Properties

Label 538.6
Level 538
Weight 6
Dimension 15075
Nonzero newspaces 4
Sturm bound 108540
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 538 = 2 \cdot 269 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(108540\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(538))\).

Total New Old
Modular forms 45493 15075 30418
Cusp forms 44957 15075 29882
Eisenstein series 536 0 536

Trace form

\( 15075 q+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(538))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
538.6.a \(\chi_{538}(1, \cdot)\) 538.6.a.a 24 1
538.6.a.b 27
538.6.a.c 30
538.6.a.d 32
538.6.b \(\chi_{538}(537, \cdot)\) n/a 112 1
538.6.d \(\chi_{538}(5, \cdot)\) n/a 7458 66
538.6.e \(\chi_{538}(9, \cdot)\) n/a 7392 66

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(538))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(538)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(269))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(538))\)\(^{\oplus 1}\)