −8.00000 −0.344265
\(541\) 13.0000 + 22.5167i 0.558914 + 0.968067i 0.997587 + 0.0694205i \(0.0221150\pi\)
−0.438674 + 0.898646i \(0.644552\pi\)
\(542\) −2.00000 + 3.46410i −0.0859074 + 0.148796i
\(543\) −10.0000 + 17.3205i −0.429141 + 0.743294i
\(544\) 10.0000 + 17.3205i 0.428746 + 0.742611i
\(545\) −28.0000 −1.19939
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −5.00000 8.66025i −0.213589 0.369948i
\(549\) 0 0
\(550\) 0.500000 0.866025i 0.0213201 0.0369274i
\(551\) 0 0
\(552\) −24.0000 −1.02151
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) −12.0000 20.7846i −0.509372 0.882258i
\(556\) 4.00000 6.92820i 0.169638 0.293821i
\(557\) −11.0000 + 19.0526i −0.466085 + 0.807283i −0.999250 0.0387286i \(-0.987669\pi\)
0.533165 + 0.846011i \(0.321003\pi\)
\(558\) 5.00000 + 8.66025i 0.211667 + 0.366618i
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) −3.00000 5.19615i −0.126547 0.219186i
\(563\) −16.0000 + 27.7128i −0.674320 + 1.16796i 0.302348 + 0.953198i \(0.402230\pi\)
−0.976667 + 0.214758i \(0.931104\pi\)
\(564\) −10.0000 + 17.3205i −0.421076 + 0.729325i
\(565\) −18.0000 31.1769i −0.757266 1.31162i
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 36.0000 1.51053
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) −2.00000 3.46410i −0.0836242 0.144841i
\(573\) −16.0000 −0.668410
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) −3.50000 6.06218i −0.145833 0.252591i
\(577\) −9.00000 + 15.5885i −0.374675 + 0.648956i −0.990278 0.139100i \(-0.955579\pi\)
0.615603 + 0.788056i \(0.288912\pi\)
\(578\) 0.500000 0.866025i 0.0207973 0.0360219i
\(579\) −14.0000 24.2487i −0.581820 1.00774i
\(580\) 12.0000 0.498273
\(581\) 0 0
\(582\) −20.0000 −0.829027
\(583\) 3.00000 + 5.19615i 0.124247 + 0.215203i
\(584\) 12.0000 20.7846i 0.496564 0.860073i
\(585\) 4.00000 6.92820i 0.165380 0.286446i
\(586\) −12.0000 20.7846i −0.495715 0.858604i
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 2.00000 + 3.46410i 0.0823387 + 0.142615i
\(591\) 22.0000 38.1051i 0.904959 1.56744i
\(592\) −3.00000 + 5.19615i −0.123299 + 0.213561i
\(593\) 16.0000 + 27.7128i 0.657041 + 1.13803i 0.981378 + 0.192087i \(0.0615256\pi\)
−0.324337 + 0.945942i \(0.605141\pi\)
\(594\) 4.00000 0.164122
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 18.0000 + 31.1769i 0.736691 + 1.27599i
\(598\) −8.00000 + 13.8564i −0.327144 + 0.566631i
\(599\) 10.0000 17.3205i 0.408589 0.707697i −0.586143 0.810208i \(-0.699354\pi\)
0.994732 + 0.102511i \(0.0326876\pi\)
\(600\) 3.00000 + 5.19615i 0.122474 + 0.212132i
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) −8.00000 13.8564i −0.325515 0.563809i
\(605\) −1.00000 + 1.73205i −0.0406558 + 0.0704179i
\(606\) 4.00000 6.92820i 0.162489 0.281439i
\(607\) −20.0000 34.6410i −0.811775 1.40604i −0.911621 0.411033i \(-0.865168\pi\)
0.0998457 0.995003i \(-0.468165\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.0000 + 34.6410i 0.809113 + 1.40143i
\(612\) −2.00000 + 3.46410i −0.0808452 + 0.140028i
\(613\) −13.0000 + 22.5167i −0.525065 + 0.909439i 0.474509 + 0.880251i \(0.342626\pi\)
−0.999574 + 0.0291886i \(0.990708\pi\)
\(614\) 10.0000 + 17.3205i 0.403567 + 0.698999i
\(615\) 16.0000 0.645182
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) −14.0000 24.2487i −0.563163 0.975426i
\(619\) 7.00000 12.1244i 0.281354 0.487319i −0.690365 0.723462i \(-0.742550\pi\)
0.971718 + 0.236143i \(0.0758832\pi\)
\(620\) −10.0000 + 17.3205i −0.401610 + 0.695608i
\(621\) 8.00000 + 13.8564i 0.321029 + 0.556038i
\(622\) 18.0000 0.721734
\(623\) 0 0
\(624\) −8.00000 −0.320256
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 1.00000 1.73205i 0.0399680 0.0692267i
\(627\) 0 0
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 12.0000 + 20.7846i 0.477334 + 0.826767i
\(633\) −12.0000 + 20.7846i −0.476957 + 0.826114i
\(634\) 1.00000 1.73205i 0.0397151 0.0687885i
\(635\) −8.00000 13.8564i −0.317470 0.549875i
\(636\) −12.0000 −0.475831
\(637\) 0 0
\(638\) −6.00000 −0.237542
\(639\) 6.00000 + 10.3923i 0.237356 + 0.411113i
\(640\) 3.00000 5.19615i 0.118585 0.205396i
\(641\) 9.00000 15.5885i 0.355479 0.615707i −0.631721 0.775196i \(-0.717651\pi\)
0.987200 + 0.159489i \(0.0509845\pi\)
\(642\) 12.0000 + 20.7846i 0.473602 + 0.820303i
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) −48.0000 −1.89000
\(646\) 0 0
\(647\) −11.0000 + 19.0526i −0.432455 + 0.749033i −0.997084 0.0763112i \(-0.975686\pi\)
0.564629 + 0.825345i \(0.309019\pi\)
\(648\) −16.5000 + 28.5788i −0.648181 + 1.12268i
\(649\) 1.00000 + 1.73205i 0.0392534 + 0.0679889i
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) 13.0000 + 22.5167i 0.508729 + 0.881145i 0.999949 + 0.0101092i \(0.00321793\pi\)
−0.491220 + 0.871036i \(0.663449\pi\)
\(654\) −14.0000 + 24.2487i −0.547443 + 0.948200i
\(655\) 12.0000 20.7846i 0.468879 0.812122i
\(656\) −2.00000 3.46410i −0.0780869 0.135250i
\(657\) 8.00000 0.312110
\(658\) 0 0
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) −2.00000 3.46410i −0.0778499 0.134840i
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) 10.0000 17.3205i 0.388661 0.673181i
\(663\) 16.0000 + 27.7128i 0.621389 + 1.07628i
\(664\) 0 0
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) −12.0000 20.7846i −0.464642 0.804783i
\(668\) 0 0
\(669\) −22.0000 + 38.1051i −0.850569 + 1.47323i
\(670\) −8.00000 13.8564i −0.309067 0.535320i
\(671\) 0 0
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) −7.00000 12.1244i −0.269630 0.467013i
\(675\) 2.00000 3.46410i 0.0769800 0.133333i
\(676\) 1.50000 2.59808i 0.0576923 0.0999260i
\(677\) −6.00000 10.3923i −0.230599 0.399409i 0.727386 0.686229i \(-0.240735\pi\)
−0.957984 + 0.286820i \(0.907402\pi\)
\(678\) −36.0000 −1.38257
\(679\) 0 0
\(680\) 24.0000 0.920358
\(681\) −12.0000 20.7846i −0.459841 0.796468i
\(682\) 5.00000 8.66025i 0.191460 0.331618i
\(683\) 2.00000 3.46410i 0.0765279 0.132550i −0.825222 0.564809i \(-0.808950\pi\)
0.901750 + 0.432259i \(0.142283\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 36.0000 1.37349
\(688\) 6.00000 + 10.3923i 0.228748 + 0.396203i
\(689\) −12.0000 + 20.7846i −0.457164 + 0.791831i
\(690\) −8.00000 + 13.8564i −0.304555 + 0.527504i
\(691\) −23.0000 39.8372i −0.874961 1.51548i −0.856804 0.515642i \(-0.827553\pi\)
−0.0181572 0.999835i \(-0.505780\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −8.00000 13.8564i −0.303457 0.525603i
\(696\) 18.0000 31.1769i 0.682288 1.18176i
\(697\) −8.00000 + 13.8564i −0.303022 + 0.524849i
\(698\) 0 0
\(699\) 36.0000 1.36165
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 8.00000 + 13.8564i 0.301941 + 0.522976i
\(703\) 0 0
\(704\) −3.50000 + 6.06218i −0.131911 + 0.228477i
\(705\) 20.0000 + 34.6410i 0.753244 + 1.30466i
\(706\) 30.0000 1.12906
\(707\) 0 0
\(708\) −4.00000 −0.150329
\(709\) 17.0000 + 29.4449i 0.638448 + 1.10583i 0.985773 + 0.168080i \(0.0537568\pi\)
−0.347325 + 0.937745i \(0.612910\pi\)
\(710\) 12.0000 20.7846i 0.450352 0.780033i
\(711\) −4.00000 + 6.92820i −0.150012 + 0.259828i
\(712\) 9.00000 + 15.5885i 0.337289 + 0.584202i
\(713\) 40.0000 1.49801
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 6.00000 + 10.3923i 0.224231 + 0.388379i
\(717\) 0 0
\(718\) −8.00000 + 13.8564i −0.298557 + 0.517116i
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) −2.00000 −0.0745356
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) 20.0000 + 34.6410i 0.743808 + 1.28831i
\(724\) −5.00000 + 8.66025i −0.185824 + 0.321856i
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) 1.00000 + 1.73205i 0.0371135 + 0.0642824i
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −8.00000 13.8564i −0.296093 0.512849i
\(731\) 24.0000 41.5692i 0.887672 1.53749i
\(732\) 0 0
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) −20.0000 −0.737210
\(737\) −4.00000 6.92820i −0.147342 0.255204i
\(738\) 2.00000 3.46410i 0.0736210 0.127515i
\(739\) 2.00000 3.46410i 0.0735712 0.127429i −0.826893 0.562360i \(-0.809894\pi\)
0.900464 + 0.434930i \(0.143227\pi\)
\(740\) −6.00000 10.3923i −0.220564 0.382029i
\(741\) 0 0
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 30.0000 + 51.9615i 1.09985 + 1.90500i
\(745\) 10.0000 17.3205i 0.366372 0.634574i
\(746\) 13.0000 22.5167i 0.475964 0.824394i
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) 24.0000 0.876356
\(751\) 10.0000 + 17.3205i 0.364905 + 0.632034i 0.988761 0.149505i \(-0.0477681\pi\)
−0.623856 + 0.781540i \(0.714435\pi\)
\(752\) 5.00000 8.66025i 0.182331 0.315807i
\(753\) 2.00000 3.46410i 0.0728841 0.126239i
\(754\) −12.0000 20.7846i −0.437014 0.756931i
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 4.00000 + 6.92820i 0.145287 + 0.251644i
\(759\) −4.00000 + 6.92820i −0.145191 + 0.251478i
\(760\) 0 0
\(761\) 24.0000 + 41.5692i 0.869999 + 1.50688i 0.861996 + 0.506915i \(0.169214\pi\)
0.00800331 + 0.999968i \(0.497452\pi\)
\(762\) −16.0000 −0.579619
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) 4.00000 + 6.92820i 0.144620 + 0.250490i
\(766\) 1.00000 1.73205i 0.0361315 0.0625815i
\(767\) −4.00000 + 6.92820i −0.144432 + 0.250163i
\(768\) −17.0000 29.4449i −0.613435 1.06250i
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) −28.0000 −1.00840
\(772\) −7.00000 12.1244i −0.251936 0.436365i
\(773\) −15.0000 + 25.9808i −0.539513 + 0.934463i 0.459418 + 0.888220i \(0.348058\pi\)
−0.998930 + 0.0462427i \(0.985275\pi\)
\(774\) −6.00000 + 10.3923i −0.215666 + 0.373544i
\(775\) −5.00000 8.66025i −0.179605 0.311086i
\(776\) −30.0000 −1.07694
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 0 0
\(780\) 8.00000 13.8564i 0.286446 0.496139i
\(781\) 6.00000 10.3923i 0.214697 0.371866i
\(782\) −8.00000 13.8564i −0.286079 0.495504i
\(783\) −24.0000 −0.857690
\(784\) 0 0
\(785\) −28.0000 −0.999363
\(786\) −12.0000 20.7846i −0.428026 0.741362i
\(787\) 8.00000 13.8564i 0.285169 0.493928i −0.687481 0.726202i \(-0.741284\pi\)
0.972650 + 0.232275i \(0.0746169\pi\)
\(788\) 11.0000 19.0526i 0.391859 0.678719i
\(789\) 8.00000 + 13.8564i 0.284808 + 0.493301i
\(790\) 16.0000 0.569254
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) 0 0
\(794\) 11.0000 19.0526i 0.390375 0.676150i
\(795\) −12.0000 + 20.7846i −0.425596 + 0.737154i
\(796\) 9.00000 + 15.5885i 0.318997 + 0.552518i
\(797\) −14.0000 −0.495905 −0.247953 0.968772i \(-0.579758\pi\)
−0.247953 + 0.968772i \(0.579758\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 2.50000 + 4.33013i 0.0883883 + 0.153093i
\(801\) −3.00000 + 5.19615i −0.106000 + 0.183597i
\(802\) 11.0000 19.0526i 0.388424 0.672769i
\(803\) −4.00000 6.92820i −0.141157 0.244491i
\(804\) 16.0000 0.564276
\(805\) 0 0
\(806\) 40.0000 1.40894
\(807\) −10.0000 17.3205i −0.352017 0.609711i
\(808\) 6.00000 10.3923i 0.211079 0.365600i
\(809\) 15.0000 25.9808i 0.527372 0.913435i −0.472119 0.881535i \(-0.656511\pi\)
0.999491 0.0319002i \(-0.0101559\pi\)
\(810\) 11.0000 + 19.0526i 0.386501 + 0.669439i
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 3.00000 + 5.19615i 0.105150 + 0.182125i
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 4.00000 6.92820i 0.140028 0.242536i
\(817\) 0 0
\(818\) −24.0000 −0.839140
\(819\) 0 0
\(820\) 8.00000 0.279372
\(821\) −23.0000 39.8372i −0.802706 1.39033i −0.917829 0.396976i \(-0.870060\pi\)
0.115124 0.993351i \(-0.463274\pi\)
\(822\) −10.0000 + 17.3205i −0.348790 + 0.604122i
\(823\) −12.0000 + 20.7846i −0.418294 + 0.724506i −0.995768 0.0919029i \(-0.970705\pi\)
0.577474 + 0.816409i \(0.304038\pi\)
\(824\) −21.0000 36.3731i −0.731570 1.26712i
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) −2.00000 3.46410i −0.0695048 0.120386i
\(829\) −1.00000 + 1.73205i −0.0347314 + 0.0601566i −0.882869 0.469620i \(-0.844391\pi\)
0.848137 + 0.529777i \(0.177724\pi\)
\(830\) 0 0
\(831\) 22.0000 + 38.1051i 0.763172 + 1.32185i
\(832\) −28.0000 −0.970725
\(833\) 0 0
\(834\) −16.0000 −0.554035
\(835\) 0 0
\(836\) 0 0
\(837\) 20.0000 34.6410i 0.691301 1.19737i
\(838\) 1.00000 + 1.73205i 0.0345444 + 0.0598327i
\(839\) −34.0000 −1.17381 −0.586905 0.809656i \(-0.699654\pi\)
−0.586905 + 0.809656i \(0.699654\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 7.00000 + 12.1244i 0.241236 + 0.417833i
\(843\) 6.00000 10.3923i 0.206651 0.357930i
\(844\) −6.00000 + 10.3923i −0.206529 + 0.357718i
\(845\) −3.00000 5.19615i −0.103203 0.178753i
\(846\) 10.0000 0.343807
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) −4.00000 6.92820i −0.137280 0.237775i
\(850\) −2.00000 + 3.46410i −0.0685994 + 0.118818i
\(851\) −12.0000 + 20.7846i −0.411355 + 0.712487i
\(852\) 12.0000 + 20.7846i 0.411113 + 0.712069i
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 18.0000 + 31.1769i 0.615227 + 1.06561i
\(857\) 28.0000 48.4974i 0.956462 1.65664i 0.225475 0.974249i \(-0.427607\pi\)
0.730987 0.682391i \(-0.239060\pi\)
\(858\) −4.00000 + 6.92820i −0.136558 + 0.236525i
\(859\) 3.00000 + 5.19615i 0.102359 + 0.177290i 0.912656 0.408729i \(-0.134028\pi\)
−0.810297 + 0.586019i \(0.800694\pi\)
\(860\) −24.0000 −0.818393
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 20.7846i −0.408485 0.707516i 0.586235 0.810141i \(-0.300609\pi\)
−0.994720 + 0.102624i \(0.967276\pi\)
\(864\) −10.0000 + 17.3205i −0.340207 + 0.589256i
\(865\) 12.0000 20.7846i 0.408012 0.706698i
\(866\) −13.0000 22.5167i −0.441758 0.765147i
\(867\) 2.00000 0.0679236
\(868\) 0 0
\(869\) 8.00000 0.271381
\(870\) −12.0000 20.7846i −0.406838 0.704664i
\(871\) 16.0000 27.7128i 0.542139 0.939013i
\(872\) −21.0000 + 36.3731i −0.711150 + 1.23175i
\(873\) −5.00000 8.66025i −0.169224 0.293105i
\(874\) 0 0
\(875\) 0 0
\(876\) 16.0000 0.540590
\(877\) −21.0000 36.3731i −0.709120 1.22823i −0.965184 0.261571i \(-0.915759\pi\)
0.256064 0.966660i \(-0.417574\pi\)
\(878\) −10.0000 + 17.3205i −0.337484 + 0.584539i
\(879\) 24.0000 41.5692i 0.809500 1.40209i
\(880\) 1.00000 + 1.73205i 0.0337100 + 0.0583874i
\(881\) 34.0000 1.14549 0.572745 0.819734i \(-0.305879\pi\)
0.572745 + 0.819734i \(0.305879\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 8.00000 + 13.8564i 0.269069 + 0.466041i
\(885\) −4.00000 + 6.92820i −0.134459 + 0.232889i
\(886\) −2.00000 + 3.46410i −0.0671913 + 0.116379i
\(887\) −14.0000 24.2487i −0.470074 0.814192i 0.529340 0.848410i \(-0.322439\pi\)
−0.999414 + 0.0342175i \(0.989106\pi\)
\(888\) −36.0000 −1.20808
\(889\) 0 0
\(890\) 12.0000 0.402241
\(891\) 5.50000 + 9.52628i 0.184257 + 0.319142i
\(892\) −11.0000 + 19.0526i −0.368307 + 0.637927i
\(893\) 0 0
\(894\) −10.0000 17.3205i −0.334450 0.579284i
\(895\) 24.0000 0.802232
\(896\) 0 0
\(897\) −32.0000 −1.06845
\(898\) 5.00000 + 8.66025i 0.166852 + 0.288996i
\(899\) −30.0000 + 51.9615i −1.00056 + 1.73301i
\(900\) −0.500000 + 0.866025i −0.0166667 + 0.0288675i
\(901\) −12.0000 20.7846i −0.399778 0.692436i
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) −54.0000 −1.79601
\(905\) 10.0000 + 17.3205i 0.332411 + 0.575753i
\(906\) −16.0000 + 27.7128i −0.531564 + 0.920697i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) −6.00000 10.3923i −0.199117 0.344881i
\(909\) 4.00000 0.132672
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −9.00000 + 15.5885i −0.297694 + 0.515620i
\(915\) 0 0
\(916\) 18.0000 0.594737
\(917\) 0 0
\(918\) −16.0000 −0.528079
\(919\) −20.0000 34.6410i −0.659739 1.14270i −0.980683 0.195603i \(-0.937333\pi\)
0.320944 0.947098i \(-0.396000\pi\)
\(920\) −12.0000 + 20.7846i −0.395628 + 0.685248i
\(921\) −20.0000 + 34.6410i −0.659022 + 1.14146i
\(922\) 0 0
\(923\) 48.0000 1.57994
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −2.00000 3.46410i −0.0657241 0.113837i
\(927\) 7.00000 12.1244i 0.229910 0.398216i
\(928\) 15.0000 25.9808i 0.492399 0.852860i
\(929\) 3.00000 + 5.19615i 0.0984268 + 0.170480i 0.911034 0.412332i \(-0.135286\pi\)
−0.812607 + 0.582812i \(0.801952\pi\)
\(930\) 40.0000 1.31165
\(931\) 0 0
\(932\) 18.0000 0.589610
\(933\) 18.0000 + 31.1769i 0.589294 + 1.02069i
\(934\) 15.0000 25.9808i 0.490815 0.850117i
\(935\) 4.00000 6.92820i 0.130814 0.226576i
\(936\) −6.00000 10.3923i −0.196116 0.339683i
\(937\) 16.0000 0.522697 0.261349 0.965244i \(-0.415833\pi\)
0.261349 + 0.965244i \(0.415833\pi\)
\(938\) 0 0
\(939\) 4.00000 0.130535
\(940\) 10.0000 + 17.3205i 0.326164 + 0.564933i
\(941\) −12.0000 + 20.7846i −0.391189 + 0.677559i −0.992607 0.121376i \(-0.961269\pi\)
0.601418 + 0.798935i \(0.294603\pi\)
\(942\) −14.0000 + 24.2487i −0.456145 + 0.790066i
\(943\) −8.00000 13.8564i −0.260516 0.451227i
\(944\) 2.00000 0.0650945
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 18.0000 + 31.1769i 0.584921 + 1.01311i 0.994885 + 0.101012i \(0.0322080\pi\)
−0.409964 + 0.912102i \(0.634459\pi\)
\(948\) −8.00000 + 13.8564i −0.259828 + 0.450035i
\(949\) 16.0000 27.7128i 0.519382 0.899596i
\(950\) 0 0
\(951\) 4.00000 0.129709
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 3.00000 + 5.19615i 0.0971286 + 0.168232i
\(955\) −8.00000 + 13.8564i −0.258874 + 0.448383i
\(956\) 0 0
\(957\) −6.00000 10.3923i −0.193952 0.335936i
\(958\) 4.00000 0.129234
\(959\) 0 0
\(960\) −28.0000 −0.903696
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) −12.0000 + 20.7846i −0.386896 + 0.670123i
\(963\) −6.00000 + 10.3923i −0.193347 + 0.334887i
\(964\) 10.0000 + 17.3205i 0.322078 + 0.557856i
\(965\) −28.0000 −0.901352
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 1.50000 + 2.59808i 0.0482118 + 0.0835053i
\(969\) 0 0
\(970\) −10.0000 + 17.3205i −0.321081 + 0.556128i
\(971\) 7.00000 + 12.1244i 0.224641 + 0.389089i 0.956212 0.292676i \(-0.0945458\pi\)
−0.731571 + 0.681765i \(0.761212\pi\)
\(972\) −10.0000 −0.320750
\(973\) 0 0
\(974\) −28.0000 −0.897178
\(975\) 4.00000 + 6.92820i 0.128103 + 0.221880i
\(976\) 0 0
\(977\) −21.0000 + 36.3731i −0.671850 + 1.16368i 0.305530 + 0.952183i \(0.401167\pi\)
−0.977379 + 0.211495i \(0.932167\pi\)
\(978\) −8.00000 13.8564i −0.255812 0.443079i
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) −14.0000 24.2487i −0.446758 0.773807i
\(983\) 27.0000 46.7654i 0.861166 1.49158i −0.00963785 0.999954i \(-0.503068\pi\)
0.870804 0.491630i \(-0.163599\pi\)
\(984\) 12.0000 20.7846i 0.382546 0.662589i
\(985\) −22.0000 38.1051i −0.700978 1.21413i
\(986\) 24.0000 0.764316
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000 + 41.5692i 0.763156 + 1.32182i
\(990\) −1.00000 + 1.73205i −0.0317821 + 0.0550482i
\(991\) −26.0000 + 45.0333i −0.825917 + 1.43053i 0.0752991 + 0.997161i \(0.476009\pi\)
−0.901216 + 0.433370i \(0.857324\pi\)
\(992\) 25.0000 + 43.3013i 0.793751 + 1.37482i
\(993\) 40.0000 1.26936
\(994\) 0 0
\(995\) 36.0000 1.14128
\(996\) 0 0
\(997\) 10.0000 17.3205i 0.316703 0.548546i −0.663095 0.748535i \(-0.730757\pi\)
0.979798 + 0.199989i \(0.0640908\pi\)
\(998\) 8.00000 13.8564i 0.253236 0.438617i
\(999\) 12.0000 + 20.7846i 0.379663 + 0.657596i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.e.b.67.1 2
7.2 even 3 inner 539.2.e.b.177.1 2
7.3 odd 6 77.2.a.c.1.1 1
7.4 even 3 539.2.a.d.1.1 1
7.5 odd 6 539.2.e.a.177.1 2
7.6 odd 2 539.2.e.a.67.1 2
21.11 odd 6 4851.2.a.a.1.1 1
21.17 even 6 693.2.a.a.1.1 1
28.3 even 6 1232.2.a.a.1.1 1
28.11 odd 6 8624.2.a.bc.1.1 1
35.3 even 12 1925.2.b.d.1849.1 2
35.17 even 12 1925.2.b.d.1849.2 2
35.24 odd 6 1925.2.a.c.1.1 1
56.3 even 6 4928.2.a.bi.1.1 1
56.45 odd 6 4928.2.a.g.1.1 1
77.3 odd 30 847.2.f.e.372.1 4
77.10 even 6 847.2.a.a.1.1 1
77.17 even 30 847.2.f.k.729.1 4
77.24 even 30 847.2.f.k.323.1 4
77.31 odd 30 847.2.f.e.323.1 4
77.32 odd 6 5929.2.a.b.1.1 1
77.38 odd 30 847.2.f.e.729.1 4
77.52 even 30 847.2.f.k.372.1 4
77.59 odd 30 847.2.f.e.148.1 4
77.73 even 30 847.2.f.k.148.1 4
231.164 odd 6 7623.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.a.c.1.1 1 7.3 odd 6
539.2.a.d.1.1 1 7.4 even 3
539.2.e.a.67.1 2 7.6 odd 2
539.2.e.a.177.1 2 7.5 odd 6
539.2.e.b.67.1 2 1.1 even 1 trivial
539.2.e.b.177.1 2 7.2 even 3 inner
693.2.a.a.1.1 1 21.17 even 6
847.2.a.a.1.1 1 77.10 even 6
847.2.f.e.148.1 4 77.59 odd 30
847.2.f.e.323.1 4 77.31 odd 30
847.2.f.e.372.1 4 77.3 odd 30
847.2.f.e.729.1 4 77.38 odd 30
847.2.f.k.148.1 4 77.73 even 30
847.2.f.k.323.1 4 77.24 even 30
847.2.f.k.372.1 4 77.52 even 30
847.2.f.k.729.1 4 77.17 even 30
1232.2.a.a.1.1 1 28.3 even 6
1925.2.a.c.1.1 1 35.24 odd 6
1925.2.b.d.1849.1 2 35.3 even 12
1925.2.b.d.1849.2 2 35.17 even 12
4851.2.a.a.1.1 1 21.11 odd 6
4928.2.a.g.1.1 1 56.45 odd 6
4928.2.a.bi.1.1 1 56.3 even 6
5929.2.a.b.1.1 1 77.32 odd 6
7623.2.a.n.1.1 1 231.164 odd 6
8624.2.a.bc.1.1 1 28.11 odd 6