Properties

Label 539.2.e
Level $539$
Weight $2$
Character orbit 539.e
Rep. character $\chi_{539}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $68$
Newform subspaces $15$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 15 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(539, [\chi])\).

Total New Old
Modular forms 128 68 60
Cusp forms 96 68 28
Eisenstein series 32 0 32

Trace form

\( 68 q + 2 q^{3} - 36 q^{4} + 4 q^{5} + 8 q^{6} + 12 q^{8} - 40 q^{9} + O(q^{10}) \) \( 68 q + 2 q^{3} - 36 q^{4} + 4 q^{5} + 8 q^{6} + 12 q^{8} - 40 q^{9} - 6 q^{10} - 6 q^{12} + 16 q^{13} - 20 q^{15} - 44 q^{16} - 6 q^{17} + 6 q^{18} - 2 q^{19} - 40 q^{20} + 24 q^{23} + 8 q^{24} - 30 q^{25} + 10 q^{26} - 16 q^{27} + 16 q^{29} + 24 q^{30} + 6 q^{31} + 8 q^{32} + 4 q^{33} + 32 q^{34} + 52 q^{36} - 32 q^{37} + 8 q^{38} - 22 q^{39} - 8 q^{41} + 28 q^{43} - 4 q^{44} - 6 q^{45} - 26 q^{46} - 6 q^{47} + 16 q^{48} + 2 q^{52} - 2 q^{53} - 26 q^{54} - 16 q^{55} - 48 q^{57} - 18 q^{58} + 8 q^{59} + 68 q^{60} - 12 q^{61} - 20 q^{62} + 76 q^{64} + 18 q^{65} - 2 q^{66} - 36 q^{67} - 16 q^{68} - 36 q^{69} - 28 q^{71} + 94 q^{72} - 14 q^{73} + 36 q^{74} + 34 q^{75} + 96 q^{76} - 128 q^{78} - 16 q^{79} - 18 q^{80} - 2 q^{81} + 38 q^{82} + 52 q^{83} + 112 q^{85} + 6 q^{86} + 6 q^{87} + 24 q^{88} - 14 q^{89} + 52 q^{90} - 180 q^{92} - 32 q^{93} - 10 q^{94} + 28 q^{95} + 30 q^{96} - 108 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(539, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
539.2.e.a 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(-1\) \(-2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
539.2.e.b 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(-1\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
539.2.e.c 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(0\) \(-3\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-3+3\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}-\zeta_{6}q^{5}+\cdots\)
539.2.e.d 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(0\) \(-1\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}-3\zeta_{6}q^{5}+\cdots\)
539.2.e.e 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(0\) \(1\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+3\zeta_{6}q^{5}+\cdots\)
539.2.e.f 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(0\) \(3\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+\zeta_{6}q^{5}+\cdots\)
539.2.e.g 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(2\) \(-1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots\)
539.2.e.h 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None \(2\) \(1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots\)
539.2.e.i 539.e 7.c $4$ $4.304$ \(\Q(\sqrt{-3}, \sqrt{5})\) None \(0\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{2}-\beta _{3})q^{3}+3\beta _{1}q^{4}+\cdots\)
539.2.e.j 539.e 7.c $4$ $4.304$ \(\Q(\sqrt{-3}, \sqrt{5})\) None \(0\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-\beta _{1}+\beta _{2}+\beta _{3})q^{3}+3\beta _{1}q^{4}+\cdots\)
539.2.e.k 539.e 7.c $4$ $4.304$ \(\Q(\sqrt{2}, \sqrt{-3})\) None \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}-\beta _{1}q^{3}+(1+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
539.2.e.l 539.e 7.c $6$ $4.304$ 6.0.1783323.2 None \(0\) \(-1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{3}+\beta _{5})q^{2}-\beta _{1}q^{3}+(-1-\beta _{1}+\cdots)q^{4}+\cdots\)
539.2.e.m 539.e 7.c $6$ $4.304$ \(\Q(\zeta_{18})\) None \(0\) \(3\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\zeta_{18}^{2}+\zeta_{18}^{3}+\zeta_{18}^{4}-\zeta_{18}^{5})q^{2}+\cdots\)
539.2.e.n 539.e 7.c $8$ $4.304$ 8.0.6927565824.3 None \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{3}-\beta _{4}-\beta _{5})q^{2}+\beta _{2}q^{3}+\cdots\)
539.2.e.o 539.e 7.c $20$ $4.304$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{8}q^{2}+(-\beta _{1}+\beta _{10})q^{3}+(-2\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(539, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(539, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)