Properties

Label 539.2.e
Level $539$
Weight $2$
Character orbit 539.e
Rep. character $\chi_{539}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $68$
Newform subspaces $15$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 15 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(539, [\chi])\).

Total New Old
Modular forms 128 68 60
Cusp forms 96 68 28
Eisenstein series 32 0 32

Trace form

\( 68 q + 2 q^{3} - 36 q^{4} + 4 q^{5} + 8 q^{6} + 12 q^{8} - 40 q^{9} - 6 q^{10} - 6 q^{12} + 16 q^{13} - 20 q^{15} - 44 q^{16} - 6 q^{17} + 6 q^{18} - 2 q^{19} - 40 q^{20} + 24 q^{23} + 8 q^{24} - 30 q^{25}+ \cdots - 108 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(539, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
539.2.e.a 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 77.2.a.c \(-1\) \(-2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
539.2.e.b 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 77.2.a.c \(-1\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
539.2.e.c 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 77.2.a.a \(0\) \(-3\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-3+3\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}-\zeta_{6}q^{5}+\cdots\)
539.2.e.d 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 77.2.a.b \(0\) \(-1\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}-3\zeta_{6}q^{5}+\cdots\)
539.2.e.e 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 77.2.a.b \(0\) \(1\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+3\zeta_{6}q^{5}+\cdots\)
539.2.e.f 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 77.2.a.a \(0\) \(3\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+\zeta_{6}q^{5}+\cdots\)
539.2.e.g 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 11.2.a.a \(2\) \(-1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots\)
539.2.e.h 539.e 7.c $2$ $4.304$ \(\Q(\sqrt{-3}) \) None 11.2.a.a \(2\) \(1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots\)
539.2.e.i 539.e 7.c $4$ $4.304$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 77.2.a.d \(0\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{2}-\beta _{3})q^{3}+3\beta _{1}q^{4}+\cdots\)
539.2.e.j 539.e 7.c $4$ $4.304$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 77.2.a.d \(0\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-\beta _{1}+\beta _{2}+\beta _{3})q^{3}+3\beta _{1}q^{4}+\cdots\)
539.2.e.k 539.e 7.c $4$ $4.304$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 539.2.a.e \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}-\beta _{1}q^{3}+(1+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
539.2.e.l 539.e 7.c $6$ $4.304$ 6.0.1783323.2 None 77.2.e.b \(0\) \(-1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{3}+\beta _{5})q^{2}-\beta _{1}q^{3}+(-1-\beta _{1}+\cdots)q^{4}+\cdots\)
539.2.e.m 539.e 7.c $6$ $4.304$ \(\Q(\zeta_{18})\) None 77.2.e.a \(0\) \(3\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_{5}+\beta_{4}+\cdots-\beta_{2})q^{2}+\cdots+(-\beta_{3}+\beta_{2}-\beta_1+1)q^{3}+\cdots\)
539.2.e.n 539.e 7.c $8$ $4.304$ 8.0.6927565824.3 None 539.2.a.k \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{3}-\beta _{4}-\beta _{5})q^{2}+\beta _{2}q^{3}+\cdots\)
539.2.e.o 539.e 7.c $20$ $4.304$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 539.2.a.l \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{8}q^{2}+(-\beta _{1}+\beta _{10})q^{3}+(-2\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(539, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(539, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)