Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [538,8,Mod(1,538)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("538.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(168.063143710\) |
Analytic rank: | \(1\) |
Dimension: | \(35\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 8.00000 | −87.4696 | 64.0000 | −14.9114 | −699.757 | 696.948 | 512.000 | 5463.92 | −119.291 | ||||||||||||||||||
1.2 | 8.00000 | −86.5070 | 64.0000 | 265.568 | −692.056 | 824.433 | 512.000 | 5296.46 | 2124.54 | ||||||||||||||||||
1.3 | 8.00000 | −79.2150 | 64.0000 | −296.391 | −633.720 | −1053.73 | 512.000 | 4088.02 | −2371.13 | ||||||||||||||||||
1.4 | 8.00000 | −70.6144 | 64.0000 | −122.340 | −564.915 | 328.106 | 512.000 | 2799.39 | −978.720 | ||||||||||||||||||
1.5 | 8.00000 | −64.4195 | 64.0000 | 25.5214 | −515.356 | 1552.39 | 512.000 | 1962.87 | 204.172 | ||||||||||||||||||
1.6 | 8.00000 | −62.5719 | 64.0000 | −49.0557 | −500.575 | −1323.63 | 512.000 | 1728.24 | −392.445 | ||||||||||||||||||
1.7 | 8.00000 | −59.0455 | 64.0000 | 86.3281 | −472.364 | −1159.96 | 512.000 | 1299.37 | 690.625 | ||||||||||||||||||
1.8 | 8.00000 | −51.8557 | 64.0000 | 377.145 | −414.846 | −341.085 | 512.000 | 502.015 | 3017.16 | ||||||||||||||||||
1.9 | 8.00000 | −44.4394 | 64.0000 | −497.631 | −355.516 | −1574.96 | 512.000 | −212.136 | −3981.05 | ||||||||||||||||||
1.10 | 8.00000 | −43.6477 | 64.0000 | 419.845 | −349.181 | 158.174 | 512.000 | −281.880 | 3358.76 | ||||||||||||||||||
1.11 | 8.00000 | −42.5865 | 64.0000 | −551.172 | −340.692 | −307.941 | 512.000 | −373.393 | −4409.38 | ||||||||||||||||||
1.12 | 8.00000 | −32.2126 | 64.0000 | 173.271 | −257.701 | 363.058 | 512.000 | −1149.35 | 1386.16 | ||||||||||||||||||
1.13 | 8.00000 | −26.4233 | 64.0000 | −307.454 | −211.386 | −534.463 | 512.000 | −1488.81 | −2459.63 | ||||||||||||||||||
1.14 | 8.00000 | −20.1389 | 64.0000 | 116.446 | −161.111 | −206.552 | 512.000 | −1781.42 | 931.569 | ||||||||||||||||||
1.15 | 8.00000 | −19.0568 | 64.0000 | 319.121 | −152.454 | −1291.59 | 512.000 | −1823.84 | 2552.97 | ||||||||||||||||||
1.16 | 8.00000 | −15.0242 | 64.0000 | −254.360 | −120.194 | −377.492 | 512.000 | −1961.27 | −2034.88 | ||||||||||||||||||
1.17 | 8.00000 | −14.6799 | 64.0000 | −134.756 | −117.439 | 1219.17 | 512.000 | −1971.50 | −1078.04 | ||||||||||||||||||
1.18 | 8.00000 | −4.92513 | 64.0000 | −427.609 | −39.4010 | 1017.60 | 512.000 | −2162.74 | −3420.88 | ||||||||||||||||||
1.19 | 8.00000 | 0.525252 | 64.0000 | 201.246 | 4.20202 | 768.758 | 512.000 | −2186.72 | 1609.97 | ||||||||||||||||||
1.20 | 8.00000 | 9.38981 | 64.0000 | −35.2592 | 75.1185 | 1733.62 | 512.000 | −2098.83 | −282.073 | ||||||||||||||||||
See all 35 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( -1 \) |
\(269\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 538.8.a.a | ✓ | 35 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
538.8.a.a | ✓ | 35 | 1.a | even | 1 | 1 | trivial |