Properties

Label 538.4.a.c
Level $538$
Weight $4$
Character orbit 538.a
Self dual yes
Analytic conductor $31.743$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 8 x^{17} - 299 x^{16} + 2191 x^{15} + 37840 x^{14} - 247598 x^{13} - 2647415 x^{12} + \cdots - 88752454191 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + ( - \beta_{14} - 1) q^{5} + ( - 2 \beta_1 + 2) q^{6} - \beta_{7} q^{7} - 8 q^{8} + (\beta_{2} - \beta_1 + 10) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + ( - \beta_{14} - 1) q^{5} + ( - 2 \beta_1 + 2) q^{6} - \beta_{7} q^{7} - 8 q^{8} + (\beta_{2} - \beta_1 + 10) q^{9} + (2 \beta_{14} + 2) q^{10} + (\beta_{17} + \beta_{12} - \beta_{8} + \cdots - 8) q^{11}+ \cdots + ( - 5 \beta_{17} - 17 \beta_{16} + \cdots - 514) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 36 q^{2} - 10 q^{3} + 72 q^{4} - 26 q^{5} + 20 q^{6} - 9 q^{7} - 144 q^{8} + 178 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 36 q^{2} - 10 q^{3} + 72 q^{4} - 26 q^{5} + 20 q^{6} - 9 q^{7} - 144 q^{8} + 178 q^{9} + 52 q^{10} - 130 q^{11} - 40 q^{12} - 27 q^{13} + 18 q^{14} - 143 q^{15} + 288 q^{16} - 110 q^{17} - 356 q^{18} - 47 q^{19} - 104 q^{20} + 69 q^{21} + 260 q^{22} - 329 q^{23} + 80 q^{24} + 442 q^{25} + 54 q^{26} - 325 q^{27} - 36 q^{28} - 3 q^{29} + 286 q^{30} + 97 q^{31} - 576 q^{32} - 129 q^{33} + 220 q^{34} - 834 q^{35} + 712 q^{36} - 104 q^{37} + 94 q^{38} - 242 q^{39} + 208 q^{40} + 196 q^{41} - 138 q^{42} - 547 q^{43} - 520 q^{44} - 481 q^{45} + 658 q^{46} - 1074 q^{47} - 160 q^{48} + 1315 q^{49} - 884 q^{50} - 1475 q^{51} - 108 q^{52} - 1681 q^{53} + 650 q^{54} + 163 q^{55} + 72 q^{56} - 1178 q^{57} + 6 q^{58} - 924 q^{59} - 572 q^{60} + 640 q^{61} - 194 q^{62} - 445 q^{63} + 1152 q^{64} - 2052 q^{65} + 258 q^{66} - 1685 q^{67} - 440 q^{68} - 1787 q^{69} + 1668 q^{70} - 3635 q^{71} - 1424 q^{72} - 1136 q^{73} + 208 q^{74} - 3332 q^{75} - 188 q^{76} - 5512 q^{77} + 484 q^{78} - 406 q^{79} - 416 q^{80} - 3194 q^{81} - 392 q^{82} - 6854 q^{83} + 276 q^{84} - 1227 q^{85} + 1094 q^{86} - 8831 q^{87} + 1040 q^{88} - 4690 q^{89} + 962 q^{90} - 5743 q^{91} - 1316 q^{92} - 4097 q^{93} + 2148 q^{94} - 3332 q^{95} + 320 q^{96} - 4132 q^{97} - 2630 q^{98} - 9455 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 8 x^{17} - 299 x^{16} + 2191 x^{15} + 37840 x^{14} - 247598 x^{13} - 2647415 x^{12} + \cdots - 88752454191 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 37\!\cdots\!82 \nu^{17} + \cdots - 16\!\cdots\!21 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 86\!\cdots\!20 \nu^{17} + \cdots + 14\!\cdots\!08 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 96\!\cdots\!65 \nu^{17} + \cdots + 94\!\cdots\!71 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 48\!\cdots\!24 \nu^{17} + \cdots - 17\!\cdots\!28 ) / 15\!\cdots\!61 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 16\!\cdots\!14 \nu^{17} + \cdots + 19\!\cdots\!59 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 16\!\cdots\!65 \nu^{17} + \cdots - 20\!\cdots\!69 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 15\!\cdots\!22 \nu^{17} + \cdots - 62\!\cdots\!20 ) / 22\!\cdots\!23 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 11\!\cdots\!32 \nu^{17} + \cdots - 56\!\cdots\!66 ) / 15\!\cdots\!61 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 35\!\cdots\!73 \nu^{17} + \cdots - 18\!\cdots\!03 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 46\!\cdots\!70 \nu^{17} + \cdots - 20\!\cdots\!82 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 51\!\cdots\!50 \nu^{17} + \cdots - 37\!\cdots\!75 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 79\!\cdots\!02 \nu^{17} + \cdots + 19\!\cdots\!58 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 96\!\cdots\!80 \nu^{17} + \cdots + 30\!\cdots\!23 ) / 46\!\cdots\!83 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 16\!\cdots\!54 \nu^{17} + \cdots + 22\!\cdots\!82 ) / 66\!\cdots\!69 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 46\!\cdots\!87 \nu^{17} + \cdots - 81\!\cdots\!80 ) / 15\!\cdots\!61 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - \beta_{16} + 2 \beta_{15} + \beta_{13} + 2 \beta_{12} - \beta_{10} - \beta_{9} + \beta_{8} + \cdots + 36 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3 \beta_{16} + 12 \beta_{15} - 11 \beta_{14} - 6 \beta_{13} + 2 \beta_{12} + 12 \beta_{11} - 2 \beta_{10} + \cdots + 2009 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 47 \beta_{17} - 133 \beta_{16} + 286 \beta_{15} + 6 \beta_{14} + 107 \beta_{13} + 223 \beta_{12} + \cdots + 4826 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 158 \beta_{17} + 133 \beta_{16} + 1782 \beta_{15} - 633 \beta_{14} - 841 \beta_{13} + 869 \beta_{12} + \cdots + 138658 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 9205 \beta_{17} - 12730 \beta_{16} + 31332 \beta_{15} + 5725 \beta_{14} + 8089 \beta_{13} + \cdots + 563989 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 50776 \beta_{17} - 2710 \beta_{16} + 210012 \beta_{15} + 31605 \beta_{14} - 92792 \beta_{13} + \cdots + 11033021 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1320636 \beta_{17} - 1100820 \beta_{16} + 3192796 \beta_{15} + 1351853 \beta_{14} + 451009 \beta_{13} + \cdots + 62818591 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 9323774 \beta_{17} - 1250327 \beta_{16} + 23238464 \beta_{15} + 13429221 \beta_{14} - 9740489 \beta_{13} + \cdots + 967374607 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 167290991 \beta_{17} - 91756884 \beta_{16} + 319661318 \beta_{15} + 220119148 \beta_{14} + \cdots + 6832350713 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 1360355421 \beta_{17} - 180173382 \beta_{16} + 2518806481 \beta_{15} + 2314681562 \beta_{14} + \cdots + 90603121880 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 19877318550 \beta_{17} - 7575755222 \beta_{16} + 32080146507 \beta_{15} + 30234474849 \beta_{14} + \cdots + 734094023256 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 176217896590 \beta_{17} - 21155732137 \beta_{16} + 270839867619 \beta_{15} + 319656866206 \beta_{14} + \cdots + 8868534584464 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 2276358256426 \beta_{17} - 629209803248 \beta_{16} + 3250104415442 \beta_{15} + 3786996551451 \beta_{14} + \cdots + 78401514071171 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 21311919742425 \beta_{17} - 2305631492651 \beta_{16} + 29012500268375 \beta_{15} + \cdots + 893718141516642 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 254842936006909 \beta_{17} - 53128324367238 \beta_{16} + 332901825837843 \beta_{15} + \cdots + 83\!\cdots\!99 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.38330
−7.34766
−7.16036
−6.12493
−4.67980
−4.46707
−4.22760
−2.60255
−0.230427
0.237003
4.10721
4.70639
5.20658
5.83544
6.70481
7.35951
8.73705
10.3297
−2.00000 −9.38330 4.00000 10.4994 18.7666 −17.4188 −8.00000 61.0463 −20.9988
1.2 −2.00000 −8.34766 4.00000 −3.24714 16.6953 −29.7231 −8.00000 42.6835 6.49427
1.3 −2.00000 −8.16036 4.00000 14.6446 16.3207 25.1719 −8.00000 39.5915 −29.2892
1.4 −2.00000 −7.12493 4.00000 −16.6917 14.2499 6.60478 −8.00000 23.7646 33.3834
1.5 −2.00000 −5.67980 4.00000 −21.2339 11.3596 18.4502 −8.00000 5.26017 42.4677
1.6 −2.00000 −5.46707 4.00000 18.5547 10.9341 0.683479 −8.00000 2.88890 −37.1094
1.7 −2.00000 −5.22760 4.00000 −15.6593 10.4552 −28.8654 −8.00000 0.327799 31.3186
1.8 −2.00000 −3.60255 4.00000 4.79286 7.20510 32.0745 −8.00000 −14.0216 −9.58572
1.9 −2.00000 −1.23043 4.00000 −2.13428 2.46085 8.15129 −8.00000 −25.4860 4.26856
1.10 −2.00000 −0.762997 4.00000 −1.03810 1.52599 −6.09255 −8.00000 −26.4178 2.07620
1.11 −2.00000 3.10721 4.00000 10.1855 −6.21442 −30.6558 −8.00000 −17.3453 −20.3709
1.12 −2.00000 3.70639 4.00000 −12.9085 −7.41277 17.6758 −8.00000 −13.2627 25.8169
1.13 −2.00000 4.20658 4.00000 9.50054 −8.41316 12.2916 −8.00000 −9.30467 −19.0011
1.14 −2.00000 4.83544 4.00000 5.46105 −9.67088 −8.19157 −8.00000 −3.61854 −10.9221
1.15 −2.00000 5.70481 4.00000 −16.8654 −11.4096 3.72165 −8.00000 5.54487 33.7307
1.16 −2.00000 6.35951 4.00000 6.17843 −12.7190 −27.3928 −8.00000 13.4434 −12.3569
1.17 −2.00000 7.73705 4.00000 1.13148 −15.4741 −14.8617 −8.00000 32.8619 −2.26297
1.18 −2.00000 9.32972 4.00000 −17.1703 −18.6594 29.3764 −8.00000 60.0437 34.3406
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(269\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 538.4.a.c 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
538.4.a.c 18 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{18} + 10 T_{3}^{17} - 282 T_{3}^{16} - 2865 T_{3}^{15} + 32445 T_{3}^{14} + 334305 T_{3}^{13} + \cdots + 1533857738490 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(538))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{18} \) Copy content Toggle raw display
$3$ \( T^{18} + \cdots + 1533857738490 \) Copy content Toggle raw display
$5$ \( T^{18} + \cdots - 75\!\cdots\!31 \) Copy content Toggle raw display
$7$ \( T^{18} + \cdots + 12\!\cdots\!50 \) Copy content Toggle raw display
$11$ \( T^{18} + \cdots + 36\!\cdots\!20 \) Copy content Toggle raw display
$13$ \( T^{18} + \cdots - 41\!\cdots\!46 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots - 92\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots - 55\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots - 52\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{18} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots + 10\!\cdots\!32 \) Copy content Toggle raw display
$37$ \( T^{18} + \cdots - 34\!\cdots\!47 \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 62\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots - 23\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots - 45\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots - 42\!\cdots\!60 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots + 36\!\cdots\!23 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots - 33\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots - 57\!\cdots\!90 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots - 33\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots + 14\!\cdots\!85 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots - 68\!\cdots\!48 \) Copy content Toggle raw display
show more
show less