Properties

Label 538.2.e.a.103.7
Level $538$
Weight $2$
Character 538.103
Analytic conductor $4.296$
Analytic rank $0$
Dimension $1452$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(9,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(134))
 
chi = DirichletCharacter(H, H._module([109]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.e (of order \(134\), degree \(66\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(1452\)
Relative dimension: \(22\) over \(\Q(\zeta_{134})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{134}]$

Embedding invariants

Embedding label 103.7
Character \(\chi\) \(=\) 538.103
Dual form 538.2.e.a.491.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366380 - 0.930465i) q^{2} +(0.0596016 + 1.27018i) q^{3} +(-0.731531 + 0.681808i) q^{4} +(-2.72289 - 1.54381i) q^{5} +(1.16002 - 0.520825i) q^{6} +(0.380715 + 0.338511i) q^{7} +(0.902417 + 0.430864i) q^{8} +(1.37702 - 0.129515i) q^{9} +O(q^{10})\) \(q+(-0.366380 - 0.930465i) q^{2} +(0.0596016 + 1.27018i) q^{3} +(-0.731531 + 0.681808i) q^{4} +(-2.72289 - 1.54381i) q^{5} +(1.16002 - 0.520825i) q^{6} +(0.380715 + 0.338511i) q^{7} +(0.902417 + 0.430864i) q^{8} +(1.37702 - 0.129515i) q^{9} +(-0.438854 + 3.09917i) q^{10} +(-0.0463257 + 0.393379i) q^{11} +(-0.909618 - 0.888538i) q^{12} +(-1.38322 - 0.195868i) q^{13} +(0.175487 - 0.478266i) q^{14} +(1.79863 - 3.55057i) q^{15} +(0.0702762 - 0.997528i) q^{16} +(-2.80548 + 0.330384i) q^{17} +(-0.625021 - 1.23382i) q^{18} +(-7.06479 + 2.97496i) q^{19} +(3.04446 - 0.727137i) q^{20} +(-0.407279 + 0.503752i) q^{21} +(0.382999 - 0.101022i) q^{22} +(-6.02483 + 0.282708i) q^{23} +(-0.493488 + 1.17191i) q^{24} +(2.46338 + 4.11674i) q^{25} +(0.324534 + 1.35880i) q^{26} +(0.781423 + 5.51839i) q^{27} +(-0.509305 + 0.0119427i) q^{28} +(-4.62241 - 2.76596i) q^{29} +(-3.96266 - 0.372707i) q^{30} +(-0.742739 + 3.10978i) q^{31} +(-0.953913 + 0.300085i) q^{32} +(-0.502423 - 0.0353959i) q^{33} +(1.33528 + 2.48936i) q^{34} +(-0.514045 - 1.50948i) q^{35} +(-0.919028 + 1.03361i) q^{36} +(-1.72697 - 2.60106i) q^{37} +(5.35650 + 5.48357i) q^{38} +(0.166346 - 1.76861i) q^{39} +(-1.79201 - 2.56636i) q^{40} +(0.255528 + 0.100617i) q^{41} +(0.617942 + 0.194394i) q^{42} +(-3.23110 + 5.39973i) q^{43} +(-0.234320 - 0.319354i) q^{44} +(-3.94941 - 1.77321i) q^{45} +(2.47043 + 5.50232i) q^{46} +(-8.22082 - 5.18471i) q^{47} +(1.27123 + 0.0298090i) q^{48} +(-0.788333 - 6.69421i) q^{49} +(2.92795 - 3.80038i) q^{50} +(-0.586857 - 3.54377i) q^{51} +(1.14541 - 0.799804i) q^{52} +(2.97091 - 9.44397i) q^{53} +(4.84837 - 2.74891i) q^{54} +(0.733444 - 0.999609i) q^{55} +(0.197711 + 0.469515i) q^{56} +(-4.19981 - 8.79623i) q^{57} +(-0.880075 + 5.31439i) q^{58} +(3.00666 + 3.22594i) q^{59} +(1.10505 + 3.82367i) q^{60} +(-2.71365 + 12.6693i) q^{61} +(3.16567 - 0.448270i) q^{62} +(0.568094 + 0.416828i) q^{63} +(0.628713 + 0.777638i) q^{64} +(3.46396 + 2.66876i) q^{65} +(0.151143 + 0.480455i) q^{66} +(7.13520 + 6.65021i) q^{67} +(1.82704 - 2.15449i) q^{68} +(-0.718179 - 7.63576i) q^{69} +(-1.21618 + 1.03135i) q^{70} +(13.5129 - 4.95820i) q^{71} +(1.29845 + 0.476431i) q^{72} +(2.04061 + 1.73047i) q^{73} +(-1.78747 + 2.55986i) q^{74} +(-5.08217 + 3.37430i) q^{75} +(3.13976 - 6.99311i) q^{76} +(-0.150800 + 0.134084i) q^{77} +(-1.70657 + 0.493203i) q^{78} +(0.230582 + 0.874191i) q^{79} +(-1.73135 + 2.60766i) q^{80} +(-2.88624 + 0.547775i) q^{81} -0.274623i q^{82} +(1.71926 + 9.05883i) q^{83} +(-0.0455247 - 0.646196i) q^{84} +(8.14907 + 3.43155i) q^{85} +(6.20807 + 1.02807i) q^{86} +(3.23776 - 6.03614i) q^{87} +(-0.211298 + 0.335032i) q^{88} +(9.36590 - 3.18950i) q^{89} +(-0.202920 + 4.32446i) q^{90} +(-0.460308 - 0.542805i) q^{91} +(4.21460 - 4.31459i) q^{92} +(-3.99425 - 0.758062i) q^{93} +(-1.81225 + 9.54877i) q^{94} +(23.8294 + 2.80624i) q^{95} +(-0.438016 - 1.19375i) q^{96} +(0.967228 + 4.51573i) q^{97} +(-5.93990 + 3.18614i) q^{98} +(-0.0128428 + 0.547690i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1452 q + 22 q^{4} - 2 q^{5} + 2 q^{6} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 1452 q + 22 q^{4} - 2 q^{5} + 2 q^{6} + 20 q^{9} + 2 q^{11} - 10 q^{13} + 12 q^{14} - 22 q^{16} + 2 q^{20} + 12 q^{21} - 4 q^{23} - 2 q^{24} - 24 q^{25} - 8 q^{30} - 12 q^{34} - 20 q^{36} - 396 q^{37} - 2 q^{38} + 24 q^{41} + 14 q^{43} - 2 q^{44} - 42 q^{45} - 402 q^{47} + 22 q^{49} + 12 q^{51} + 10 q^{52} - 10 q^{53} - 8 q^{54} - 4 q^{55} - 12 q^{56} + 16 q^{57} - 18 q^{58} - 268 q^{60} - 2 q^{61} + 4 q^{62} + 22 q^{64} + 16 q^{65} + 40 q^{66} + 6 q^{67} - 106 q^{73} + 40 q^{78} + 40 q^{79} - 2 q^{80} - 14 q^{81} - 402 q^{83} - 12 q^{84} - 100 q^{87} + 4 q^{92} - 340 q^{93} + 2 q^{96} - 64 q^{97} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{51}{134}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366380 0.930465i −0.259070 0.657938i
\(3\) 0.0596016 + 1.27018i 0.0344110 + 0.733338i 0.946376 + 0.323069i \(0.104714\pi\)
−0.911965 + 0.410269i \(0.865435\pi\)
\(4\) −0.731531 + 0.681808i −0.365766 + 0.340904i
\(5\) −2.72289 1.54381i −1.21771 0.690415i −0.256585 0.966522i \(-0.582597\pi\)
−0.961127 + 0.276107i \(0.910956\pi\)
\(6\) 1.16002 0.520825i 0.473576 0.212626i
\(7\) 0.380715 + 0.338511i 0.143897 + 0.127945i 0.733333 0.679869i \(-0.237964\pi\)
−0.589436 + 0.807815i \(0.700650\pi\)
\(8\) 0.902417 + 0.430864i 0.319053 + 0.152333i
\(9\) 1.37702 0.129515i 0.459006 0.0431717i
\(10\) −0.438854 + 3.09917i −0.138778 + 0.980045i
\(11\) −0.0463257 + 0.393379i −0.0139677 + 0.118608i −0.998349 0.0574425i \(-0.981705\pi\)
0.984381 + 0.176051i \(0.0563323\pi\)
\(12\) −0.909618 0.888538i −0.262584 0.256499i
\(13\) −1.38322 0.195868i −0.383635 0.0543241i −0.0542690 0.998526i \(-0.517283\pi\)
−0.329366 + 0.944202i \(0.606835\pi\)
\(14\) 0.175487 0.478266i 0.0469008 0.127822i
\(15\) 1.79863 3.55057i 0.464404 0.916752i
\(16\) 0.0702762 0.997528i 0.0175690 0.249382i
\(17\) −2.80548 + 0.330384i −0.680430 + 0.0801298i −0.450094 0.892981i \(-0.648609\pi\)
−0.230336 + 0.973111i \(0.573983\pi\)
\(18\) −0.625021 1.23382i −0.147319 0.290813i
\(19\) −7.06479 + 2.97496i −1.62077 + 0.682503i −0.995218 0.0976762i \(-0.968859\pi\)
−0.625556 + 0.780180i \(0.715128\pi\)
\(20\) 3.04446 0.727137i 0.680762 0.162593i
\(21\) −0.407279 + 0.503752i −0.0888755 + 0.109928i
\(22\) 0.382999 0.101022i 0.0816556 0.0215379i
\(23\) −6.02483 + 0.282708i −1.25626 + 0.0589487i −0.664577 0.747219i \(-0.731388\pi\)
−0.591686 + 0.806168i \(0.701538\pi\)
\(24\) −0.493488 + 1.17191i −0.100733 + 0.239215i
\(25\) 2.46338 + 4.11674i 0.492676 + 0.823348i
\(26\) 0.324534 + 1.35880i 0.0636464 + 0.266482i
\(27\) 0.781423 + 5.51839i 0.150385 + 1.06201i
\(28\) −0.509305 + 0.0119427i −0.0962495 + 0.00225696i
\(29\) −4.62241 2.76596i −0.858360 0.513627i 0.0154577 0.999881i \(-0.495079\pi\)
−0.873818 + 0.486254i \(0.838363\pi\)
\(30\) −3.96266 0.372707i −0.723479 0.0680467i
\(31\) −0.742739 + 3.10978i −0.133400 + 0.558534i 0.864989 + 0.501791i \(0.167325\pi\)
−0.998389 + 0.0567429i \(0.981928\pi\)
\(32\) −0.953913 + 0.300085i −0.168630 + 0.0530480i
\(33\) −0.502423 0.0353959i −0.0874606 0.00616163i
\(34\) 1.33528 + 2.48936i 0.228999 + 0.426922i
\(35\) −0.514045 1.50948i −0.0868895 0.255149i
\(36\) −0.919028 + 1.03361i −0.153171 + 0.172268i
\(37\) −1.72697 2.60106i −0.283912 0.427612i 0.663235 0.748411i \(-0.269183\pi\)
−0.947147 + 0.320799i \(0.896049\pi\)
\(38\) 5.35650 + 5.48357i 0.868939 + 0.889553i
\(39\) 0.166346 1.76861i 0.0266366 0.283204i
\(40\) −1.79201 2.56636i −0.283341 0.405777i
\(41\) 0.255528 + 0.100617i 0.0399067 + 0.0157137i 0.386249 0.922394i \(-0.373771\pi\)
−0.346342 + 0.938108i \(0.612576\pi\)
\(42\) 0.617942 + 0.194394i 0.0953505 + 0.0299957i
\(43\) −3.23110 + 5.39973i −0.492738 + 0.823451i −0.999248 0.0387835i \(-0.987652\pi\)
0.506510 + 0.862234i \(0.330935\pi\)
\(44\) −0.234320 0.319354i −0.0353251 0.0481445i
\(45\) −3.94941 1.77321i −0.588744 0.264334i
\(46\) 2.47043 + 5.50232i 0.364245 + 0.811272i
\(47\) −8.22082 5.18471i −1.19913 0.756268i −0.223290 0.974752i \(-0.571680\pi\)
−0.975840 + 0.218485i \(0.929889\pi\)
\(48\) 1.27123 + 0.0298090i 0.183486 + 0.00430256i
\(49\) −0.788333 6.69421i −0.112619 0.956315i
\(50\) 2.92795 3.80038i 0.414075 0.537455i
\(51\) −0.586857 3.54377i −0.0821765 0.496227i
\(52\) 1.14541 0.799804i 0.158840 0.110913i
\(53\) 2.97091 9.44397i 0.408086 1.29723i −0.495420 0.868654i \(-0.664986\pi\)
0.903506 0.428576i \(-0.140984\pi\)
\(54\) 4.84837 2.74891i 0.659779 0.374080i
\(55\) 0.733444 0.999609i 0.0988976 0.134787i
\(56\) 0.197711 + 0.469515i 0.0264203 + 0.0627415i
\(57\) −4.19981 8.79623i −0.556278 1.16509i
\(58\) −0.880075 + 5.31439i −0.115560 + 0.697813i
\(59\) 3.00666 + 3.22594i 0.391434 + 0.419981i 0.896461 0.443122i \(-0.146129\pi\)
−0.505027 + 0.863104i \(0.668517\pi\)
\(60\) 1.10505 + 3.82367i 0.142661 + 0.493634i
\(61\) −2.71365 + 12.6693i −0.347447 + 1.62214i 0.372447 + 0.928054i \(0.378519\pi\)
−0.719893 + 0.694085i \(0.755809\pi\)
\(62\) 3.16567 0.448270i 0.402041 0.0569304i
\(63\) 0.568094 + 0.416828i 0.0715731 + 0.0525154i
\(64\) 0.628713 + 0.777638i 0.0785891 + 0.0972047i
\(65\) 3.46396 + 2.66876i 0.429651 + 0.331019i
\(66\) 0.151143 + 0.480455i 0.0186044 + 0.0591400i
\(67\) 7.13520 + 6.65021i 0.871704 + 0.812453i 0.983430 0.181286i \(-0.0580261\pi\)
−0.111726 + 0.993739i \(0.535638\pi\)
\(68\) 1.82704 2.15449i 0.221561 0.261270i
\(69\) −0.718179 7.63576i −0.0864586 0.919237i
\(70\) −1.21618 + 1.03135i −0.145362 + 0.123269i
\(71\) 13.5129 4.95820i 1.60369 0.588430i 0.622693 0.782467i \(-0.286039\pi\)
0.980994 + 0.194037i \(0.0621581\pi\)
\(72\) 1.29845 + 0.476431i 0.153024 + 0.0561479i
\(73\) 2.04061 + 1.73047i 0.238836 + 0.202537i 0.758210 0.652010i \(-0.226074\pi\)
−0.519375 + 0.854547i \(0.673835\pi\)
\(74\) −1.78747 + 2.55986i −0.207789 + 0.297578i
\(75\) −5.08217 + 3.37430i −0.586839 + 0.389630i
\(76\) 3.13976 6.99311i 0.360155 0.802164i
\(77\) −0.150800 + 0.134084i −0.0171853 + 0.0152802i
\(78\) −1.70657 + 0.493203i −0.193231 + 0.0558442i
\(79\) 0.230582 + 0.874191i 0.0259425 + 0.0983542i 0.978650 0.205536i \(-0.0658936\pi\)
−0.952707 + 0.303890i \(0.901715\pi\)
\(80\) −1.73135 + 2.60766i −0.193571 + 0.291545i
\(81\) −2.88624 + 0.547775i −0.320693 + 0.0608639i
\(82\) 0.274623i 0.0303271i
\(83\) 1.71926 + 9.05883i 0.188713 + 0.994336i 0.941739 + 0.336345i \(0.109191\pi\)
−0.753026 + 0.657991i \(0.771406\pi\)
\(84\) −0.0455247 0.646196i −0.00496716 0.0705057i
\(85\) 8.14907 + 3.43155i 0.883890 + 0.372204i
\(86\) 6.20807 + 1.02807i 0.669433 + 0.110860i
\(87\) 3.23776 6.03614i 0.347125 0.647142i
\(88\) −0.211298 + 0.335032i −0.0225244 + 0.0357145i
\(89\) 9.36590 3.18950i 0.992783 0.338086i 0.221905 0.975068i \(-0.428773\pi\)
0.770879 + 0.636982i \(0.219817\pi\)
\(90\) −0.202920 + 4.32446i −0.0213897 + 0.455838i
\(91\) −0.460308 0.542805i −0.0482533 0.0569014i
\(92\) 4.21460 4.31459i 0.439402 0.449827i
\(93\) −3.99425 0.758062i −0.414184 0.0786074i
\(94\) −1.81225 + 9.54877i −0.186919 + 0.984880i
\(95\) 23.8294 + 2.80624i 2.44485 + 0.287914i
\(96\) −0.438016 1.19375i −0.0447048 0.121837i
\(97\) 0.967228 + 4.51573i 0.0982072 + 0.458503i 0.999671 + 0.0256490i \(0.00816522\pi\)
−0.901464 + 0.432854i \(0.857506\pi\)
\(98\) −5.93990 + 3.18614i −0.600020 + 0.321849i
\(99\) −0.0128428 + 0.547690i −0.00129075 + 0.0550449i
\(100\) −4.60887 1.33197i −0.460887 0.133197i
\(101\) −11.4028 + 5.44434i −1.13462 + 0.541732i −0.902387 0.430927i \(-0.858187\pi\)
−0.232238 + 0.972659i \(0.574605\pi\)
\(102\) −3.08234 + 1.84442i −0.305197 + 0.182625i
\(103\) −4.30870 + 2.71741i −0.424549 + 0.267754i −0.728651 0.684885i \(-0.759852\pi\)
0.304102 + 0.952639i \(0.401643\pi\)
\(104\) −1.16385 0.772733i −0.114124 0.0757727i
\(105\) 1.88667 0.742896i 0.184120 0.0724992i
\(106\) −9.87577 + 0.695752i −0.959220 + 0.0675774i
\(107\) −10.1718 16.1284i −0.983349 1.55919i −0.819798 0.572653i \(-0.805914\pi\)
−0.163551 0.986535i \(-0.552295\pi\)
\(108\) −4.33411 3.50409i −0.417050 0.337181i
\(109\) −5.83927 1.25072i −0.559300 0.119797i −0.0789578 0.996878i \(-0.525159\pi\)
−0.480342 + 0.877081i \(0.659488\pi\)
\(110\) −1.19882 0.316208i −0.114303 0.0301492i
\(111\) 3.20088 2.34859i 0.303814 0.222918i
\(112\) 0.364430 0.355984i 0.0344354 0.0336374i
\(113\) −8.45205 10.9705i −0.795102 1.03202i −0.998598 0.0529406i \(-0.983141\pi\)
0.203495 0.979076i \(-0.434770\pi\)
\(114\) −6.64586 + 7.13054i −0.622442 + 0.667836i
\(115\) 16.8414 + 8.53144i 1.57047 + 0.795561i
\(116\) 5.26729 1.12821i 0.489056 0.104751i
\(117\) −1.93008 0.0905669i −0.178436 0.00837291i
\(118\) 1.90004 3.97952i 0.174913 0.366344i
\(119\) −1.17993 0.823906i −0.108164 0.0755274i
\(120\) 3.15292 2.42913i 0.287821 0.221748i
\(121\) 10.5465 + 2.51891i 0.958770 + 0.228992i
\(122\) 12.7826 2.11683i 1.15728 0.191648i
\(123\) −0.112571 + 0.330562i −0.0101502 + 0.0298058i
\(124\) −1.57694 2.78131i −0.141613 0.249769i
\(125\) 0.0148605 + 0.633736i 0.00132916 + 0.0566831i
\(126\) 0.179706 0.681309i 0.0160095 0.0606958i
\(127\) −1.40214 1.57695i −0.124420 0.139932i 0.681821 0.731519i \(-0.261188\pi\)
−0.806241 + 0.591587i \(0.798502\pi\)
\(128\) 0.493217 0.869906i 0.0435946 0.0768896i
\(129\) −7.05119 3.78224i −0.620823 0.333007i
\(130\) 1.21406 4.20087i 0.106480 0.368441i
\(131\) 6.88570 3.48813i 0.601607 0.304759i −0.124631 0.992203i \(-0.539775\pi\)
0.726238 + 0.687444i \(0.241267\pi\)
\(132\) 0.391671 0.316663i 0.0340906 0.0275619i
\(133\) −3.69673 1.25890i −0.320547 0.109160i
\(134\) 3.57359 9.07556i 0.308712 0.784009i
\(135\) 6.39164 16.2323i 0.550104 1.39706i
\(136\) −2.67407 0.910637i −0.229299 0.0780865i
\(137\) −1.12001 + 0.905514i −0.0956885 + 0.0773633i −0.675366 0.737483i \(-0.736014\pi\)
0.579678 + 0.814846i \(0.303179\pi\)
\(138\) −6.84168 + 3.46583i −0.582402 + 0.295031i
\(139\) 1.26676 4.38322i 0.107445 0.371780i −0.888806 0.458283i \(-0.848465\pi\)
0.996252 + 0.0865027i \(0.0275691\pi\)
\(140\) 1.40522 + 0.753753i 0.118762 + 0.0637038i
\(141\) 6.09553 10.7509i 0.513336 0.905391i
\(142\) −9.56429 10.7567i −0.802617 0.902683i
\(143\) 0.141129 0.535055i 0.0118018 0.0447436i
\(144\) −0.0324233 1.38272i −0.00270194 0.115226i
\(145\) 8.31617 + 14.6676i 0.690620 + 1.21807i
\(146\) 0.862507 2.53273i 0.0713815 0.209610i
\(147\) 8.45585 1.40031i 0.697427 0.115496i
\(148\) 3.03676 + 0.725297i 0.249620 + 0.0596191i
\(149\) −12.7897 + 9.85362i −1.04777 + 0.807240i −0.981673 0.190573i \(-0.938965\pi\)
−0.0660978 + 0.997813i \(0.521055\pi\)
\(150\) 5.00167 + 3.49251i 0.408385 + 0.285162i
\(151\) 4.52343 9.47405i 0.368112 0.770987i −0.631880 0.775066i \(-0.717716\pi\)
0.999992 + 0.00407921i \(0.00129845\pi\)
\(152\) −7.65719 0.359305i −0.621080 0.0291435i
\(153\) −3.82041 + 0.818297i −0.308862 + 0.0661554i
\(154\) 0.180010 + 0.0911889i 0.0145056 + 0.00734821i
\(155\) 6.82332 7.32094i 0.548062 0.588032i
\(156\) 1.08416 + 1.40721i 0.0868024 + 0.112667i
\(157\) 7.62690 7.45016i 0.608693 0.594587i −0.328026 0.944669i \(-0.606383\pi\)
0.936719 + 0.350081i \(0.113846\pi\)
\(158\) 0.728924 0.534834i 0.0579901 0.0425491i
\(159\) 12.1726 + 3.21071i 0.965350 + 0.254626i
\(160\) 3.06067 + 0.655567i 0.241967 + 0.0518272i
\(161\) −2.38944 1.93184i −0.188314 0.152251i
\(162\) 1.56715 + 2.48485i 0.123127 + 0.195228i
\(163\) −12.9523 + 0.912493i −1.01450 + 0.0714720i −0.567762 0.823192i \(-0.692191\pi\)
−0.446739 + 0.894664i \(0.647415\pi\)
\(164\) −0.255528 + 0.100617i −0.0199533 + 0.00785683i
\(165\) 1.31340 + 0.872026i 0.102248 + 0.0678872i
\(166\) 7.79902 4.91869i 0.605322 0.381764i
\(167\) 13.2552 7.93165i 1.02572 0.613770i 0.101182 0.994868i \(-0.467738\pi\)
0.924534 + 0.381098i \(0.124454\pi\)
\(168\) −0.584583 + 0.279112i −0.0451016 + 0.0215340i
\(169\) −10.6140 3.06746i −0.816460 0.235959i
\(170\) 0.207282 8.83967i 0.0158978 0.677972i
\(171\) −9.34304 + 5.01158i −0.714480 + 0.383245i
\(172\) −1.31793 6.15306i −0.100491 0.469166i
\(173\) 2.58976 + 7.05805i 0.196896 + 0.536613i 0.998089 0.0617925i \(-0.0196817\pi\)
−0.801193 + 0.598406i \(0.795801\pi\)
\(174\) −6.80267 0.801106i −0.515709 0.0607317i
\(175\) −0.455718 + 2.40119i −0.0344490 + 0.181513i
\(176\) 0.389151 + 0.0738564i 0.0293334 + 0.00556713i
\(177\) −3.91831 + 4.01127i −0.294518 + 0.301505i
\(178\) −6.39920 7.54608i −0.479640 0.565602i
\(179\) −0.329864 + 7.02978i −0.0246552 + 0.525430i 0.951407 + 0.307937i \(0.0996387\pi\)
−0.976062 + 0.217493i \(0.930212\pi\)
\(180\) 4.09810 1.39559i 0.305455 0.104021i
\(181\) 9.60967 15.2370i 0.714281 1.13256i −0.271159 0.962535i \(-0.587407\pi\)
0.985440 0.170023i \(-0.0543841\pi\)
\(182\) −0.336413 + 0.627173i −0.0249366 + 0.0464892i
\(183\) −16.2540 2.69170i −1.20153 0.198976i
\(184\) −5.55872 2.34076i −0.409794 0.172563i
\(185\) 0.686787 + 9.74853i 0.0504936 + 0.716726i
\(186\) 0.758062 + 3.99425i 0.0555838 + 0.292872i
\(187\) 1.11892i 0.0818238i
\(188\) 9.54877 1.81225i 0.696415 0.132172i
\(189\) −1.57054 + 2.36545i −0.114240 + 0.172061i
\(190\) −6.11952 23.2006i −0.443956 1.68315i
\(191\) 0.0853392 0.0246632i 0.00617493 0.00178457i −0.274551 0.961573i \(-0.588529\pi\)
0.280726 + 0.959788i \(0.409425\pi\)
\(192\) −0.950266 + 0.844926i −0.0685795 + 0.0609773i
\(193\) −1.98984 + 4.43191i −0.143232 + 0.319016i −0.969832 0.243773i \(-0.921615\pi\)
0.826601 + 0.562789i \(0.190272\pi\)
\(194\) 3.84736 2.55445i 0.276224 0.183399i
\(195\) −3.18334 + 4.55891i −0.227964 + 0.326470i
\(196\) 5.14085 + 4.35953i 0.367204 + 0.311395i
\(197\) −8.45413 3.10202i −0.602332 0.221010i 0.0250948 0.999685i \(-0.492011\pi\)
−0.627427 + 0.778676i \(0.715892\pi\)
\(198\) 0.514312 0.188713i 0.0365506 0.0134113i
\(199\) 3.24054 2.74804i 0.229716 0.194803i −0.524536 0.851388i \(-0.675761\pi\)
0.754252 + 0.656585i \(0.228000\pi\)
\(200\) 0.449243 + 4.77640i 0.0317663 + 0.337742i
\(201\) −8.02168 + 9.45934i −0.565806 + 0.667211i
\(202\) 9.24354 + 8.61524i 0.650374 + 0.606166i
\(203\) −0.823510 2.61778i −0.0577991 0.183732i
\(204\) 2.84548 + 2.19226i 0.199223 + 0.153489i
\(205\) −0.540439 0.668455i −0.0377459 0.0466869i
\(206\) 4.10708 + 3.01349i 0.286154 + 0.209960i
\(207\) −8.25969 + 1.16960i −0.574088 + 0.0812929i
\(208\) −0.292591 + 1.36603i −0.0202876 + 0.0947173i
\(209\) −0.843007 2.91696i −0.0583120 0.201770i
\(210\) −1.38248 1.48330i −0.0954001 0.102357i
\(211\) −0.597300 + 3.60683i −0.0411198 + 0.248304i −0.999281 0.0379263i \(-0.987925\pi\)
0.958161 + 0.286231i \(0.0924024\pi\)
\(212\) 4.26566 + 8.93415i 0.292967 + 0.613600i
\(213\) 7.10318 + 16.8683i 0.486702 + 1.15580i
\(214\) −11.2801 + 15.3737i −0.771094 + 1.05092i
\(215\) 17.1341 9.71463i 1.16854 0.662532i
\(216\) −1.67250 + 5.31657i −0.113799 + 0.361747i
\(217\) −1.33547 + 0.932516i −0.0906575 + 0.0633033i
\(218\) 0.975642 + 5.89147i 0.0660788 + 0.399021i
\(219\) −2.07639 + 2.69508i −0.140309 + 0.182117i
\(220\) 0.145004 + 1.23131i 0.00977615 + 0.0830151i
\(221\) 3.94530 + 0.0925135i 0.265390 + 0.00622313i
\(222\) −3.35802 2.11784i −0.225376 0.142140i
\(223\) 0.747633 + 1.66518i 0.0500652 + 0.111509i 0.935597 0.353070i \(-0.114862\pi\)
−0.885532 + 0.464579i \(0.846206\pi\)
\(224\) −0.464751 0.208664i −0.0310525 0.0139419i
\(225\) 3.92530 + 5.34978i 0.261687 + 0.356652i
\(226\) −7.11099 + 11.8837i −0.473016 + 0.790493i
\(227\) −15.6485 4.92275i −1.03863 0.326734i −0.267596 0.963531i \(-0.586229\pi\)
−0.771032 + 0.636797i \(0.780259\pi\)
\(228\) 9.06963 + 3.57126i 0.600651 + 0.236512i
\(229\) 1.89956 + 2.72039i 0.125527 + 0.179768i 0.877720 0.479174i \(-0.159064\pi\)
−0.752193 + 0.658942i \(0.771004\pi\)
\(230\) 1.76786 18.7961i 0.116569 1.23938i
\(231\) −0.179298 0.183552i −0.0117969 0.0120768i
\(232\) −2.97959 4.48768i −0.195619 0.294631i
\(233\) −10.9461 + 12.3108i −0.717106 + 0.806510i −0.987729 0.156175i \(-0.950084\pi\)
0.270623 + 0.962685i \(0.412770\pi\)
\(234\) 0.622874 + 1.82906i 0.0407186 + 0.119569i
\(235\) 14.3802 + 26.8088i 0.938058 + 1.74881i
\(236\) −4.39894 0.309907i −0.286346 0.0201732i
\(237\) −1.09664 + 0.344983i −0.0712341 + 0.0224090i
\(238\) −0.334314 + 1.39974i −0.0216704 + 0.0907320i
\(239\) 4.34036 + 0.408232i 0.280755 + 0.0264063i 0.233083 0.972457i \(-0.425119\pi\)
0.0476713 + 0.998863i \(0.484820\pi\)
\(240\) −3.41539 2.04370i −0.220462 0.131921i
\(241\) −6.53172 + 0.153162i −0.420745 + 0.00986606i −0.233290 0.972407i \(-0.574949\pi\)
−0.187455 + 0.982273i \(0.560024\pi\)
\(242\) −1.52026 10.7360i −0.0977258 0.690136i
\(243\) 3.01642 + 12.6295i 0.193504 + 0.810183i
\(244\) −6.65291 11.1182i −0.425909 0.711768i
\(245\) −8.18807 + 19.4446i −0.523117 + 1.24227i
\(246\) 0.348821 0.0163680i 0.0222400 0.00104359i
\(247\) 10.3548 2.73125i 0.658863 0.173785i
\(248\) −2.01015 + 2.48630i −0.127645 + 0.157880i
\(249\) −11.4039 + 2.72369i −0.722690 + 0.172607i
\(250\) 0.584225 0.246016i 0.0369496 0.0155594i
\(251\) 8.01496 + 15.8218i 0.505900 + 0.998665i 0.992174 + 0.124859i \(0.0398479\pi\)
−0.486275 + 0.873806i \(0.661645\pi\)
\(252\) −0.699775 + 0.0824080i −0.0440817 + 0.00519121i
\(253\) 0.167893 2.38314i 0.0105553 0.149827i
\(254\) −0.953583 + 1.88241i −0.0598331 + 0.118113i
\(255\) −3.87298 + 10.5553i −0.242535 + 0.660998i
\(256\) −0.990123 0.140205i −0.0618827 0.00876280i
\(257\) −12.9585 12.6582i −0.808327 0.789595i 0.172390 0.985029i \(-0.444851\pi\)
−0.980717 + 0.195434i \(0.937389\pi\)
\(258\) −0.935822 + 7.94662i −0.0582618 + 0.494735i
\(259\) 0.223006 1.57486i 0.0138569 0.0978572i
\(260\) −4.35357 + 0.409474i −0.269997 + 0.0253945i
\(261\) −6.72338 3.21011i −0.416167 0.198701i
\(262\) −5.76837 5.12893i −0.356371 0.316866i
\(263\) 29.1025 13.0664i 1.79454 0.805710i 0.823294 0.567614i \(-0.192134\pi\)
0.971242 0.238096i \(-0.0765231\pi\)
\(264\) −0.438144 0.248418i −0.0269659 0.0152890i
\(265\) −22.6692 + 21.1283i −1.39256 + 1.29790i
\(266\) 0.183046 + 3.90091i 0.0112233 + 0.239180i
\(267\) 4.60946 + 11.7063i 0.282094 + 0.716412i
\(268\) −9.75379 −0.595808
\(269\) −12.5017 10.6163i −0.762244 0.647290i
\(270\) −17.4454 −1.06169
\(271\) 2.83407 + 7.19744i 0.172157 + 0.437214i 0.990499 0.137518i \(-0.0439125\pi\)
−0.818342 + 0.574731i \(0.805107\pi\)
\(272\) 0.132408 + 2.82176i 0.00802842 + 0.171095i
\(273\) 0.662024 0.617025i 0.0400675 0.0373440i
\(274\) 1.25290 + 0.710364i 0.0756903 + 0.0429146i
\(275\) −1.73356 + 0.778332i −0.104537 + 0.0469352i
\(276\) 5.73149 + 5.09613i 0.344995 + 0.306751i
\(277\) −2.44777 1.16870i −0.147072 0.0702205i 0.355895 0.934526i \(-0.384176\pi\)
−0.502967 + 0.864306i \(0.667758\pi\)
\(278\) −4.54255 + 0.427249i −0.272444 + 0.0256247i
\(279\) −0.620001 + 4.37842i −0.0371185 + 0.262129i
\(280\) 0.186498 1.58367i 0.0111454 0.0946421i
\(281\) 16.1157 + 15.7422i 0.961380 + 0.939101i 0.998185 0.0602219i \(-0.0191808\pi\)
−0.0368054 + 0.999322i \(0.511718\pi\)
\(282\) −12.2366 1.73275i −0.728682 0.103184i
\(283\) −1.97084 + 5.37126i −0.117154 + 0.319288i −0.983702 0.179806i \(-0.942453\pi\)
0.866548 + 0.499094i \(0.166334\pi\)
\(284\) −6.50458 + 12.8403i −0.385976 + 0.761930i
\(285\) −2.14415 + 30.4349i −0.127008 + 1.80281i
\(286\) −0.549557 + 0.0647178i −0.0324960 + 0.00382684i
\(287\) 0.0632233 + 0.124805i 0.00373195 + 0.00736702i
\(288\) −1.27469 + 0.536768i −0.0751118 + 0.0316294i
\(289\) −8.77335 + 2.09542i −0.516079 + 0.123260i
\(290\) 10.6008 13.1118i 0.622499 0.769952i
\(291\) −5.67814 + 1.49770i −0.332858 + 0.0877966i
\(292\) −2.67262 + 0.125410i −0.156403 + 0.00733905i
\(293\) −6.25580 + 14.8560i −0.365468 + 0.867894i 0.630331 + 0.776327i \(0.282919\pi\)
−0.995799 + 0.0915679i \(0.970812\pi\)
\(294\) −4.40099 7.35483i −0.256671 0.428942i
\(295\) −3.20656 13.4256i −0.186693 0.781668i
\(296\) −0.437744 3.09133i −0.0254433 0.179680i
\(297\) −2.20702 + 0.0517524i −0.128064 + 0.00300298i
\(298\) 13.8543 + 8.29018i 0.802560 + 0.480237i
\(299\) 8.38902 + 0.789027i 0.485150 + 0.0456306i
\(300\) 1.41715 5.93347i 0.0818189 0.342569i
\(301\) −3.05800 + 0.961993i −0.176260 + 0.0554484i
\(302\) −10.4726 0.737796i −0.602629 0.0424554i
\(303\) −7.59491 14.1591i −0.436316 0.813421i
\(304\) 2.47112 + 7.25639i 0.141729 + 0.416183i
\(305\) 26.9480 30.3077i 1.54304 1.73542i
\(306\) 2.16112 + 3.25495i 0.123543 + 0.186073i
\(307\) 6.04416 + 6.18755i 0.344958 + 0.353142i 0.865692 0.500577i \(-0.166879\pi\)
−0.520734 + 0.853719i \(0.674342\pi\)
\(308\) 0.0188959 0.200903i 0.00107669 0.0114475i
\(309\) −3.70840 5.31085i −0.210964 0.302124i
\(310\) −9.31181 3.66662i −0.528875 0.208250i
\(311\) 9.67869 + 3.04475i 0.548828 + 0.172652i 0.561814 0.827264i \(-0.310104\pi\)
−0.0129856 + 0.999916i \(0.504134\pi\)
\(312\) 0.912141 1.52435i 0.0516398 0.0862992i
\(313\) 3.72173 + 5.07234i 0.210365 + 0.286705i 0.898588 0.438794i \(-0.144594\pi\)
−0.688223 + 0.725499i \(0.741609\pi\)
\(314\) −9.72646 4.36698i −0.548896 0.246443i
\(315\) −0.903350 2.01201i −0.0508980 0.113364i
\(316\) −0.764708 0.482286i −0.0430182 0.0271307i
\(317\) −0.612051 0.0143520i −0.0343762 0.000806089i 0.00625100 0.999980i \(-0.498010\pi\)
−0.0406272 + 0.999174i \(0.512936\pi\)
\(318\) −1.47234 12.5025i −0.0825648 0.701107i
\(319\) 1.30221 1.69022i 0.0729097 0.0946344i
\(320\) −0.511386 3.08804i −0.0285874 0.172626i
\(321\) 19.8796 13.8813i 1.10957 0.774780i
\(322\) −0.922068 + 2.93108i −0.0513849 + 0.163343i
\(323\) 18.8373 10.6803i 1.04813 0.594268i
\(324\) 1.73790 2.36857i 0.0965498 0.131587i
\(325\) −2.60105 6.17684i −0.144280 0.342630i
\(326\) 5.59450 + 11.7173i 0.309851 + 0.648963i
\(327\) 1.24060 7.49145i 0.0686055 0.414278i
\(328\) 0.187240 + 0.200896i 0.0103386 + 0.0110926i
\(329\) −1.37471 4.75674i −0.0757901 0.262248i
\(330\) 0.330188 1.54156i 0.0181763 0.0848602i
\(331\) 0.942350 0.133440i 0.0517962 0.00733453i −0.114259 0.993451i \(-0.536449\pi\)
0.166055 + 0.986116i \(0.446897\pi\)
\(332\) −7.43407 5.45461i −0.407998 0.299361i
\(333\) −2.71495 3.35804i −0.148778 0.184020i
\(334\) −12.2366 9.42748i −0.669555 0.515849i
\(335\) −9.16166 29.1232i −0.500555 1.59117i
\(336\) 0.473884 + 0.441673i 0.0258525 + 0.0240953i
\(337\) −19.1806 + 22.6182i −1.04483 + 1.23209i −0.0727769 + 0.997348i \(0.523186\pi\)
−0.972057 + 0.234743i \(0.924575\pi\)
\(338\) 1.03458 + 10.9998i 0.0562739 + 0.598310i
\(339\) 13.4307 11.3895i 0.729456 0.618591i
\(340\) −8.30095 + 3.04581i −0.450182 + 0.165182i
\(341\) −1.18892 0.436241i −0.0643834 0.0236238i
\(342\) 8.08620 + 6.85724i 0.437252 + 0.370797i
\(343\) 4.00757 5.73929i 0.216388 0.309893i
\(344\) −5.24234 + 3.48064i −0.282648 + 0.187664i
\(345\) −9.83267 + 21.9000i −0.529373 + 1.17906i
\(346\) 5.61843 4.99561i 0.302049 0.268566i
\(347\) 0.187041 0.0540554i 0.0100409 0.00290184i −0.272616 0.962123i \(-0.587889\pi\)
0.282657 + 0.959221i \(0.408784\pi\)
\(348\) 1.74696 + 6.62316i 0.0936469 + 0.355039i
\(349\) 15.6656 23.5946i 0.838559 1.26299i −0.124099 0.992270i \(-0.539604\pi\)
0.962658 0.270720i \(-0.0872617\pi\)
\(350\) 2.40119 0.455718i 0.128349 0.0243591i
\(351\) 7.78618i 0.415596i
\(352\) −0.0738564 0.389151i −0.00393656 0.0207418i
\(353\) 0.184793 + 2.62303i 0.00983556 + 0.139610i 1.00000 0.000298997i \(-9.51736e-5\pi\)
−0.990164 + 0.139909i \(0.955319\pi\)
\(354\) 5.16794 + 2.17620i 0.274673 + 0.115664i
\(355\) −44.4487 7.36081i −2.35909 0.390671i
\(356\) −4.67682 + 8.71896i −0.247871 + 0.462104i
\(357\) 0.976182 1.54782i 0.0516650 0.0819196i
\(358\) 6.66182 2.26864i 0.352088 0.119902i
\(359\) −0.211849 + 4.51474i −0.0111810 + 0.238279i 0.986180 + 0.165677i \(0.0529809\pi\)
−0.997361 + 0.0726017i \(0.976870\pi\)
\(360\) −2.80001 3.30183i −0.147573 0.174022i
\(361\) 27.7842 28.4434i 1.46233 1.49702i
\(362\) −17.6983 3.35893i −0.930201 0.176541i
\(363\) −2.57088 + 13.5460i −0.134936 + 0.710982i
\(364\) 0.706818 + 0.0832374i 0.0370473 + 0.00436282i
\(365\) −2.88483 7.86222i −0.150999 0.411527i
\(366\) 3.45061 + 16.1100i 0.180366 + 0.842082i
\(367\) −17.6894 + 9.48855i −0.923380 + 0.495298i −0.864312 0.502956i \(-0.832246\pi\)
−0.0590683 + 0.998254i \(0.518813\pi\)
\(368\) −0.141393 + 6.02980i −0.00737062 + 0.314325i
\(369\) 0.364897 + 0.105456i 0.0189958 + 0.00548983i
\(370\) 8.81904 4.21070i 0.458480 0.218904i
\(371\) 4.32796 2.58977i 0.224697 0.134454i
\(372\) 3.43877 2.16876i 0.178292 0.112445i
\(373\) −12.7184 8.44433i −0.658532 0.437231i 0.178830 0.983880i \(-0.442769\pi\)
−0.837362 + 0.546649i \(0.815903\pi\)
\(374\) −1.04112 + 0.409951i −0.0538350 + 0.0211981i
\(375\) −0.804072 + 0.0566472i −0.0415221 + 0.00292525i
\(376\) −5.18471 8.22082i −0.267381 0.423957i
\(377\) 5.85203 + 4.73131i 0.301395 + 0.243675i
\(378\) 2.77638 + 0.594676i 0.142802 + 0.0305868i
\(379\) 14.1768 + 3.73935i 0.728214 + 0.192078i 0.600376 0.799718i \(-0.295017\pi\)
0.127837 + 0.991795i \(0.459197\pi\)
\(380\) −19.3453 + 14.1942i −0.992392 + 0.728149i
\(381\) 1.91944 1.87496i 0.0983359 0.0960571i
\(382\) −0.0542149 0.0703691i −0.00277387 0.00360040i
\(383\) −18.5397 + 19.8918i −0.947337 + 1.01643i 0.0525046 + 0.998621i \(0.483280\pi\)
−0.999841 + 0.0178044i \(0.994332\pi\)
\(384\) 1.13433 + 0.574625i 0.0578862 + 0.0293237i
\(385\) 0.617612 0.132287i 0.0314764 0.00674196i
\(386\) 4.85278 + 0.227711i 0.247000 + 0.0115902i
\(387\) −3.74993 + 7.85400i −0.190620 + 0.399241i
\(388\) −3.78642 2.64394i −0.192226 0.134226i
\(389\) −1.11568 + 0.859563i −0.0565674 + 0.0435816i −0.638205 0.769867i \(-0.720323\pi\)
0.581637 + 0.813448i \(0.302412\pi\)
\(390\) 5.40822 + 1.29169i 0.273856 + 0.0654075i
\(391\) 16.8092 2.78364i 0.850076 0.140775i
\(392\) 2.17289 6.38063i 0.109747 0.322271i
\(393\) 4.84095 + 8.53817i 0.244193 + 0.430694i
\(394\) 0.211107 + 9.00279i 0.0106354 + 0.453554i
\(395\) 0.721742 2.73630i 0.0363148 0.137678i
\(396\) −0.364025 0.409409i −0.0182929 0.0205736i
\(397\) 13.5463 23.8921i 0.679868 1.19911i −0.290360 0.956917i \(-0.593775\pi\)
0.970228 0.242193i \(-0.0778667\pi\)
\(398\) −3.74422 2.00839i −0.187681 0.100671i
\(399\) 1.37870 4.77054i 0.0690211 0.238826i
\(400\) 4.27968 2.16798i 0.213984 0.108399i
\(401\) 0.478476 0.386844i 0.0238940 0.0193180i −0.616692 0.787205i \(-0.711527\pi\)
0.640586 + 0.767887i \(0.278692\pi\)
\(402\) 11.7406 + 3.99818i 0.585567 + 0.199411i
\(403\) 1.63648 4.15603i 0.0815187 0.207026i
\(404\) 4.62954 11.7573i 0.230328 0.584945i
\(405\) 8.70457 + 2.96429i 0.432533 + 0.147297i
\(406\) −2.13404 + 1.72535i −0.105911 + 0.0856277i
\(407\) 1.10321 0.558858i 0.0546840 0.0277016i
\(408\) 0.997293 3.45082i 0.0493733 0.170841i
\(409\) 17.9700 + 9.63903i 0.888558 + 0.476620i 0.852498 0.522730i \(-0.175086\pi\)
0.0360599 + 0.999350i \(0.488519\pi\)
\(410\) −0.423968 + 0.747769i −0.0209383 + 0.0369297i
\(411\) −1.21692 1.36864i −0.0600261 0.0675098i
\(412\) 1.29920 4.92558i 0.0640069 0.242666i
\(413\) 0.0526654 + 2.24595i 0.00259149 + 0.110516i
\(414\) 4.11446 + 7.25683i 0.202215 + 0.356654i
\(415\) 9.30380 27.3204i 0.456705 1.34111i
\(416\) 1.37825 0.228241i 0.0675740 0.0111904i
\(417\) 5.64298 + 1.34776i 0.276338 + 0.0660003i
\(418\) −2.40527 + 1.85310i −0.117646 + 0.0906383i
\(419\) −24.1680 16.8757i −1.18068 0.824433i −0.193045 0.981190i \(-0.561836\pi\)
−0.987637 + 0.156757i \(0.949896\pi\)
\(420\) −0.873648 + 1.82980i −0.0426296 + 0.0892851i
\(421\) 2.26669 + 0.106362i 0.110472 + 0.00518376i 0.102036 0.994781i \(-0.467464\pi\)
0.00843531 + 0.999964i \(0.497315\pi\)
\(422\) 3.57487 0.765704i 0.174022 0.0372739i
\(423\) −11.9917 6.07472i −0.583058 0.295363i
\(424\) 6.75007 7.24234i 0.327812 0.351719i
\(425\) −8.27108 10.7356i −0.401206 0.520752i
\(426\) 13.0929 12.7895i 0.634352 0.619652i
\(427\) −5.32183 + 3.90479i −0.257541 + 0.188966i
\(428\) 18.4375 + 4.86317i 0.891209 + 0.235070i
\(429\) 0.688027 + 0.147369i 0.0332182 + 0.00711504i
\(430\) −15.3167 12.3834i −0.738638 0.597182i
\(431\) 10.9284 + 17.3280i 0.526402 + 0.834658i 0.998910 0.0466680i \(-0.0148603\pi\)
−0.472508 + 0.881326i \(0.656651\pi\)
\(432\) 5.55966 0.391680i 0.267489 0.0188447i
\(433\) −33.8165 + 13.3156i −1.62512 + 0.639907i −0.991065 0.133382i \(-0.957416\pi\)
−0.634054 + 0.773289i \(0.718610\pi\)
\(434\) 1.35696 + 0.900952i 0.0651363 + 0.0432471i
\(435\) −18.1347 + 11.4372i −0.869494 + 0.548373i
\(436\) 5.12435 3.06632i 0.245412 0.146850i
\(437\) 41.7231 19.9209i 1.99589 0.952947i
\(438\) 3.26843 + 0.944582i 0.156171 + 0.0451339i
\(439\) −0.800049 + 34.1187i −0.0381843 + 1.62840i 0.561022 + 0.827801i \(0.310408\pi\)
−0.599207 + 0.800594i \(0.704517\pi\)
\(440\) 1.09257 0.586050i 0.0520861 0.0279388i
\(441\) −1.95255 9.11595i −0.0929786 0.434093i
\(442\) −1.35940 3.70486i −0.0646601 0.176222i
\(443\) −10.4947 1.23589i −0.498619 0.0587191i −0.136099 0.990695i \(-0.543457\pi\)
−0.362520 + 0.931976i \(0.618083\pi\)
\(444\) −0.740261 + 3.90045i −0.0351312 + 0.185107i
\(445\) −30.4263 5.77456i −1.44234 0.273740i
\(446\) 1.27548 1.30574i 0.0603956 0.0618284i
\(447\) −13.2781 15.6579i −0.628034 0.740592i
\(448\) −0.0238788 + 0.508885i −0.00112817 + 0.0240425i
\(449\) 28.3215 9.64472i 1.33657 0.455163i 0.439977 0.898009i \(-0.354987\pi\)
0.896598 + 0.442846i \(0.146031\pi\)
\(450\) 3.53963 5.61241i 0.166860 0.264572i
\(451\) −0.0514180 + 0.0958581i −0.00242118 + 0.00451378i
\(452\) 13.6627 + 2.26258i 0.642640 + 0.106423i
\(453\) 12.3033 + 5.18090i 0.578061 + 0.243420i
\(454\) 1.15285 + 16.3640i 0.0541059 + 0.768000i
\(455\) 0.415376 + 2.18863i 0.0194731 + 0.102604i
\(456\) 9.74741i 0.456464i
\(457\) −4.53717 + 0.861102i −0.212240 + 0.0402807i −0.291489 0.956574i \(-0.594151\pi\)
0.0792492 + 0.996855i \(0.474748\pi\)
\(458\) 1.83527 2.76417i 0.0857563 0.129161i
\(459\) −4.01545 15.2236i −0.187425 0.710575i
\(460\) −18.1368 + 5.24157i −0.845633 + 0.244390i
\(461\) −19.3927 + 17.2429i −0.903206 + 0.803083i −0.981024 0.193885i \(-0.937891\pi\)
0.0778184 + 0.996968i \(0.475205\pi\)
\(462\) −0.105097 + 0.234080i −0.00488956 + 0.0108904i
\(463\) −26.8313 + 17.8146i −1.24696 + 0.827914i −0.990348 0.138602i \(-0.955739\pi\)
−0.256608 + 0.966516i \(0.582605\pi\)
\(464\) −3.08397 + 4.41660i −0.143170 + 0.205035i
\(465\) 9.70558 + 8.23049i 0.450085 + 0.381680i
\(466\) 15.4653 + 5.67456i 0.716414 + 0.262869i
\(467\) −26.0355 + 9.55303i −1.20478 + 0.442061i −0.866592 0.499017i \(-0.833694\pi\)
−0.338187 + 0.941079i \(0.609814\pi\)
\(468\) 1.47367 1.24969i 0.0681202 0.0577671i
\(469\) 0.465306 + 4.94718i 0.0214858 + 0.228440i
\(470\) 19.6761 23.2024i 0.907589 1.07025i
\(471\) 9.91760 + 9.24348i 0.456979 + 0.425917i
\(472\) 1.32333 + 4.20660i 0.0609110 + 0.193625i
\(473\) −1.97446 1.52119i −0.0907857 0.0699445i
\(474\) 0.722780 + 0.893986i 0.0331984 + 0.0410622i
\(475\) −29.6504 21.7554i −1.36045 0.998208i
\(476\) 1.42490 0.201771i 0.0653102 0.00924815i
\(477\) 2.86786 13.3893i 0.131310 0.613054i
\(478\) −1.21038 4.18812i −0.0553613 0.191560i
\(479\) 2.33454 + 2.50479i 0.106668 + 0.114447i 0.782624 0.622495i \(-0.213881\pi\)
−0.675956 + 0.736942i \(0.736269\pi\)
\(480\) −0.650266 + 3.92667i −0.0296805 + 0.179227i
\(481\) 1.87931 + 3.93609i 0.0856891 + 0.179470i
\(482\) 2.53560 + 6.02142i 0.115494 + 0.274268i
\(483\) 2.31137 3.15016i 0.105171 0.143337i
\(484\) −9.43249 + 5.34800i −0.428749 + 0.243091i
\(485\) 4.33780 13.7891i 0.196969 0.626129i
\(486\) 10.6462 7.43387i 0.482920 0.337207i
\(487\) −2.55400 15.4225i −0.115733 0.698859i −0.980475 0.196643i \(-0.936996\pi\)
0.864742 0.502216i \(-0.167482\pi\)
\(488\) −7.90759 + 10.2638i −0.357960 + 0.464620i
\(489\) −1.93101 16.3973i −0.0873231 0.741512i
\(490\) 21.0925 + 0.494598i 0.952861 + 0.0223437i
\(491\) 21.1344 + 13.3290i 0.953782 + 0.601531i 0.917468 0.397809i \(-0.130229\pi\)
0.0363137 + 0.999340i \(0.488438\pi\)
\(492\) −0.143031 0.318569i −0.00644832 0.0143622i
\(493\) 13.8819 + 6.23270i 0.625210 + 0.280707i
\(494\) −6.33514 8.63414i −0.285031 0.388468i
\(495\) 0.880502 1.47147i 0.0395756 0.0661378i
\(496\) 3.04990 + 0.959446i 0.136944 + 0.0430804i
\(497\) 6.82297 + 2.68661i 0.306052 + 0.120511i
\(498\) 6.71244 + 9.61299i 0.300792 + 0.430768i
\(499\) −0.522010 + 5.55007i −0.0233684 + 0.248455i 0.976141 + 0.217137i \(0.0696719\pi\)
−0.999509 + 0.0313179i \(0.990030\pi\)
\(500\) −0.442957 0.453466i −0.0198097 0.0202796i
\(501\) 10.8646 + 16.3637i 0.485396 + 0.731076i
\(502\) 11.7851 13.2544i 0.525997 0.591575i
\(503\) −13.7591 40.4034i −0.613489 1.80150i −0.597834 0.801620i \(-0.703972\pi\)
−0.0156551 0.999877i \(-0.504983\pi\)
\(504\) 0.333061 + 0.620924i 0.0148357 + 0.0276581i
\(505\) 39.4537 + 2.77953i 1.75567 + 0.123687i
\(506\) −2.27894 + 0.716916i −0.101311 + 0.0318708i
\(507\) 3.26361 13.6645i 0.144942 0.606861i
\(508\) 2.10089 + 0.197599i 0.0932119 + 0.00876702i
\(509\) −25.8154 15.4475i −1.14425 0.684697i −0.189432 0.981894i \(-0.560665\pi\)
−0.954816 + 0.297197i \(0.903948\pi\)
\(510\) 11.2403 0.263574i 0.497729 0.0116713i
\(511\) 0.191107 + 1.34959i 0.00845405 + 0.0597023i
\(512\) 0.232305 + 0.972643i 0.0102665 + 0.0429851i
\(513\) −21.9376 36.6615i −0.968568 1.61865i
\(514\) −7.03026 + 16.6951i −0.310092 + 0.736390i
\(515\) 15.9273 0.747369i 0.701840 0.0329330i
\(516\) 7.73693 2.04073i 0.340599 0.0898383i
\(517\) 2.42039 2.99372i 0.106449 0.131664i
\(518\) −1.54706 + 0.369499i −0.0679739 + 0.0162348i
\(519\) −8.81062 + 3.71013i −0.386743 + 0.162856i
\(520\) 1.97606 + 3.90083i 0.0866562 + 0.171063i
\(521\) 17.6966 2.08401i 0.775300 0.0913021i 0.279972 0.960008i \(-0.409675\pi\)
0.495328 + 0.868706i \(0.335048\pi\)
\(522\) −0.523586 + 7.43199i −0.0229168 + 0.325289i
\(523\) 19.8718 39.2277i 0.868933 1.71531i 0.189074 0.981963i \(-0.439451\pi\)
0.679859 0.733343i \(-0.262041\pi\)
\(524\) −2.65887 + 7.24640i −0.116153 + 0.316561i
\(525\) −3.07710 0.435728i −0.134296 0.0190167i
\(526\) −22.8204 22.2916i −0.995018 0.971959i
\(527\) 1.05632 8.96983i 0.0460140 0.390732i
\(528\) −0.0706167 + 0.498693i −0.00307320 + 0.0217028i
\(529\) 13.3197 1.25278i 0.579118 0.0544688i
\(530\) 27.9647 + 13.3519i 1.21471 + 0.579970i
\(531\) 4.55804 + 4.05277i 0.197802 + 0.175875i
\(532\) 3.56260 1.59954i 0.154458 0.0693486i
\(533\) −0.333742 0.189224i −0.0144560 0.00819621i
\(534\) 9.20346 8.57788i 0.398272 0.371201i
\(535\) 2.79756 + 59.6192i 0.120949 + 2.57756i
\(536\) 3.57359 + 9.07556i 0.154356 + 0.392005i
\(537\) −8.94873 −0.386166
\(538\) −5.29776 + 15.5220i −0.228403 + 0.669203i
\(539\) 2.66988 0.115000
\(540\) 6.39164 + 16.2323i 0.275052 + 0.698528i
\(541\) −0.543655 11.5859i −0.0233736 0.498117i −0.979040 0.203667i \(-0.934714\pi\)
0.955667 0.294451i \(-0.0951366\pi\)
\(542\) 5.65863 5.27400i 0.243059 0.226538i
\(543\) 19.9264 + 11.2978i 0.855126 + 0.484837i
\(544\) 2.57704 1.15704i 0.110490 0.0496077i
\(545\) 13.9688 + 12.4203i 0.598357 + 0.532027i
\(546\) −0.816672 0.389924i −0.0349503 0.0166872i
\(547\) 1.72947 0.162665i 0.0739470 0.00695506i −0.0566034 0.998397i \(-0.518027\pi\)
0.130550 + 0.991442i \(0.458326\pi\)
\(548\) 0.201932 1.42604i 0.00862612 0.0609174i
\(549\) −2.09588 + 17.7973i −0.0894498 + 0.759571i
\(550\) 1.35935 + 1.32785i 0.0579630 + 0.0566197i
\(551\) 40.8850 + 5.78946i 1.74176 + 0.246639i
\(552\) 2.64187 7.20007i 0.112446 0.306455i
\(553\) −0.208138 + 0.410872i −0.00885092 + 0.0174721i
\(554\) −0.190622 + 2.70576i −0.00809873 + 0.114957i
\(555\) −12.3414 + 1.45337i −0.523865 + 0.0616921i
\(556\) 2.06184 + 4.07015i 0.0874415 + 0.172613i
\(557\) −30.7927 + 12.9667i −1.30473 + 0.549418i −0.926501 0.376293i \(-0.877198\pi\)
−0.378230 + 0.925712i \(0.623467\pi\)
\(558\) 4.30113 1.02728i 0.182081 0.0434882i
\(559\) 5.52694 6.83612i 0.233765 0.289137i
\(560\) −1.54187 + 0.406693i −0.0651561 + 0.0171859i
\(561\) 1.42123 0.0666897i 0.0600045 0.00281564i
\(562\) 8.74311 20.7627i 0.368806 0.875821i
\(563\) −1.37816 2.30315i −0.0580826 0.0970662i 0.827690 0.561185i \(-0.189655\pi\)
−0.885773 + 0.464119i \(0.846371\pi\)
\(564\) 2.87100 + 12.0206i 0.120891 + 0.506159i
\(565\) 6.07760 + 42.9198i 0.255686 + 1.80565i
\(566\) 5.71985 0.134125i 0.240423 0.00563769i
\(567\) −1.28426 0.768479i −0.0539339 0.0322731i
\(568\) 14.3306 + 1.34786i 0.601298 + 0.0565549i
\(569\) 10.1872 42.6529i 0.427069 1.78810i −0.169488 0.985532i \(-0.554211\pi\)
0.596557 0.802571i \(-0.296535\pi\)
\(570\) 29.1042 9.15567i 1.21904 0.383489i
\(571\) −29.5025 2.07846i −1.23464 0.0869810i −0.562118 0.827057i \(-0.690013\pi\)
−0.672523 + 0.740076i \(0.734790\pi\)
\(572\) 0.261564 + 0.487632i 0.0109366 + 0.0203889i
\(573\) 0.0364130 + 0.106926i 0.00152118 + 0.00446690i
\(574\) 0.0929632 0.104553i 0.00388021 0.00436397i
\(575\) −16.0053 24.1062i −0.667467 1.00530i
\(576\) 0.966465 + 0.989393i 0.0402694 + 0.0412247i
\(577\) −2.47006 + 26.2620i −0.102830 + 1.09330i 0.780694 + 0.624914i \(0.214866\pi\)
−0.883524 + 0.468386i \(0.844836\pi\)
\(578\) 5.16409 + 7.39557i 0.214798 + 0.307615i
\(579\) −5.74792 2.26330i −0.238875 0.0940595i
\(580\) −16.0840 5.05975i −0.667851 0.210095i
\(581\) −2.41197 + 4.03082i −0.100065 + 0.167227i
\(582\) 3.47391 + 4.73458i 0.143998 + 0.196255i
\(583\) 3.57743 + 1.60619i 0.148162 + 0.0665218i
\(584\) 1.09589 + 2.44084i 0.0453481 + 0.101003i
\(585\) 5.11558 + 3.22629i 0.211503 + 0.133391i
\(586\) 16.1150 + 0.377880i 0.665703 + 0.0156101i
\(587\) 2.16689 + 18.4003i 0.0894370 + 0.759463i 0.962392 + 0.271663i \(0.0875736\pi\)
−0.872955 + 0.487800i \(0.837800\pi\)
\(588\) −5.23098 + 6.78963i −0.215722 + 0.280000i
\(589\) −4.00420 24.1796i −0.164990 0.996303i
\(590\) −11.3172 + 7.90246i −0.465923 + 0.325339i
\(591\) 3.43623 10.9231i 0.141348 0.449318i
\(592\) −2.71600 + 1.53991i −0.111627 + 0.0632898i
\(593\) −2.22922 + 3.03819i −0.0915430 + 0.124764i −0.849607 0.527417i \(-0.823161\pi\)
0.758064 + 0.652181i \(0.226146\pi\)
\(594\) 0.856761 + 2.03459i 0.0351533 + 0.0834804i
\(595\) 1.94085 + 4.06499i 0.0795672 + 0.166648i
\(596\) 2.63777 15.9283i 0.108047 0.652450i
\(597\) 3.68364 + 3.95228i 0.150761 + 0.161756i
\(598\) −2.33941 8.09478i −0.0956655 0.331020i
\(599\) −9.19389 + 42.9238i −0.375652 + 1.75382i 0.244798 + 0.969574i \(0.421279\pi\)
−0.620450 + 0.784246i \(0.713050\pi\)
\(600\) −6.04010 + 0.855300i −0.246586 + 0.0349175i
\(601\) −1.56370 1.14733i −0.0637846 0.0468007i 0.559217 0.829021i \(-0.311102\pi\)
−0.623002 + 0.782221i \(0.714087\pi\)
\(602\) 2.01549 + 2.49290i 0.0821452 + 0.101603i
\(603\) 10.6866 + 8.23335i 0.435192 + 0.335288i
\(604\) 3.15045 + 10.0147i 0.128190 + 0.407491i
\(605\) −24.8281 23.1405i −1.00941 0.940795i
\(606\) −10.3920 + 12.2544i −0.422145 + 0.497802i
\(607\) −0.738778 7.85477i −0.0299861 0.318815i −0.997755 0.0669742i \(-0.978665\pi\)
0.967769 0.251841i \(-0.0810360\pi\)
\(608\) 5.84645 4.95789i 0.237105 0.201069i
\(609\) 3.27597 1.20203i 0.132749 0.0487086i
\(610\) −38.0735 13.9700i −1.54155 0.565631i
\(611\) 10.3557 + 8.78178i 0.418945 + 0.355273i
\(612\) 2.23683 3.20340i 0.0904185 0.129490i
\(613\) 14.7628 9.80171i 0.596263 0.395888i −0.218369 0.975866i \(-0.570074\pi\)
0.814632 + 0.579979i \(0.196939\pi\)
\(614\) 3.54284 7.89087i 0.142977 0.318450i
\(615\) 0.816845 0.726295i 0.0329384 0.0292870i
\(616\) −0.193856 + 0.0560249i −0.00781070 + 0.00225731i
\(617\) 7.53705 + 28.5748i 0.303430 + 1.15038i 0.928960 + 0.370179i \(0.120704\pi\)
−0.625530 + 0.780200i \(0.715117\pi\)
\(618\) −3.58288 + 5.39633i −0.144125 + 0.217072i
\(619\) 1.68541 0.319872i 0.0677425 0.0128567i −0.152478 0.988307i \(-0.548725\pi\)
0.220220 + 0.975450i \(0.429322\pi\)
\(620\) 10.0077i 0.401919i
\(621\) −6.26803 33.0264i −0.251528 1.32530i
\(622\) −0.713044 10.1212i −0.0285905 0.405824i
\(623\) 4.64542 + 1.95617i 0.186115 + 0.0783724i
\(624\) −1.75254 0.290225i −0.0701579 0.0116183i
\(625\) 12.2765 22.8869i 0.491059 0.915477i
\(626\) 3.35607 5.32135i 0.134135 0.212684i
\(627\) 3.65481 1.24462i 0.145959 0.0497055i
\(628\) −0.499744 + 10.6501i −0.0199419 + 0.424985i
\(629\) 5.70434 + 6.72668i 0.227447 + 0.268210i
\(630\) −1.54113 + 1.57770i −0.0614002 + 0.0628569i
\(631\) 36.2427 + 6.87844i 1.44280 + 0.273826i 0.847977 0.530033i \(-0.177820\pi\)
0.594820 + 0.803859i \(0.297223\pi\)
\(632\) −0.168577 + 0.888234i −0.00670562 + 0.0353321i
\(633\) −4.61692 0.543704i −0.183506 0.0216103i
\(634\) 0.210889 + 0.574751i 0.00837549 + 0.0228263i
\(635\) 1.38335 + 6.45851i 0.0548967 + 0.256298i
\(636\) −11.0937 + 5.95064i −0.439895 + 0.235958i
\(637\) −0.220748 + 9.41395i −0.00874635 + 0.372994i
\(638\) −2.04980 0.592396i −0.0811523 0.0234532i
\(639\) 17.9654 8.57765i 0.710698 0.339327i
\(640\) −2.68595 + 1.60722i −0.106171 + 0.0635310i
\(641\) −36.2978 + 22.8923i −1.43368 + 0.904191i −0.433682 + 0.901066i \(0.642786\pi\)
−0.999995 + 0.00312516i \(0.999005\pi\)
\(642\) −20.1996 13.4115i −0.797214 0.529309i
\(643\) −25.7015 + 10.1202i −1.01357 + 0.399102i −0.814052 0.580792i \(-0.802743\pi\)
−0.199515 + 0.979895i \(0.563937\pi\)
\(644\) 3.06510 0.215937i 0.120782 0.00850912i
\(645\) 13.3605 + 21.1843i 0.526070 + 0.834132i
\(646\) −16.8392 13.6144i −0.662531 0.535651i
\(647\) −42.7782 9.16269i −1.68178 0.360223i −0.734004 0.679146i \(-0.762350\pi\)
−0.947781 + 0.318923i \(0.896679\pi\)
\(648\) −2.84061 0.749254i −0.111590 0.0294335i
\(649\) −1.40830 + 1.03332i −0.0552807 + 0.0405612i
\(650\) −4.79437 + 4.68326i −0.188050 + 0.183693i
\(651\) −1.26406 1.64070i −0.0495423 0.0643043i
\(652\) 8.85286 9.49849i 0.346705 0.371989i
\(653\) −34.1957 17.3227i −1.33818 0.677891i −0.370210 0.928948i \(-0.620714\pi\)
−0.967972 + 0.251057i \(0.919222\pi\)
\(654\) −7.42507 + 1.59038i −0.290343 + 0.0621888i
\(655\) −24.1340 1.13246i −0.942994 0.0442489i
\(656\) 0.118325 0.247825i 0.00461983 0.00967593i
\(657\) 3.03408 + 2.11860i 0.118371 + 0.0826546i
\(658\) −3.92232 + 3.02189i −0.152908 + 0.117806i
\(659\) 32.7303 + 7.81727i 1.27499 + 0.304518i 0.812946 0.582339i \(-0.197863\pi\)
0.462044 + 0.886857i \(0.347116\pi\)
\(660\) −1.55534 + 0.257569i −0.0605417 + 0.0100259i
\(661\) 5.80388 17.0430i 0.225745 0.662895i −0.773820 0.633405i \(-0.781657\pi\)
0.999565 0.0294893i \(-0.00938811\pi\)
\(662\) −0.469420 0.827934i −0.0182445 0.0321786i
\(663\) 0.117638 + 5.01675i 0.00456868 + 0.194834i
\(664\) −2.35163 + 8.91561i −0.0912610 + 0.345993i
\(665\) 8.12227 + 9.13491i 0.314968 + 0.354236i
\(666\) −2.12984 + 3.75648i −0.0825296 + 0.145561i
\(667\) 28.6312 + 15.3577i 1.10860 + 0.594651i
\(668\) −4.28871 + 14.8397i −0.165935 + 0.574166i
\(669\) −2.07052 + 1.04887i −0.0800508 + 0.0405518i
\(670\) −23.7415 + 19.1948i −0.917214 + 0.741559i
\(671\) −4.85813 1.65441i −0.187546 0.0638677i
\(672\) 0.237340 0.602753i 0.00915559 0.0232517i
\(673\) 18.8467 47.8635i 0.726488 1.84500i 0.241762 0.970336i \(-0.422275\pi\)
0.484726 0.874666i \(-0.338919\pi\)
\(674\) 28.0728 + 9.56004i 1.08133 + 0.368239i
\(675\) −20.7928 + 16.8108i −0.800316 + 0.647048i
\(676\) 9.85588 4.99275i 0.379072 0.192029i
\(677\) −9.62892 + 33.3178i −0.370069 + 1.28051i 0.531199 + 0.847247i \(0.321742\pi\)
−0.901269 + 0.433261i \(0.857363\pi\)
\(678\) −15.5183 8.32394i −0.595975 0.319679i
\(679\) −1.16039 + 2.04663i −0.0445317 + 0.0785423i
\(680\) 5.87533 + 6.60782i 0.225308 + 0.253399i
\(681\) 5.32009 20.1698i 0.203866 0.772908i
\(682\) 0.0296882 + 1.26608i 0.00113682 + 0.0484805i
\(683\) −8.75074 15.4340i −0.334838 0.590567i 0.650838 0.759216i \(-0.274418\pi\)
−0.985676 + 0.168650i \(0.946059\pi\)
\(684\) 3.41780 10.0363i 0.130683 0.383747i
\(685\) 4.44759 0.736532i 0.169934 0.0281415i
\(686\) −6.80851 1.62614i −0.259950 0.0620863i
\(687\) −3.34216 + 2.57492i −0.127511 + 0.0982393i
\(688\) 5.15931 + 3.60258i 0.196697 + 0.137347i
\(689\) −5.95919 + 12.4812i −0.227027 + 0.475494i
\(690\) 23.9797 + 1.12522i 0.912892 + 0.0428364i
\(691\) −2.61150 + 0.559358i −0.0993460 + 0.0212790i −0.258843 0.965919i \(-0.583341\pi\)
0.159497 + 0.987198i \(0.449013\pi\)
\(692\) −6.70672 3.39746i −0.254951 0.129152i
\(693\) −0.190289 + 0.204166i −0.00722848 + 0.00775564i
\(694\) −0.118825 0.154231i −0.00451053 0.00585452i
\(695\) −10.2161 + 9.97938i −0.387520 + 0.378539i
\(696\) 5.52257 4.05208i 0.209332 0.153594i
\(697\) −0.750120 0.197856i −0.0284128 0.00749433i
\(698\) −27.6935 5.93169i −1.04821 0.224518i
\(699\) −16.2894 13.1698i −0.616121 0.498128i
\(700\) −1.30378 2.06726i −0.0492781 0.0781349i
\(701\) −24.1907 + 1.70424i −0.913670 + 0.0643684i −0.519308 0.854587i \(-0.673810\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(702\) −7.24477 + 2.85270i −0.273436 + 0.107668i
\(703\) 19.9388 + 13.2383i 0.752004 + 0.499292i
\(704\) −0.335032 + 0.211298i −0.0126270 + 0.00796359i
\(705\) −33.1949 + 19.8632i −1.25019 + 0.748091i
\(706\) 2.37293 1.13297i 0.0893066 0.0426399i
\(707\) −6.18420 1.78725i −0.232581 0.0672164i
\(708\) 0.131453 5.60590i 0.00494030 0.210683i
\(709\) −9.88873 + 5.30428i −0.371379 + 0.199206i −0.647765 0.761840i \(-0.724296\pi\)
0.276386 + 0.961047i \(0.410863\pi\)
\(710\) 9.43612 + 44.0548i 0.354131 + 1.65335i
\(711\) 0.430736 + 1.17391i 0.0161539 + 0.0440252i
\(712\) 9.82619 + 1.15717i 0.368252 + 0.0433666i
\(713\) 3.59571 18.9459i 0.134660 0.709529i
\(714\) −1.79785 0.341211i −0.0672829 0.0127695i
\(715\) −1.21030 + 1.23902i −0.0452628 + 0.0463366i
\(716\) −4.55165 5.36741i −0.170103 0.200589i
\(717\) −0.259834 + 5.53736i −0.00970369 + 0.206797i
\(718\) 4.27843 1.45699i 0.159669 0.0543745i
\(719\) 12.5189 19.8499i 0.466877 0.740276i −0.527107 0.849799i \(-0.676723\pi\)
0.993984 + 0.109523i \(0.0349323\pi\)
\(720\) −2.04637 + 3.81503i −0.0762638 + 0.142178i
\(721\) −2.56026 0.423986i −0.0953491 0.0157900i
\(722\) −36.6452 15.4312i −1.36379 0.574289i
\(723\) −0.583845 8.28732i −0.0217134 0.308209i
\(724\) 3.35893 + 17.6983i 0.124834 + 0.657752i
\(725\) 25.8429i 0.959781i
\(726\) 13.5460 2.57088i 0.502740 0.0954143i
\(727\) −10.9938 + 16.5582i −0.407736 + 0.614109i −0.978312 0.207136i \(-0.933586\pi\)
0.570576 + 0.821245i \(0.306720\pi\)
\(728\) −0.181515 0.688166i −0.00672738 0.0255051i
\(729\) −24.3287 + 7.03105i −0.901064 + 0.260409i
\(730\) −6.25857 + 5.56479i −0.231640 + 0.205962i
\(731\) 7.28081 16.2163i 0.269290 0.599783i
\(732\) 13.7255 9.11304i 0.507311 0.336828i
\(733\) 25.1910 36.0764i 0.930451 1.33251i −0.0126200 0.999920i \(-0.504017\pi\)
0.943071 0.332592i \(-0.107923\pi\)
\(734\) 15.3098 + 12.9830i 0.565096 + 0.479211i
\(735\) −25.1861 9.24138i −0.929005 0.340873i
\(736\) 5.66232 2.07764i 0.208716 0.0765827i
\(737\) −2.94660 + 2.49877i −0.108539 + 0.0920432i
\(738\) −0.0355679 0.378161i −0.00130927 0.0139203i
\(739\) 4.52583 5.33696i 0.166485 0.196323i −0.673099 0.739552i \(-0.735037\pi\)
0.839585 + 0.543229i \(0.182798\pi\)
\(740\) −7.14903 6.66310i −0.262803 0.244940i
\(741\) 4.08634 + 12.9897i 0.150115 + 0.477189i
\(742\) −3.99537 3.07818i −0.146675 0.113003i
\(743\) 18.6361 + 23.0504i 0.683690 + 0.845638i 0.994489 0.104838i \(-0.0334324\pi\)
−0.310799 + 0.950476i \(0.600597\pi\)
\(744\) −3.27785 2.40506i −0.120172 0.0881739i
\(745\) 50.0370 7.08542i 1.83321 0.259590i
\(746\) −3.19740 + 14.9278i −0.117065 + 0.546547i
\(747\) 3.54071 + 12.2515i 0.129548 + 0.448259i
\(748\) 0.762891 + 0.818528i 0.0278941 + 0.0299284i
\(749\) 1.58707 9.58359i 0.0579902 0.350177i
\(750\) 0.347304 + 0.727407i 0.0126818 + 0.0265612i
\(751\) −12.5900 29.8981i −0.459417 1.09100i −0.972551 0.232691i \(-0.925247\pi\)
0.513134 0.858308i \(-0.328484\pi\)
\(752\) −5.74962 + 7.83614i −0.209667 + 0.285755i
\(753\) −19.6188 + 11.1234i −0.714950 + 0.405360i
\(754\) 2.25826 7.17857i 0.0822408 0.261428i
\(755\) −26.9430 + 18.8134i −0.980555 + 0.684691i
\(756\) −0.463887 2.80121i −0.0168714 0.101879i
\(757\) 5.26643 6.83565i 0.191412 0.248446i −0.686656 0.726983i \(-0.740922\pi\)
0.878068 + 0.478536i \(0.158833\pi\)
\(758\) −1.71476 14.5611i −0.0622829 0.528881i
\(759\) 3.03702 + 0.0712151i 0.110237 + 0.00258494i
\(760\) 20.2950 + 12.7996i 0.736176 + 0.464291i
\(761\) −0.173494 0.386419i −0.00628916 0.0140077i 0.909098 0.416582i \(-0.136772\pi\)
−0.915387 + 0.402574i \(0.868115\pi\)
\(762\) −2.44783 1.09903i −0.0886755 0.0398135i
\(763\) −1.79971 2.45282i −0.0651540 0.0887982i
\(764\) −0.0456128 + 0.0762269i −0.00165021 + 0.00275779i
\(765\) 11.6658 + 3.66988i 0.421780 + 0.132685i
\(766\) 25.3013 + 9.96262i 0.914171 + 0.359964i
\(767\) −3.52701 5.05108i −0.127353 0.182384i