Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [538,3,Mod(187,538)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("538.187");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.c (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.6594382226\) |
Analytic rank: | \(0\) |
Dimension: | \(46\) |
Relative dimension: | \(23\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
187.1 | −1.00000 | − | 1.00000i | −4.16653 | − | 4.16653i | 2.00000i | −6.39863 | 8.33306i | −6.86857 | + | 6.86857i | 2.00000 | − | 2.00000i | 25.7199i | 6.39863 | + | 6.39863i | ||||||||
187.2 | −1.00000 | − | 1.00000i | −3.73758 | − | 3.73758i | 2.00000i | 3.56643 | 7.47516i | 0.891381 | − | 0.891381i | 2.00000 | − | 2.00000i | 18.9390i | −3.56643 | − | 3.56643i | ||||||||
187.3 | −1.00000 | − | 1.00000i | −3.24321 | − | 3.24321i | 2.00000i | 4.65083 | 6.48641i | 4.88017 | − | 4.88017i | 2.00000 | − | 2.00000i | 12.0368i | −4.65083 | − | 4.65083i | ||||||||
187.4 | −1.00000 | − | 1.00000i | −2.93814 | − | 2.93814i | 2.00000i | −0.402162 | 5.87628i | −0.366019 | + | 0.366019i | 2.00000 | − | 2.00000i | 8.26535i | 0.402162 | + | 0.402162i | ||||||||
187.5 | −1.00000 | − | 1.00000i | −2.38876 | − | 2.38876i | 2.00000i | −4.67342 | 4.77753i | 4.02389 | − | 4.02389i | 2.00000 | − | 2.00000i | 2.41237i | 4.67342 | + | 4.67342i | ||||||||
187.6 | −1.00000 | − | 1.00000i | −2.33317 | − | 2.33317i | 2.00000i | −8.37238 | 4.66635i | 7.86410 | − | 7.86410i | 2.00000 | − | 2.00000i | 1.88739i | 8.37238 | + | 8.37238i | ||||||||
187.7 | −1.00000 | − | 1.00000i | −2.21999 | − | 2.21999i | 2.00000i | −7.23380 | 4.43998i | −6.31833 | + | 6.31833i | 2.00000 | − | 2.00000i | 0.856692i | 7.23380 | + | 7.23380i | ||||||||
187.8 | −1.00000 | − | 1.00000i | −1.96983 | − | 1.96983i | 2.00000i | 5.21476 | 3.93966i | −6.17471 | + | 6.17471i | 2.00000 | − | 2.00000i | − | 1.23954i | −5.21476 | − | 5.21476i | |||||||
187.9 | −1.00000 | − | 1.00000i | −1.00320 | − | 1.00320i | 2.00000i | 7.12333 | 2.00640i | 8.68530 | − | 8.68530i | 2.00000 | − | 2.00000i | − | 6.98717i | −7.12333 | − | 7.12333i | |||||||
187.10 | −1.00000 | − | 1.00000i | −0.937502 | − | 0.937502i | 2.00000i | 2.85894 | 1.87500i | −4.26196 | + | 4.26196i | 2.00000 | − | 2.00000i | − | 7.24218i | −2.85894 | − | 2.85894i | |||||||
187.11 | −1.00000 | − | 1.00000i | −0.629399 | − | 0.629399i | 2.00000i | −4.51452 | 1.25880i | −1.06915 | + | 1.06915i | 2.00000 | − | 2.00000i | − | 8.20771i | 4.51452 | + | 4.51452i | |||||||
187.12 | −1.00000 | − | 1.00000i | 0.0373023 | + | 0.0373023i | 2.00000i | 8.88487 | − | 0.0746046i | −3.71313 | + | 3.71313i | 2.00000 | − | 2.00000i | − | 8.99722i | −8.88487 | − | 8.88487i | ||||||
187.13 | −1.00000 | − | 1.00000i | 0.227895 | + | 0.227895i | 2.00000i | −3.63179 | − | 0.455790i | 2.58294 | − | 2.58294i | 2.00000 | − | 2.00000i | − | 8.89613i | 3.63179 | + | 3.63179i | ||||||
187.14 | −1.00000 | − | 1.00000i | 0.800377 | + | 0.800377i | 2.00000i | −1.60802 | − | 1.60075i | 2.83686 | − | 2.83686i | 2.00000 | − | 2.00000i | − | 7.71879i | 1.60802 | + | 1.60802i | ||||||
187.15 | −1.00000 | − | 1.00000i | 0.944590 | + | 0.944590i | 2.00000i | −6.79358 | − | 1.88918i | −6.27837 | + | 6.27837i | 2.00000 | − | 2.00000i | − | 7.21550i | 6.79358 | + | 6.79358i | ||||||
187.16 | −1.00000 | − | 1.00000i | 1.31676 | + | 1.31676i | 2.00000i | 0.898633 | − | 2.63352i | 7.62068 | − | 7.62068i | 2.00000 | − | 2.00000i | − | 5.53228i | −0.898633 | − | 0.898633i | ||||||
187.17 | −1.00000 | − | 1.00000i | 1.35493 | + | 1.35493i | 2.00000i | 4.13408 | − | 2.70986i | 1.20624 | − | 1.20624i | 2.00000 | − | 2.00000i | − | 5.32832i | −4.13408 | − | 4.13408i | ||||||
187.18 | −1.00000 | − | 1.00000i | 2.36640 | + | 2.36640i | 2.00000i | 6.44002 | − | 4.73279i | −3.37537 | + | 3.37537i | 2.00000 | − | 2.00000i | 2.19967i | −6.44002 | − | 6.44002i | |||||||
187.19 | −1.00000 | − | 1.00000i | 2.50903 | + | 2.50903i | 2.00000i | −9.33859 | − | 5.01806i | 7.56973 | − | 7.56973i | 2.00000 | − | 2.00000i | 3.59045i | 9.33859 | + | 9.33859i | |||||||
187.20 | −1.00000 | − | 1.00000i | 2.52768 | + | 2.52768i | 2.00000i | 0.166601 | − | 5.05536i | −8.52444 | + | 8.52444i | 2.00000 | − | 2.00000i | 3.77835i | −0.166601 | − | 0.166601i | |||||||
See all 46 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
269.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 538.3.c.b | ✓ | 46 |
269.c | odd | 4 | 1 | inner | 538.3.c.b | ✓ | 46 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
538.3.c.b | ✓ | 46 | 1.a | even | 1 | 1 | trivial |
538.3.c.b | ✓ | 46 | 269.c | odd | 4 | 1 | inner |