Properties

Label 538.2.e.a.103.5
Level $538$
Weight $2$
Character 538.103
Analytic conductor $4.296$
Analytic rank $0$
Dimension $1452$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(9,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(134))
 
chi = DirichletCharacter(H, H._module([109]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.e (of order \(134\), degree \(66\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(1452\)
Relative dimension: \(22\) over \(\Q(\zeta_{134})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{134}]$

Embedding invariants

Embedding label 103.5
Character \(\chi\) \(=\) 538.103
Dual form 538.2.e.a.491.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366380 - 0.930465i) q^{2} +(-0.0417930 - 0.890657i) q^{3} +(-0.731531 + 0.681808i) q^{4} +(-0.816566 - 0.462974i) q^{5} +(-0.813413 + 0.365206i) q^{6} +(2.09885 + 1.86618i) q^{7} +(0.902417 + 0.430864i) q^{8} +(2.19530 - 0.206478i) q^{9} +O(q^{10})\) \(q+(-0.366380 - 0.930465i) q^{2} +(-0.0417930 - 0.890657i) q^{3} +(-0.731531 + 0.681808i) q^{4} +(-0.816566 - 0.462974i) q^{5} +(-0.813413 + 0.365206i) q^{6} +(2.09885 + 1.86618i) q^{7} +(0.902417 + 0.430864i) q^{8} +(2.19530 - 0.206478i) q^{9} +(-0.131608 + 0.929411i) q^{10} +(0.276272 - 2.34599i) q^{11} +(0.637830 + 0.623048i) q^{12} +(-2.04054 - 0.288948i) q^{13} +(0.967442 - 2.63663i) q^{14} +(-0.378224 + 0.746629i) q^{15} +(0.0702762 - 0.997528i) q^{16} +(7.35540 - 0.866197i) q^{17} +(-0.996433 - 1.96700i) q^{18} +(-1.28175 + 0.539740i) q^{19} +(0.913003 - 0.218061i) q^{20} +(1.57441 - 1.94734i) q^{21} +(-2.28408 + 0.602463i) q^{22} +(2.66510 - 0.125057i) q^{23} +(0.346037 - 0.821751i) q^{24} +(-2.11494 - 3.53443i) q^{25} +(0.478758 + 2.00452i) q^{26} +(-0.650684 - 4.59511i) q^{27} +(-2.80775 + 0.0658389i) q^{28} +(1.03595 + 0.619896i) q^{29} +(0.833286 + 0.0783745i) q^{30} +(0.195373 - 0.818012i) q^{31} +(-0.953913 + 0.300085i) q^{32} +(-2.10102 - 0.148018i) q^{33} +(-3.50084 - 6.52658i) q^{34} +(-0.849852 - 2.49557i) q^{35} +(-1.46515 + 1.64781i) q^{36} +(-5.44947 - 8.20768i) q^{37} +(0.971816 + 0.994872i) q^{38} +(-0.172073 + 1.82950i) q^{39} +(-0.537404 - 0.769624i) q^{40} +(1.77215 + 0.697804i) q^{41} +(-2.38877 - 0.751466i) q^{42} +(1.29777 - 2.16881i) q^{43} +(1.39741 + 1.90453i) q^{44} +(-1.88820 - 0.847762i) q^{45} +(-1.09280 - 2.43397i) q^{46} +(1.24019 + 0.782163i) q^{47} +(-0.891392 - 0.0209023i) q^{48} +(0.103831 + 0.881693i) q^{49} +(-2.51379 + 3.26282i) q^{50} +(-1.07889 - 6.51493i) q^{51} +(1.68973 - 1.17988i) q^{52} +(-3.42626 + 10.8914i) q^{53} +(-4.03720 + 2.28900i) q^{54} +(-1.31173 + 1.78775i) q^{55} +(1.08996 + 2.58839i) q^{56} +(0.534291 + 1.11904i) q^{57} +(0.197239 - 1.19104i) q^{58} +(0.661135 + 0.709351i) q^{59} +(-0.232375 - 0.804059i) q^{60} +(0.909383 - 4.24567i) q^{61} +(-0.832713 + 0.117915i) q^{62} +(4.99291 + 3.66345i) q^{63} +(0.628713 + 0.777638i) q^{64} +(1.53246 + 1.18066i) q^{65} +(0.632046 + 2.00916i) q^{66} +(3.96593 + 3.69635i) q^{67} +(-4.79012 + 5.64862i) q^{68} +(-0.222766 - 2.36847i) q^{69} +(-2.01067 + 1.70509i) q^{70} +(-1.25134 + 0.459145i) q^{71} +(2.07004 + 0.759544i) q^{72} +(3.42134 + 2.90135i) q^{73} +(-5.64038 + 8.07767i) q^{74} +(-3.05957 + 2.03140i) q^{75} +(0.569639 - 1.26874i) q^{76} +(4.95790 - 4.40830i) q^{77} +(1.76533 - 0.510184i) q^{78} +(2.12818 + 8.06844i) q^{79} +(-0.519215 + 0.782011i) q^{80} +(2.43347 - 0.461844i) q^{81} -1.90459i q^{82} +(-0.990364 - 5.21825i) q^{83} +(0.175984 + 2.49799i) q^{84} +(-6.40719 - 2.69805i) q^{85} +(-2.49348 - 0.412926i) q^{86} +(0.508818 - 0.948586i) q^{87} +(1.26012 - 1.99803i) q^{88} +(10.9687 - 3.73533i) q^{89} +(-0.0970153 + 2.06751i) q^{90} +(-3.74356 - 4.41449i) q^{91} +(-1.86434 + 1.90857i) q^{92} +(-0.736733 - 0.139823i) q^{93} +(0.273395 - 1.44052i) q^{94} +(1.29652 + 0.152682i) q^{95} +(0.307139 + 0.837067i) q^{96} +(-1.67979 - 7.84248i) q^{97} +(0.782343 - 0.419646i) q^{98} +(0.122103 - 5.20719i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1452 q + 22 q^{4} - 2 q^{5} + 2 q^{6} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 1452 q + 22 q^{4} - 2 q^{5} + 2 q^{6} + 20 q^{9} + 2 q^{11} - 10 q^{13} + 12 q^{14} - 22 q^{16} + 2 q^{20} + 12 q^{21} - 4 q^{23} - 2 q^{24} - 24 q^{25} - 8 q^{30} - 12 q^{34} - 20 q^{36} - 396 q^{37} - 2 q^{38} + 24 q^{41} + 14 q^{43} - 2 q^{44} - 42 q^{45} - 402 q^{47} + 22 q^{49} + 12 q^{51} + 10 q^{52} - 10 q^{53} - 8 q^{54} - 4 q^{55} - 12 q^{56} + 16 q^{57} - 18 q^{58} - 268 q^{60} - 2 q^{61} + 4 q^{62} + 22 q^{64} + 16 q^{65} + 40 q^{66} + 6 q^{67} - 106 q^{73} + 40 q^{78} + 40 q^{79} - 2 q^{80} - 14 q^{81} - 402 q^{83} - 12 q^{84} - 100 q^{87} + 4 q^{92} - 340 q^{93} + 2 q^{96} - 64 q^{97} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{51}{134}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366380 0.930465i −0.259070 0.657938i
\(3\) −0.0417930 0.890657i −0.0241292 0.514221i −0.977309 0.211817i \(-0.932062\pi\)
0.953180 0.302403i \(-0.0977890\pi\)
\(4\) −0.731531 + 0.681808i −0.365766 + 0.340904i
\(5\) −0.816566 0.462974i −0.365179 0.207048i 0.299640 0.954052i \(-0.403133\pi\)
−0.664820 + 0.747004i \(0.731492\pi\)
\(6\) −0.813413 + 0.365206i −0.332074 + 0.149095i
\(7\) 2.09885 + 1.86618i 0.793289 + 0.705350i 0.959799 0.280689i \(-0.0905631\pi\)
−0.166510 + 0.986040i \(0.553250\pi\)
\(8\) 0.902417 + 0.430864i 0.319053 + 0.152333i
\(9\) 2.19530 0.206478i 0.731765 0.0688260i
\(10\) −0.131608 + 0.929411i −0.0416181 + 0.293905i
\(11\) 0.276272 2.34599i 0.0832992 0.707343i −0.886379 0.462960i \(-0.846788\pi\)
0.969679 0.244384i \(-0.0785856\pi\)
\(12\) 0.637830 + 0.623048i 0.184126 + 0.179859i
\(13\) −2.04054 0.288948i −0.565945 0.0801399i −0.148616 0.988895i \(-0.547482\pi\)
−0.417330 + 0.908755i \(0.637034\pi\)
\(14\) 0.967442 2.63663i 0.258560 0.704670i
\(15\) −0.378224 + 0.746629i −0.0976571 + 0.192779i
\(16\) 0.0702762 0.997528i 0.0175690 0.249382i
\(17\) 7.35540 0.866197i 1.78395 0.210084i 0.840546 0.541741i \(-0.182235\pi\)
0.943400 + 0.331657i \(0.107608\pi\)
\(18\) −0.996433 1.96700i −0.234862 0.463626i
\(19\) −1.28175 + 0.539740i −0.294053 + 0.123825i −0.530148 0.847905i \(-0.677864\pi\)
0.236095 + 0.971730i \(0.424132\pi\)
\(20\) 0.913003 0.218061i 0.204154 0.0487599i
\(21\) 1.57441 1.94734i 0.343564 0.424945i
\(22\) −2.28408 + 0.602463i −0.486969 + 0.128446i
\(23\) 2.66510 0.125057i 0.555713 0.0260762i 0.232834 0.972517i \(-0.425200\pi\)
0.322879 + 0.946440i \(0.395349\pi\)
\(24\) 0.346037 0.821751i 0.0706345 0.167739i
\(25\) −2.11494 3.53443i −0.422987 0.706885i
\(26\) 0.478758 + 2.00452i 0.0938922 + 0.393119i
\(27\) −0.650684 4.59511i −0.125224 0.884330i
\(28\) −2.80775 + 0.0658389i −0.530615 + 0.0124424i
\(29\) 1.03595 + 0.619896i 0.192372 + 0.115112i 0.606424 0.795141i \(-0.292603\pi\)
−0.414052 + 0.910253i \(0.635887\pi\)
\(30\) 0.833286 + 0.0783745i 0.152137 + 0.0143092i
\(31\) 0.195373 0.818012i 0.0350901 0.146919i −0.952320 0.305102i \(-0.901310\pi\)
0.987410 + 0.158182i \(0.0505633\pi\)
\(32\) −0.953913 + 0.300085i −0.168630 + 0.0530480i
\(33\) −2.10102 0.148018i −0.365741 0.0257666i
\(34\) −3.50084 6.52658i −0.600389 1.11930i
\(35\) −0.849852 2.49557i −0.143651 0.421829i
\(36\) −1.46515 + 1.64781i −0.244192 + 0.274636i
\(37\) −5.44947 8.20768i −0.895887 1.34933i −0.936687 0.350167i \(-0.886125\pi\)
0.0407999 0.999167i \(-0.487009\pi\)
\(38\) 0.971816 + 0.994872i 0.157649 + 0.161389i
\(39\) −0.172073 + 1.82950i −0.0275538 + 0.292955i
\(40\) −0.537404 0.769624i −0.0849711 0.121688i
\(41\) 1.77215 + 0.697804i 0.276764 + 0.108979i 0.500687 0.865628i \(-0.333081\pi\)
−0.223923 + 0.974607i \(0.571887\pi\)
\(42\) −2.38877 0.751466i −0.368595 0.115954i
\(43\) 1.29777 2.16881i 0.197909 0.330740i −0.743065 0.669219i \(-0.766629\pi\)
0.940974 + 0.338479i \(0.109912\pi\)
\(44\) 1.39741 + 1.90453i 0.210668 + 0.287119i
\(45\) −1.88820 0.847762i −0.281476 0.126377i
\(46\) −1.09280 2.43397i −0.161125 0.358869i
\(47\) 1.24019 + 0.782163i 0.180900 + 0.114090i 0.620841 0.783937i \(-0.286791\pi\)
−0.439940 + 0.898027i \(0.645000\pi\)
\(48\) −0.891392 0.0209023i −0.128661 0.00301698i
\(49\) 0.103831 + 0.881693i 0.0148330 + 0.125956i
\(50\) −2.51379 + 3.26282i −0.355504 + 0.461432i
\(51\) −1.07889 6.51493i −0.151075 0.912273i
\(52\) 1.68973 1.17988i 0.234323 0.163621i
\(53\) −3.42626 + 10.8914i −0.470633 + 1.49605i 0.356635 + 0.934244i \(0.383924\pi\)
−0.827267 + 0.561808i \(0.810106\pi\)
\(54\) −4.03720 + 2.28900i −0.549393 + 0.311493i
\(55\) −1.31173 + 1.78775i −0.176873 + 0.241060i
\(56\) 1.08996 + 2.58839i 0.145653 + 0.345888i
\(57\) 0.534291 + 1.11904i 0.0707686 + 0.148220i
\(58\) 0.197239 1.19104i 0.0258987 0.156391i
\(59\) 0.661135 + 0.709351i 0.0860725 + 0.0923496i 0.773109 0.634273i \(-0.218701\pi\)
−0.687036 + 0.726623i \(0.741089\pi\)
\(60\) −0.232375 0.804059i −0.0299994 0.103804i
\(61\) 0.909383 4.24567i 0.116435 0.543602i −0.881069 0.472987i \(-0.843176\pi\)
0.997504 0.0706147i \(-0.0224961\pi\)
\(62\) −0.832713 + 0.117915i −0.105755 + 0.0149752i
\(63\) 4.99291 + 3.66345i 0.629048 + 0.461552i
\(64\) 0.628713 + 0.777638i 0.0785891 + 0.0972047i
\(65\) 1.53246 + 1.18066i 0.190079 + 0.146443i
\(66\) 0.632046 + 2.00916i 0.0777995 + 0.247310i
\(67\) 3.96593 + 3.69635i 0.484515 + 0.451582i 0.885593 0.464462i \(-0.153752\pi\)
−0.401078 + 0.916044i \(0.631364\pi\)
\(68\) −4.79012 + 5.64862i −0.580888 + 0.684995i
\(69\) −0.222766 2.36847i −0.0268178 0.285130i
\(70\) −2.01067 + 1.70509i −0.240321 + 0.203797i
\(71\) −1.25134 + 0.459145i −0.148507 + 0.0544905i −0.417641 0.908612i \(-0.637143\pi\)
0.269134 + 0.963103i \(0.413262\pi\)
\(72\) 2.07004 + 0.759544i 0.243956 + 0.0895131i
\(73\) 3.42134 + 2.90135i 0.400437 + 0.339577i 0.824304 0.566147i \(-0.191567\pi\)
−0.423867 + 0.905724i \(0.639328\pi\)
\(74\) −5.64038 + 8.07767i −0.655681 + 0.939010i
\(75\) −3.05957 + 2.03140i −0.353289 + 0.234565i
\(76\) 0.569639 1.26874i 0.0653421 0.145535i
\(77\) 4.95790 4.40830i 0.565005 0.502372i
\(78\) 1.76533 0.510184i 0.199884 0.0577670i
\(79\) 2.12818 + 8.06844i 0.239439 + 0.907771i 0.973500 + 0.228687i \(0.0734434\pi\)
−0.734061 + 0.679083i \(0.762378\pi\)
\(80\) −0.519215 + 0.782011i −0.0580500 + 0.0874315i
\(81\) 2.43347 0.461844i 0.270386 0.0513161i
\(82\) 1.90459i 0.210327i
\(83\) −0.990364 5.21825i −0.108707 0.572777i −0.994148 0.108027i \(-0.965547\pi\)
0.885441 0.464751i \(-0.153856\pi\)
\(84\) 0.175984 + 2.49799i 0.0192014 + 0.272553i
\(85\) −6.40719 2.69805i −0.694958 0.292645i
\(86\) −2.49348 0.412926i −0.268879 0.0445270i
\(87\) 0.508818 0.948586i 0.0545511 0.101699i
\(88\) 1.26012 1.99803i 0.134329 0.212990i
\(89\) 10.9687 3.73533i 1.16268 0.395944i 0.326928 0.945049i \(-0.393987\pi\)
0.835753 + 0.549105i \(0.185031\pi\)
\(90\) −0.0970153 + 2.06751i −0.0102263 + 0.217934i
\(91\) −3.74356 4.41449i −0.392431 0.462764i
\(92\) −1.86434 + 1.90857i −0.194371 + 0.198982i
\(93\) −0.736733 0.139823i −0.0763957 0.0144990i
\(94\) 0.273395 1.44052i 0.0281985 0.148579i
\(95\) 1.29652 + 0.152682i 0.133020 + 0.0156649i
\(96\) 0.307139 + 0.837067i 0.0313473 + 0.0854328i
\(97\) −1.67979 7.84248i −0.170556 0.796283i −0.978373 0.206849i \(-0.933679\pi\)
0.807817 0.589434i \(-0.200649\pi\)
\(98\) 0.782343 0.419646i 0.0790286 0.0423907i
\(99\) 0.122103 5.20719i 0.0122719 0.523342i
\(100\) 3.95694 + 1.14356i 0.395694 + 0.114356i
\(101\) 2.12076 1.01257i 0.211023 0.100754i −0.322397 0.946605i \(-0.604489\pi\)
0.533420 + 0.845850i \(0.320906\pi\)
\(102\) −5.66663 + 3.39081i −0.561080 + 0.335740i
\(103\) −11.5661 + 7.29448i −1.13964 + 0.718746i −0.964051 0.265718i \(-0.914391\pi\)
−0.175587 + 0.984464i \(0.556182\pi\)
\(104\) −1.71692 1.13995i −0.168358 0.111781i
\(105\) −2.18718 + 0.861224i −0.213447 + 0.0840468i
\(106\) 11.3894 0.802388i 1.10624 0.0779348i
\(107\) 7.96009 + 12.6214i 0.769531 + 1.22016i 0.970627 + 0.240589i \(0.0773406\pi\)
−0.201096 + 0.979571i \(0.564450\pi\)
\(108\) 3.60898 + 2.91783i 0.347274 + 0.280768i
\(109\) 2.05042 + 0.439182i 0.196395 + 0.0420660i 0.306579 0.951845i \(-0.400816\pi\)
−0.110184 + 0.993911i \(0.535144\pi\)
\(110\) 2.14403 + 0.565521i 0.204425 + 0.0539204i
\(111\) −7.08247 + 5.19663i −0.672239 + 0.493242i
\(112\) 2.00907 1.96251i 0.189839 0.185440i
\(113\) −2.79219 3.62417i −0.262667 0.340933i 0.642270 0.766478i \(-0.277993\pi\)
−0.904937 + 0.425545i \(0.860082\pi\)
\(114\) 0.845474 0.907133i 0.0791859 0.0849608i
\(115\) −2.23413 1.13176i −0.208334 0.105537i
\(116\) −1.18048 + 0.252848i −0.109605 + 0.0234764i
\(117\) −4.53926 0.213000i −0.419655 0.0196918i
\(118\) 0.417800 0.875055i 0.0384616 0.0805554i
\(119\) 17.0543 + 11.9085i 1.56337 + 1.09165i
\(120\) −0.663011 + 0.510808i −0.0605244 + 0.0466301i
\(121\) 5.27172 + 1.25909i 0.479247 + 0.114463i
\(122\) −4.28363 + 0.709379i −0.387821 + 0.0642242i
\(123\) 0.547440 1.60754i 0.0493610 0.144947i
\(124\) 0.414805 + 0.731609i 0.0372506 + 0.0657004i
\(125\) 0.200662 + 8.55738i 0.0179478 + 0.765395i
\(126\) 1.57941 5.98795i 0.140705 0.533449i
\(127\) 8.44102 + 9.49339i 0.749019 + 0.842402i 0.991816 0.127675i \(-0.0407514\pi\)
−0.242797 + 0.970077i \(0.578065\pi\)
\(128\) 0.493217 0.869906i 0.0435946 0.0768896i
\(129\) −1.98590 1.06523i −0.174849 0.0937883i
\(130\) 0.537104 1.85848i 0.0471071 0.162999i
\(131\) −16.1208 + 8.16640i −1.40848 + 0.713501i −0.981625 0.190819i \(-0.938886\pi\)
−0.426854 + 0.904321i \(0.640378\pi\)
\(132\) 1.63788 1.32421i 0.142559 0.115258i
\(133\) −3.69744 1.25914i −0.320609 0.109181i
\(134\) 1.98629 5.04443i 0.171590 0.435772i
\(135\) −1.59609 + 4.05346i −0.137370 + 0.348867i
\(136\) 7.01085 + 2.38750i 0.601175 + 0.204727i
\(137\) −3.96638 + 3.20678i −0.338871 + 0.273974i −0.783043 0.621967i \(-0.786334\pi\)
0.444172 + 0.895941i \(0.353498\pi\)
\(138\) −2.12216 + 1.07503i −0.180650 + 0.0915130i
\(139\) −4.06251 + 14.0570i −0.344578 + 1.19230i 0.581050 + 0.813868i \(0.302642\pi\)
−0.925628 + 0.378434i \(0.876463\pi\)
\(140\) 2.32319 + 1.24615i 0.196346 + 0.105319i
\(141\) 0.644808 1.13727i 0.0543026 0.0957757i
\(142\) 0.885685 + 0.996106i 0.0743250 + 0.0835914i
\(143\) −1.24162 + 4.70727i −0.103829 + 0.393642i
\(144\) −0.0516905 2.20438i −0.00430754 0.183698i
\(145\) −0.558929 0.985806i −0.0464165 0.0818667i
\(146\) 1.44610 4.24643i 0.119680 0.351437i
\(147\) 0.780946 0.129327i 0.0644114 0.0106667i
\(148\) 9.58252 + 2.28868i 0.787678 + 0.188128i
\(149\) 7.82714 6.03031i 0.641225 0.494022i −0.237477 0.971393i \(-0.576321\pi\)
0.878702 + 0.477371i \(0.158410\pi\)
\(150\) 3.01111 + 2.10256i 0.245856 + 0.171673i
\(151\) −8.78264 + 18.3947i −0.714721 + 1.49694i 0.146773 + 0.989170i \(0.453111\pi\)
−0.861494 + 0.507768i \(0.830471\pi\)
\(152\) −1.38923 0.0651878i −0.112681 0.00528743i
\(153\) 15.9684 3.42029i 1.29097 0.276514i
\(154\) −5.91825 2.99804i −0.476906 0.241589i
\(155\) −0.538254 + 0.577508i −0.0432336 + 0.0463866i
\(156\) −1.12149 1.45566i −0.0897911 0.116546i
\(157\) 0.590359 0.576678i 0.0471158 0.0460239i −0.674833 0.737971i \(-0.735784\pi\)
0.721948 + 0.691947i \(0.243247\pi\)
\(158\) 6.72768 4.93631i 0.535226 0.392712i
\(159\) 9.84371 + 2.59643i 0.780657 + 0.205910i
\(160\) 0.917864 + 0.196598i 0.0725635 + 0.0155424i
\(161\) 5.82702 + 4.71109i 0.459234 + 0.371286i
\(162\) −1.32130 2.09505i −0.103812 0.164603i
\(163\) 0.476875 0.0335960i 0.0373518 0.00263144i −0.0515880 0.998668i \(-0.516428\pi\)
0.0889397 + 0.996037i \(0.471652\pi\)
\(164\) −1.77215 + 0.697804i −0.138382 + 0.0544893i
\(165\) 1.64709 + 1.09358i 0.128226 + 0.0851354i
\(166\) −4.49255 + 2.83336i −0.348690 + 0.219912i
\(167\) 1.43680 0.859752i 0.111183 0.0665296i −0.456804 0.889567i \(-0.651006\pi\)
0.567987 + 0.823038i \(0.307722\pi\)
\(168\) 2.25981 1.07896i 0.174348 0.0832436i
\(169\) −8.40858 2.43010i −0.646814 0.186930i
\(170\) −0.162975 + 6.95018i −0.0124996 + 0.533055i
\(171\) −2.70237 + 1.44954i −0.206655 + 0.110849i
\(172\) 0.529347 + 2.47138i 0.0403623 + 0.188441i
\(173\) −3.17206 8.64504i −0.241168 0.657270i −0.999982 0.00596343i \(-0.998102\pi\)
0.758815 0.651307i \(-0.225779\pi\)
\(174\) −1.06905 0.125895i −0.0810443 0.00954406i
\(175\) 2.15696 11.3651i 0.163051 0.859119i
\(176\) −2.32078 0.440457i −0.174935 0.0332007i
\(177\) 0.604157 0.618490i 0.0454112 0.0464886i
\(178\) −7.49431 8.83746i −0.561723 0.662395i
\(179\) −0.264022 + 5.62660i −0.0197339 + 0.420552i 0.966651 + 0.256098i \(0.0824370\pi\)
−0.986385 + 0.164454i \(0.947414\pi\)
\(180\) 1.95929 0.667223i 0.146037 0.0497319i
\(181\) −10.8468 + 17.1986i −0.806237 + 1.27836i 0.150849 + 0.988557i \(0.451799\pi\)
−0.957086 + 0.289804i \(0.906410\pi\)
\(182\) −2.73596 + 5.10063i −0.202803 + 0.378084i
\(183\) −3.81944 0.632508i −0.282341 0.0467564i
\(184\) 2.45892 + 1.03544i 0.181274 + 0.0763339i
\(185\) 0.649910 + 9.22507i 0.0477823 + 0.678241i
\(186\) 0.139823 + 0.736733i 0.0102524 + 0.0540199i
\(187\) 17.4950i 1.27936i
\(188\) −1.44052 + 0.273395i −0.105061 + 0.0199394i
\(189\) 7.20963 10.8587i 0.524423 0.789856i
\(190\) −0.332952 1.26230i −0.0241549 0.0915772i
\(191\) −4.38811 + 1.26817i −0.317513 + 0.0917618i −0.432579 0.901596i \(-0.642396\pi\)
0.115066 + 0.993358i \(0.463292\pi\)
\(192\) 0.666332 0.592467i 0.0480884 0.0427576i
\(193\) 5.95491 13.2632i 0.428643 0.954706i −0.563091 0.826395i \(-0.690388\pi\)
0.991734 0.128311i \(-0.0409555\pi\)
\(194\) −6.68171 + 4.43631i −0.479719 + 0.318508i
\(195\) 0.987521 1.41424i 0.0707178 0.101276i
\(196\) −0.677101 0.574193i −0.0483644 0.0410138i
\(197\) −11.1141 4.07803i −0.791850 0.290548i −0.0835902 0.996500i \(-0.526639\pi\)
−0.708259 + 0.705952i \(0.750519\pi\)
\(198\) −4.88985 + 1.79420i −0.347506 + 0.127508i
\(199\) −10.4917 + 8.89710i −0.743734 + 0.630699i −0.936549 0.350536i \(-0.885999\pi\)
0.192815 + 0.981235i \(0.438238\pi\)
\(200\) −0.385698 4.10078i −0.0272729 0.289969i
\(201\) 3.12643 3.68676i 0.220522 0.260044i
\(202\) −1.71916 1.60231i −0.120960 0.112738i
\(203\) 1.01747 + 3.23434i 0.0714123 + 0.227006i
\(204\) 5.23117 + 4.03028i 0.366255 + 0.282176i
\(205\) −1.12402 1.39026i −0.0785047 0.0971003i
\(206\) 11.0248 + 8.08926i 0.768137 + 0.563606i
\(207\) 5.82487 0.824822i 0.404856 0.0573291i
\(208\) −0.431636 + 2.01519i −0.0299286 + 0.139729i
\(209\) 0.912115 + 3.15608i 0.0630923 + 0.218311i
\(210\) 1.60268 + 1.71956i 0.110595 + 0.118661i
\(211\) −3.07047 + 18.5412i −0.211380 + 1.27643i 0.646632 + 0.762802i \(0.276177\pi\)
−0.858012 + 0.513629i \(0.828301\pi\)
\(212\) −4.91944 10.3035i −0.337869 0.707645i
\(213\) 0.461238 + 1.09532i 0.0316035 + 0.0750504i
\(214\) 8.82739 12.0308i 0.603428 0.822410i
\(215\) −2.06382 + 1.17014i −0.140751 + 0.0798028i
\(216\) 1.39268 4.42706i 0.0947598 0.301224i
\(217\) 1.93662 1.35228i 0.131466 0.0917987i
\(218\) −0.342591 2.06875i −0.0232032 0.140114i
\(219\) 2.44112 3.16849i 0.164956 0.214107i
\(220\) −0.259332 2.20214i −0.0174842 0.148468i
\(221\) −15.2593 0.357816i −1.02645 0.0240693i
\(222\) 7.43016 + 4.68605i 0.498680 + 0.314507i
\(223\) −8.95012 19.9344i −0.599344 1.33490i −0.921560 0.388237i \(-0.873084\pi\)
0.322216 0.946666i \(-0.395572\pi\)
\(224\) −2.56213 1.15034i −0.171189 0.0768605i
\(225\) −5.37269 7.32242i −0.358179 0.488162i
\(226\) −2.34916 + 3.92586i −0.156264 + 0.261144i
\(227\) −14.1229 4.44283i −0.937370 0.294881i −0.207319 0.978273i \(-0.566474\pi\)
−0.730051 + 0.683393i \(0.760504\pi\)
\(228\) −1.15382 0.454328i −0.0764136 0.0300886i
\(229\) −8.50268 12.1768i −0.561873 0.804667i 0.433459 0.901173i \(-0.357293\pi\)
−0.995332 + 0.0965065i \(0.969233\pi\)
\(230\) −0.234519 + 2.49343i −0.0154638 + 0.164412i
\(231\) −4.13349 4.23155i −0.271963 0.278416i
\(232\) 0.667772 + 1.00576i 0.0438414 + 0.0660313i
\(233\) 7.52277 8.46066i 0.492833 0.554276i −0.447610 0.894229i \(-0.647725\pi\)
0.940442 + 0.339953i \(0.110411\pi\)
\(234\) 1.46491 + 4.30166i 0.0957639 + 0.281208i
\(235\) −0.650576 1.21286i −0.0424389 0.0791185i
\(236\) −0.967282 0.0681454i −0.0629647 0.00443589i
\(237\) 7.09727 2.23268i 0.461017 0.145028i
\(238\) 4.83207 20.2315i 0.313217 1.31141i
\(239\) 15.5681 + 1.46425i 1.00701 + 0.0947146i 0.584291 0.811544i \(-0.301373\pi\)
0.422724 + 0.906259i \(0.361074\pi\)
\(240\) 0.718203 + 0.429759i 0.0463598 + 0.0277408i
\(241\) −27.4313 + 0.643237i −1.76701 + 0.0414345i −0.894473 0.447122i \(-0.852449\pi\)
−0.872532 + 0.488557i \(0.837524\pi\)
\(242\) −0.759910 5.36646i −0.0488488 0.344969i
\(243\) −3.74740 15.6901i −0.240396 1.00652i
\(244\) 2.22949 + 3.72586i 0.142728 + 0.238524i
\(245\) 0.323416 0.768032i 0.0206623 0.0490678i
\(246\) −1.69634 + 0.0795986i −0.108154 + 0.00507502i
\(247\) 2.77142 0.731005i 0.176341 0.0465128i
\(248\) 0.528760 0.654009i 0.0335763 0.0415296i
\(249\) −4.60628 + 1.10016i −0.291911 + 0.0697198i
\(250\) 7.88882 3.32196i 0.498933 0.210099i
\(251\) 12.9092 + 25.4832i 0.814820 + 1.60849i 0.793388 + 0.608716i \(0.208315\pi\)
0.0214322 + 0.999770i \(0.493177\pi\)
\(252\) −6.15024 + 0.724274i −0.387429 + 0.0456250i
\(253\) 0.442912 6.28686i 0.0278456 0.395252i
\(254\) 5.74065 11.3323i 0.360201 0.711050i
\(255\) −2.13526 + 5.81937i −0.133715 + 0.364423i
\(256\) −0.990123 0.140205i −0.0618827 0.00876280i
\(257\) −20.7205 20.2404i −1.29251 1.26256i −0.945864 0.324564i \(-0.894782\pi\)
−0.346648 0.937995i \(-0.612680\pi\)
\(258\) −0.263565 + 2.23809i −0.0164089 + 0.139337i
\(259\) 3.87942 27.3963i 0.241055 1.70233i
\(260\) −1.92603 + 0.181152i −0.119447 + 0.0112346i
\(261\) 2.40222 + 1.14695i 0.148694 + 0.0709946i
\(262\) 13.5049 + 12.0078i 0.834334 + 0.741846i
\(263\) −10.9263 + 4.90568i −0.673744 + 0.302497i −0.717514 0.696544i \(-0.754720\pi\)
0.0437694 + 0.999042i \(0.486063\pi\)
\(264\) −1.83222 1.03883i −0.112765 0.0639354i
\(265\) 7.84021 7.30730i 0.481620 0.448884i
\(266\) 0.183081 + 3.90167i 0.0112254 + 0.239227i
\(267\) −3.78531 9.61325i −0.231657 0.588321i
\(268\) −5.42140 −0.331165
\(269\) −2.62085 + 16.1905i −0.159796 + 0.987150i
\(270\) 4.35638 0.265121
\(271\) −1.38158 3.50869i −0.0839252 0.213138i 0.882380 0.470538i \(-0.155940\pi\)
−0.966305 + 0.257400i \(0.917134\pi\)
\(272\) −0.347146 7.39808i −0.0210488 0.448575i
\(273\) −3.77534 + 3.51872i −0.228494 + 0.212963i
\(274\) 4.43700 + 2.51568i 0.268049 + 0.151978i
\(275\) −8.87604 + 3.98516i −0.535245 + 0.240314i
\(276\) 1.77780 + 1.58072i 0.107011 + 0.0951484i
\(277\) −4.50843 2.15257i −0.270885 0.129336i 0.290541 0.956863i \(-0.406165\pi\)
−0.561426 + 0.827527i \(0.689747\pi\)
\(278\) 14.5680 1.37019i 0.873731 0.0821786i
\(279\) 0.260001 1.83612i 0.0155659 0.109926i
\(280\) 0.308330 2.61822i 0.0184263 0.156468i
\(281\) 21.8232 + 21.3175i 1.30187 + 1.27170i 0.940719 + 0.339187i \(0.110152\pi\)
0.361146 + 0.932509i \(0.382386\pi\)
\(282\) −1.29444 0.183297i −0.0770826 0.0109152i
\(283\) −3.32942 + 9.07388i −0.197913 + 0.539386i −0.998183 0.0602539i \(-0.980809\pi\)
0.800270 + 0.599640i \(0.204690\pi\)
\(284\) 0.602345 1.18905i 0.0357426 0.0705573i
\(285\) 0.0818022 1.16113i 0.00484555 0.0687796i
\(286\) 4.83486 0.569370i 0.285891 0.0336675i
\(287\) 2.41725 + 4.77174i 0.142686 + 0.281667i
\(288\) −2.03216 + 0.855736i −0.119746 + 0.0504248i
\(289\) 36.8166 8.79326i 2.16568 0.517250i
\(290\) −0.712477 + 0.881244i −0.0418381 + 0.0517484i
\(291\) −6.91475 + 1.82387i −0.405350 + 0.106917i
\(292\) −4.48098 + 0.210265i −0.262229 + 0.0123048i
\(293\) 2.61342 6.20621i 0.152678 0.362571i −0.827276 0.561795i \(-0.810111\pi\)
0.979954 + 0.199224i \(0.0638423\pi\)
\(294\) −0.406457 0.679261i −0.0237051 0.0396153i
\(295\) −0.211449 0.885320i −0.0123111 0.0515453i
\(296\) −1.38130 9.75473i −0.0802867 0.566982i
\(297\) −10.9599 + 0.256998i −0.635956 + 0.0149125i
\(298\) −8.47870 5.07350i −0.491158 0.293900i
\(299\) −5.47440 0.514893i −0.316593 0.0297770i
\(300\) 0.853151 3.57207i 0.0492567 0.206234i
\(301\) 6.77122 2.13011i 0.390286 0.122777i
\(302\) 20.3334 + 1.43250i 1.17006 + 0.0824308i
\(303\) −0.990483 1.84655i −0.0569018 0.106082i
\(304\) 0.448329 + 1.31651i 0.0257135 + 0.0755070i
\(305\) −2.70821 + 3.04585i −0.155071 + 0.174405i
\(306\) −9.03297 13.6049i −0.516380 0.777742i
\(307\) −4.15844 4.25709i −0.237335 0.242965i 0.586289 0.810102i \(-0.300588\pi\)
−0.823623 + 0.567137i \(0.808051\pi\)
\(308\) −0.621245 + 6.60514i −0.0353987 + 0.376363i
\(309\) 6.98026 + 9.99653i 0.397093 + 0.568683i
\(310\) 0.734557 + 0.289239i 0.0417200 + 0.0164277i
\(311\) −22.6074 7.11192i −1.28195 0.403280i −0.418732 0.908110i \(-0.637525\pi\)
−0.863219 + 0.504830i \(0.831555\pi\)
\(312\) −0.943547 + 1.57683i −0.0534178 + 0.0892705i
\(313\) −1.99312 2.71642i −0.112658 0.153541i 0.746260 0.665655i \(-0.231848\pi\)
−0.858918 + 0.512114i \(0.828863\pi\)
\(314\) −0.752874 0.338025i −0.0424872 0.0190759i
\(315\) −2.38096 5.30304i −0.134152 0.298793i
\(316\) −7.05795 4.45131i −0.397041 0.250406i
\(317\) 31.2586 + 0.732983i 1.75566 + 0.0411684i 0.889046 0.457818i \(-0.151369\pi\)
0.866610 + 0.498986i \(0.166294\pi\)
\(318\) −1.19065 10.1105i −0.0667683 0.566969i
\(319\) 1.74048 2.25908i 0.0974479 0.126484i
\(320\) −0.153359 0.926070i −0.00857306 0.0517689i
\(321\) 10.9087 7.61719i 0.608864 0.425150i
\(322\) 2.24860 7.14789i 0.125310 0.398336i
\(323\) −8.96024 + 5.08025i −0.498561 + 0.282673i
\(324\) −1.46527 + 1.99701i −0.0814039 + 0.110945i
\(325\) 3.29435 + 7.82326i 0.182738 + 0.433957i
\(326\) −0.205978 0.431407i −0.0114080 0.0238934i
\(327\) 0.305467 1.84458i 0.0168923 0.102005i
\(328\) 1.29856 + 1.39327i 0.0717012 + 0.0769303i
\(329\) 1.14331 + 3.95606i 0.0630327 + 0.218105i
\(330\) 0.414080 1.93323i 0.0227943 0.106421i
\(331\) −9.13016 + 1.29286i −0.501839 + 0.0710622i −0.386547 0.922270i \(-0.626332\pi\)
−0.115291 + 0.993332i \(0.536780\pi\)
\(332\) 4.28233 + 3.14208i 0.235023 + 0.172444i
\(333\) −13.6579 16.8931i −0.748449 0.925735i
\(334\) −1.32638 1.02189i −0.0725764 0.0559155i
\(335\) −1.52712 4.85444i −0.0834357 0.265226i
\(336\) −1.83189 1.70737i −0.0999376 0.0931446i
\(337\) 6.47404 7.63433i 0.352664 0.415869i −0.557461 0.830203i \(-0.688224\pi\)
0.910125 + 0.414334i \(0.135986\pi\)
\(338\) 0.819615 + 8.71423i 0.0445812 + 0.473991i
\(339\) −3.11119 + 2.63834i −0.168977 + 0.143295i
\(340\) 6.52661 2.39477i 0.353955 0.129874i
\(341\) −1.86507 0.684339i −0.100999 0.0370590i
\(342\) 2.33884 + 1.98338i 0.126470 + 0.107249i
\(343\) 9.82785 14.0746i 0.530654 0.759957i
\(344\) 2.10559 1.39800i 0.113526 0.0753754i
\(345\) −0.914636 + 2.03714i −0.0492423 + 0.109676i
\(346\) −6.88173 + 6.11886i −0.369964 + 0.328952i
\(347\) 19.2173 5.55385i 1.03164 0.298146i 0.281595 0.959533i \(-0.409136\pi\)
0.750045 + 0.661387i \(0.230032\pi\)
\(348\) 0.274537 + 1.04084i 0.0147167 + 0.0557947i
\(349\) −0.833946 + 1.25604i −0.0446401 + 0.0672343i −0.854736 0.519063i \(-0.826281\pi\)
0.810096 + 0.586298i \(0.199415\pi\)
\(350\) −11.3651 + 2.15696i −0.607489 + 0.115294i
\(351\) 9.56455i 0.510518i
\(352\) 0.440457 + 2.32078i 0.0234764 + 0.123698i
\(353\) 0.912306 + 12.9496i 0.0485572 + 0.689239i 0.960387 + 0.278671i \(0.0898937\pi\)
−0.911830 + 0.410569i \(0.865330\pi\)
\(354\) −0.796835 0.335545i −0.0423513 0.0178340i
\(355\) 1.23437 + 0.204415i 0.0655137 + 0.0108492i
\(356\) −5.47718 + 10.2111i −0.290290 + 0.541185i
\(357\) 9.89362 15.6872i 0.523626 0.830256i
\(358\) 5.33209 1.81581i 0.281810 0.0959687i
\(359\) 1.06012 22.5924i 0.0559512 1.19238i −0.773497 0.633800i \(-0.781494\pi\)
0.829448 0.558583i \(-0.188655\pi\)
\(360\) −1.33867 1.57859i −0.0705542 0.0831990i
\(361\) −11.9251 + 12.2080i −0.627635 + 0.642525i
\(362\) 19.9767 + 3.79136i 1.04995 + 0.199269i
\(363\) 0.901099 4.74791i 0.0472954 0.249201i
\(364\) 5.74836 + 0.676947i 0.301296 + 0.0354817i
\(365\) −1.45050 3.95313i −0.0759224 0.206917i
\(366\) 0.810839 + 3.78559i 0.0423832 + 0.197876i
\(367\) −16.3878 + 8.79037i −0.855437 + 0.458853i −0.840995 0.541042i \(-0.818030\pi\)
−0.0144415 + 0.999896i \(0.504597\pi\)
\(368\) 0.0625456 2.66730i 0.00326042 0.139043i
\(369\) 4.03448 + 1.16597i 0.210027 + 0.0606982i
\(370\) 8.34550 3.98460i 0.433862 0.207150i
\(371\) −27.5166 + 16.4654i −1.42859 + 0.854841i
\(372\) 0.634276 0.400025i 0.0328857 0.0207403i
\(373\) 0.0765514 + 0.0508262i 0.00396368 + 0.00263168i 0.555111 0.831776i \(-0.312676\pi\)
−0.551148 + 0.834408i \(0.685810\pi\)
\(374\) −16.2785 + 6.40982i −0.841741 + 0.331444i
\(375\) 7.61330 0.536360i 0.393149 0.0276975i
\(376\) 0.782163 + 1.24019i 0.0403370 + 0.0639580i
\(377\) −1.93479 1.56426i −0.0996469 0.0805636i
\(378\) −12.7451 2.72989i −0.655539 0.140410i
\(379\) −6.18642 1.63176i −0.317775 0.0838181i 0.0926885 0.995695i \(-0.470454\pi\)
−0.410463 + 0.911877i \(0.634633\pi\)
\(380\) −1.05254 + 0.772284i −0.0539943 + 0.0396173i
\(381\) 8.10258 7.91481i 0.415108 0.405488i
\(382\) 2.78771 + 3.61835i 0.142632 + 0.185131i
\(383\) −15.4542 + 16.5813i −0.789673 + 0.847263i −0.991221 0.132215i \(-0.957791\pi\)
0.201548 + 0.979479i \(0.435403\pi\)
\(384\) −0.795401 0.402931i −0.0405901 0.0205620i
\(385\) −6.08938 + 1.30429i −0.310344 + 0.0664727i
\(386\) −14.5227 0.681461i −0.739186 0.0346855i
\(387\) 2.40119 5.02913i 0.122059 0.255645i
\(388\) 6.57588 + 4.59173i 0.333840 + 0.233110i
\(389\) 10.2918 7.92918i 0.521816 0.402026i −0.315349 0.948976i \(-0.602122\pi\)
0.837165 + 0.546950i \(0.184211\pi\)
\(390\) −1.67771 0.400703i −0.0849542 0.0202904i
\(391\) 19.4946 3.22835i 0.985883 0.163265i
\(392\) −0.286190 + 0.840392i −0.0144548 + 0.0424462i
\(393\) 7.94719 + 14.0168i 0.400883 + 0.707053i
\(394\) 0.277529 + 11.8354i 0.0139817 + 0.596260i
\(395\) 1.99768 7.57371i 0.100514 0.381075i
\(396\) 3.46098 + 3.89247i 0.173921 + 0.195604i
\(397\) −8.94700 + 15.7802i −0.449037 + 0.791985i −0.999068 0.0431596i \(-0.986258\pi\)
0.550031 + 0.835144i \(0.314616\pi\)
\(398\) 12.1224 + 6.50240i 0.607640 + 0.325936i
\(399\) −0.966936 + 3.34578i −0.0484074 + 0.167498i
\(400\) −3.67432 + 1.86132i −0.183716 + 0.0930660i
\(401\) −7.34352 + 5.93717i −0.366718 + 0.296488i −0.794345 0.607467i \(-0.792186\pi\)
0.427627 + 0.903955i \(0.359350\pi\)
\(402\) −4.57587 1.55828i −0.228223 0.0777201i
\(403\) −0.635032 + 1.61274i −0.0316332 + 0.0803362i
\(404\) −0.861025 + 2.18668i −0.0428376 + 0.108791i
\(405\) −2.20091 0.749507i −0.109364 0.0372433i
\(406\) 2.63666 2.13172i 0.130855 0.105795i
\(407\) −20.7607 + 10.5169i −1.02907 + 0.521301i
\(408\) 1.83344 6.34404i 0.0907688 0.314077i
\(409\) −5.19611 2.78718i −0.256931 0.137817i 0.339173 0.940724i \(-0.389853\pi\)
−0.596104 + 0.802907i \(0.703286\pi\)
\(410\) −0.881776 + 1.55522i −0.0435478 + 0.0768070i
\(411\) 3.02191 + 3.39866i 0.149060 + 0.167644i
\(412\) 3.48750 13.2220i 0.171817 0.651400i
\(413\) 0.0638427 + 2.72262i 0.00314149 + 0.133971i
\(414\) −2.90158 5.11764i −0.142605 0.251518i
\(415\) −1.60722 + 4.71956i −0.0788952 + 0.231674i
\(416\) 2.03321 0.336705i 0.0996863 0.0165083i
\(417\) 12.6898 + 3.03082i 0.621421 + 0.148420i
\(418\) 2.60245 2.00502i 0.127290 0.0980686i
\(419\) 24.6700 + 17.2263i 1.20521 + 0.841559i 0.990820 0.135189i \(-0.0431642\pi\)
0.214389 + 0.976748i \(0.431224\pi\)
\(420\) 1.01280 2.12125i 0.0494196 0.103506i
\(421\) 8.60401 + 0.403733i 0.419334 + 0.0196768i 0.255495 0.966810i \(-0.417762\pi\)
0.163839 + 0.986487i \(0.447612\pi\)
\(422\) 18.3769 3.93617i 0.894575 0.191610i
\(423\) 2.88408 + 1.46101i 0.140229 + 0.0710366i
\(424\) −7.78463 + 8.35236i −0.378055 + 0.405626i
\(425\) −18.6177 24.1652i −0.903091 1.17218i
\(426\) 0.850173 0.830471i 0.0411910 0.0402365i
\(427\) 9.83184 7.21393i 0.475796 0.349106i
\(428\) −14.4284 3.80573i −0.697425 0.183957i
\(429\) 4.24445 + 0.909123i 0.204924 + 0.0438929i
\(430\) 1.84492 + 1.49160i 0.0889697 + 0.0719312i
\(431\) 2.00790 + 3.18371i 0.0967173 + 0.153354i 0.890708 0.454576i \(-0.150209\pi\)
−0.793991 + 0.607930i \(0.792000\pi\)
\(432\) −4.62948 + 0.326149i −0.222736 + 0.0156918i
\(433\) −20.3264 + 8.00372i −0.976824 + 0.384634i −0.800259 0.599655i \(-0.795305\pi\)
−0.176565 + 0.984289i \(0.556499\pi\)
\(434\) −1.96779 1.30651i −0.0944568 0.0627144i
\(435\) −0.854655 + 0.539014i −0.0409776 + 0.0258437i
\(436\) −1.79939 + 1.07672i −0.0861750 + 0.0515655i
\(437\) −3.34849 + 1.59876i −0.160180 + 0.0764788i
\(438\) −3.84255 1.11050i −0.183604 0.0530620i
\(439\) −0.687929 + 29.3372i −0.0328331 + 1.40019i 0.697248 + 0.716830i \(0.254407\pi\)
−0.730081 + 0.683360i \(0.760518\pi\)
\(440\) −1.95400 + 1.04812i −0.0931534 + 0.0499672i
\(441\) 0.409991 + 1.91414i 0.0195234 + 0.0911494i
\(442\) 5.25777 + 14.3293i 0.250087 + 0.681578i
\(443\) 3.87472 + 0.456300i 0.184093 + 0.0216795i 0.208499 0.978023i \(-0.433142\pi\)
−0.0244052 + 0.999702i \(0.507769\pi\)
\(444\) 1.63795 8.63038i 0.0777335 0.409580i
\(445\) −10.6860 2.02809i −0.506567 0.0961405i
\(446\) −15.2691 + 15.6313i −0.723012 + 0.740165i
\(447\) −5.69806 6.71927i −0.269509 0.317811i
\(448\) −0.131642 + 2.80543i −0.00621949 + 0.132544i
\(449\) 11.5595 3.93652i 0.545527 0.185776i −0.0359283 0.999354i \(-0.511439\pi\)
0.581455 + 0.813578i \(0.302484\pi\)
\(450\) −4.84482 + 7.68189i −0.228387 + 0.362128i
\(451\) 2.12664 3.96468i 0.100140 0.186689i
\(452\) 4.51356 + 0.747456i 0.212300 + 0.0351574i
\(453\) 16.7504 + 7.05354i 0.787002 + 0.331404i
\(454\) 1.04046 + 14.7686i 0.0488310 + 0.693126i
\(455\) 1.01307 + 5.33789i 0.0474934 + 0.250244i
\(456\) 1.24005i 0.0580705i
\(457\) 7.12331 1.35192i 0.333214 0.0632402i −0.0171523 0.999853i \(-0.505460\pi\)
0.350367 + 0.936613i \(0.386057\pi\)
\(458\) −8.21489 + 12.3728i −0.383857 + 0.578143i
\(459\) −8.76632 33.2353i −0.409177 1.55129i
\(460\) 2.40598 0.695333i 0.112179 0.0324200i
\(461\) 2.61056 2.32117i 0.121586 0.108108i −0.601476 0.798891i \(-0.705421\pi\)
0.723062 + 0.690783i \(0.242734\pi\)
\(462\) −2.42288 + 5.39642i −0.112723 + 0.251064i
\(463\) 30.7094 20.3895i 1.42719 0.947578i 0.428151 0.903707i \(-0.359165\pi\)
0.999037 0.0438710i \(-0.0139690\pi\)
\(464\) 0.691166 0.989829i 0.0320866 0.0459516i
\(465\) 0.536857 + 0.455264i 0.0248961 + 0.0211123i
\(466\) −10.6285 3.89986i −0.492358 0.180657i
\(467\) 24.4878 8.98515i 1.13316 0.415783i 0.291920 0.956443i \(-0.405706\pi\)
0.841241 + 0.540660i \(0.181825\pi\)
\(468\) 3.46584 2.93909i 0.160208 0.135859i
\(469\) 1.42580 + 15.1592i 0.0658372 + 0.699988i
\(470\) −0.890170 + 1.04971i −0.0410605 + 0.0484194i
\(471\) −0.538295 0.501706i −0.0248033 0.0231174i
\(472\) 0.290986 + 0.924990i 0.0133937 + 0.0425761i
\(473\) −4.72947 3.64375i −0.217461 0.167540i
\(474\) −4.67773 5.78575i −0.214855 0.265748i
\(475\) 4.61849 + 3.38873i 0.211911 + 0.155485i
\(476\) −20.5951 + 2.91634i −0.943974 + 0.133670i
\(477\) −5.27281 + 24.6173i −0.241425 + 1.12715i
\(478\) −4.34140 15.0220i −0.198571 0.687091i
\(479\) 19.5135 + 20.9366i 0.891596 + 0.956619i 0.999294 0.0375644i \(-0.0119599\pi\)
−0.107698 + 0.994184i \(0.534348\pi\)
\(480\) 0.136741 0.825718i 0.00624134 0.0376887i
\(481\) 8.74829 + 18.3228i 0.398888 + 0.835446i
\(482\) 10.6488 + 25.2882i 0.485039 + 1.15185i
\(483\) 3.95244 5.38676i 0.179842 0.245106i
\(484\) −4.71489 + 2.67323i −0.214313 + 0.121511i
\(485\) −2.25921 + 7.18160i −0.102585 + 0.326099i
\(486\) −13.2261 + 9.23535i −0.599947 + 0.418924i
\(487\) −0.701362 4.23522i −0.0317818 0.191916i 0.965995 0.258561i \(-0.0832482\pi\)
−0.997777 + 0.0666447i \(0.978771\pi\)
\(488\) 2.64995 3.43954i 0.119957 0.155701i
\(489\) −0.0498526 0.423328i −0.00225441 0.0191436i
\(490\) −0.833120 0.0195358i −0.0376365 0.000882540i
\(491\) 7.21355 + 4.54944i 0.325543 + 0.205313i 0.686250 0.727366i \(-0.259256\pi\)
−0.360707 + 0.932679i \(0.617465\pi\)
\(492\) 0.695567 + 1.54922i 0.0313586 + 0.0698441i
\(493\) 8.15680 + 3.66224i 0.367364 + 0.164939i
\(494\) −1.69557 2.31088i −0.0762872 0.103972i
\(495\) −2.51050 + 4.19548i −0.112839 + 0.188573i
\(496\) −0.802260 0.252377i −0.0360225 0.0113321i
\(497\) −3.48322 1.37155i −0.156244 0.0615225i
\(498\) 2.71131 + 3.88291i 0.121497 + 0.173997i
\(499\) 1.44296 15.3417i 0.0645956 0.686788i −0.902214 0.431289i \(-0.858059\pi\)
0.966809 0.255499i \(-0.0822396\pi\)
\(500\) −5.98128 6.12318i −0.267491 0.273837i
\(501\) −0.825792 1.24376i −0.0368937 0.0555671i
\(502\) 18.9816 21.3481i 0.847189 0.952812i
\(503\) 3.60170 + 10.5763i 0.160592 + 0.471574i 0.997076 0.0764170i \(-0.0243480\pi\)
−0.836484 + 0.547991i \(0.815393\pi\)
\(504\) 2.92724 + 5.45723i 0.130390 + 0.243084i
\(505\) −2.20053 0.155028i −0.0979224 0.00689867i
\(506\) −6.01198 + 1.89127i −0.267265 + 0.0840771i
\(507\) −1.81296 + 7.59071i −0.0805164 + 0.337115i
\(508\) −12.6475 1.18956i −0.561144 0.0527783i
\(509\) 20.5041 + 12.2693i 0.908828 + 0.543826i 0.889982 0.455996i \(-0.150717\pi\)
0.0188466 + 0.999822i \(0.494001\pi\)
\(510\) 6.19704 0.145314i 0.274409 0.00643463i
\(511\) 1.76641 + 12.4743i 0.0781413 + 0.551831i
\(512\) 0.232305 + 0.972643i 0.0102665 + 0.0429851i
\(513\) 3.31418 + 5.53857i 0.146325 + 0.244534i
\(514\) −11.2414 + 26.6954i −0.495835 + 1.17748i
\(515\) 12.8216 0.601639i 0.564987 0.0265114i
\(516\) 2.17903 0.574753i 0.0959265 0.0253021i
\(517\) 2.17758 2.69339i 0.0957698 0.118455i
\(518\) −26.9127 + 6.42781i −1.18248 + 0.282422i
\(519\) −7.56719 + 3.18652i −0.332163 + 0.139873i
\(520\) 0.874216 + 1.72574i 0.0383369 + 0.0756785i
\(521\) 18.2621 2.15061i 0.800076 0.0942198i 0.292991 0.956115i \(-0.405350\pi\)
0.507086 + 0.861896i \(0.330723\pi\)
\(522\) 0.187074 2.65540i 0.00818801 0.116224i
\(523\) 8.21517 16.2171i 0.359225 0.709123i −0.638967 0.769234i \(-0.720638\pi\)
0.998192 + 0.0601111i \(0.0191455\pi\)
\(524\) 6.22494 16.9652i 0.271938 0.741130i
\(525\) −10.2125 1.44613i −0.445711 0.0631143i
\(526\) 8.56775 + 8.36920i 0.373572 + 0.364914i
\(527\) 0.728489 6.18604i 0.0317335 0.269468i
\(528\) −0.295303 + 2.08542i −0.0128514 + 0.0907564i
\(529\) −15.8118 + 1.48717i −0.687469 + 0.0646598i
\(530\) −9.67168 4.61780i −0.420111 0.200584i
\(531\) 1.59785 + 1.42073i 0.0693409 + 0.0616542i
\(532\) 3.56329 1.59984i 0.154488 0.0693620i
\(533\) −3.41453 1.93596i −0.147900 0.0838558i
\(534\) −7.55793 + 7.04420i −0.327064 + 0.304832i
\(535\) −0.656537 13.9916i −0.0283846 0.604908i
\(536\) 1.98629 + 5.04443i 0.0857948 + 0.217886i
\(537\) 5.02241 0.216733
\(538\) 16.0249 3.49326i 0.690882 0.150605i
\(539\) 2.09713 0.0903298
\(540\) −1.59609 4.05346i −0.0686849 0.174433i
\(541\) 2.13915 + 45.5876i 0.0919691 + 1.95997i 0.239471 + 0.970903i \(0.423026\pi\)
−0.147502 + 0.989062i \(0.547123\pi\)
\(542\) −2.75853 + 2.57103i −0.118489 + 0.110435i
\(543\) 15.7714 + 8.94200i 0.676814 + 0.383738i
\(544\) −6.75647 + 3.03352i −0.289681 + 0.130061i
\(545\) −1.47098 1.30791i −0.0630097 0.0560249i
\(546\) 4.65725 + 2.22363i 0.199312 + 0.0951626i
\(547\) 12.6137 1.18638i 0.539325 0.0507261i 0.179521 0.983754i \(-0.442545\pi\)
0.359804 + 0.933028i \(0.382844\pi\)
\(548\) 0.715122 5.05017i 0.0305485 0.215733i
\(549\) 1.11973 9.50826i 0.0477888 0.405803i
\(550\) 6.96005 + 6.79876i 0.296778 + 0.289900i
\(551\) −1.66241 0.235404i −0.0708212 0.0100285i
\(552\) 0.819459 2.23333i 0.0348785 0.0950566i
\(553\) −10.5905 + 20.9060i −0.450352 + 0.889013i
\(554\) −0.351096 + 4.98359i −0.0149166 + 0.211733i
\(555\) 8.18921 0.964390i 0.347613 0.0409361i
\(556\) −6.61234 13.0530i −0.280426 0.553571i
\(557\) −9.88501 + 4.16255i −0.418841 + 0.176373i −0.587360 0.809325i \(-0.699833\pi\)
0.168519 + 0.985698i \(0.446102\pi\)
\(558\) −1.80370 + 0.430795i −0.0763569 + 0.0182370i
\(559\) −3.27484 + 4.05056i −0.138511 + 0.171320i
\(560\) −2.54913 + 0.672372i −0.107720 + 0.0284129i
\(561\) −15.5820 + 0.731169i −0.657874 + 0.0308700i
\(562\) 11.8396 28.1161i 0.499423 1.18601i
\(563\) −13.9755 23.3555i −0.588998 0.984318i −0.997438 0.0715329i \(-0.977211\pi\)
0.408441 0.912785i \(-0.366073\pi\)
\(564\) 0.303705 + 1.27159i 0.0127883 + 0.0535434i
\(565\) 0.602110 + 4.25208i 0.0253310 + 0.178886i
\(566\) 9.66276 0.226582i 0.406156 0.00952396i
\(567\) 5.96936 + 3.57196i 0.250690 + 0.150008i
\(568\) −1.32706 0.124816i −0.0556822 0.00523717i
\(569\) 5.65809 23.6899i 0.237199 0.993134i −0.717735 0.696317i \(-0.754821\pi\)
0.954934 0.296817i \(-0.0959253\pi\)
\(570\) −1.11036 + 0.349302i −0.0465080 + 0.0146306i
\(571\) −30.2439 2.13070i −1.26567 0.0891669i −0.578511 0.815674i \(-0.696366\pi\)
−0.687158 + 0.726508i \(0.741142\pi\)
\(572\) −2.30117 4.29006i −0.0962169 0.179376i
\(573\) 1.31290 + 3.85530i 0.0548472 + 0.161057i
\(574\) 3.55431 3.99744i 0.148354 0.166850i
\(575\) −6.07853 9.15513i −0.253492 0.381795i
\(576\) 1.54078 + 1.57733i 0.0641990 + 0.0657220i
\(577\) −0.249378 + 2.65142i −0.0103818 + 0.110380i −0.999266 0.0383076i \(-0.987803\pi\)
0.988884 + 0.148687i \(0.0475048\pi\)
\(578\) −21.6707 31.0349i −0.901382 1.29088i
\(579\) −12.0618 4.74947i −0.501273 0.197381i
\(580\) 1.08100 + 0.340065i 0.0448862 + 0.0141204i
\(581\) 7.65958 12.8005i 0.317773 0.531054i
\(582\) 4.23048 + 5.76570i 0.175359 + 0.238996i
\(583\) 24.6046 + 11.0470i 1.01902 + 0.457519i
\(584\) 1.83739 + 4.09236i 0.0760315 + 0.169343i
\(585\) 3.60799 + 2.27549i 0.149172 + 0.0940799i
\(586\) −6.73217 0.157863i −0.278103 0.00652125i
\(587\) −3.50358 29.7509i −0.144608 1.22795i −0.852916 0.522049i \(-0.825168\pi\)
0.708308 0.705904i \(-0.249459\pi\)
\(588\) −0.483111 + 0.627062i −0.0199232 + 0.0258596i
\(589\) 0.191095 + 1.15394i 0.00787392 + 0.0475471i
\(590\) −0.746289 + 0.521110i −0.0307242 + 0.0214538i
\(591\) −3.16763 + 10.0693i −0.130299 + 0.414196i
\(592\) −8.57035 + 4.85919i −0.352239 + 0.199712i
\(593\) −14.3805 + 19.5992i −0.590537 + 0.804842i −0.993910 0.110194i \(-0.964853\pi\)
0.403373 + 0.915036i \(0.367838\pi\)
\(594\) 4.25460 + 10.1036i 0.174568 + 0.414556i
\(595\) −8.41266 17.6198i −0.344885 0.722340i
\(596\) −1.61429 + 9.74797i −0.0661238 + 0.399292i
\(597\) 8.36274 + 8.97263i 0.342264 + 0.367225i
\(598\) 1.52662 + 5.28238i 0.0624281 + 0.216013i
\(599\) −7.32080 + 34.1789i −0.299120 + 1.39651i 0.534965 + 0.844874i \(0.320325\pi\)
−0.834085 + 0.551637i \(0.814004\pi\)
\(600\) −3.63626 + 0.514908i −0.148450 + 0.0210210i
\(601\) −27.8798 20.4563i −1.13724 0.834429i −0.149228 0.988803i \(-0.547679\pi\)
−0.988012 + 0.154374i \(0.950664\pi\)
\(602\) −4.46283 5.51995i −0.181891 0.224976i
\(603\) 9.46960 + 7.29571i 0.385632 + 0.297104i
\(604\) −6.11686 19.4444i −0.248892 0.791180i
\(605\) −3.72178 3.46880i −0.151312 0.141027i
\(606\) −1.35526 + 1.59815i −0.0550536 + 0.0649204i
\(607\) 2.52079 + 26.8013i 0.102316 + 1.08783i 0.885056 + 0.465484i \(0.154120\pi\)
−0.782740 + 0.622349i \(0.786179\pi\)
\(608\) 1.06071 0.899498i 0.0430174 0.0364795i
\(609\) 2.83817 1.04139i 0.115008 0.0421992i
\(610\) 3.82629 + 1.40395i 0.154922 + 0.0568444i
\(611\) −2.30466 1.95439i −0.0932366 0.0790662i
\(612\) −9.34942 + 13.3894i −0.377928 + 0.541236i
\(613\) −9.24886 + 6.14076i −0.373558 + 0.248023i −0.725829 0.687875i \(-0.758544\pi\)
0.352271 + 0.935898i \(0.385409\pi\)
\(614\) −2.43751 + 5.42899i −0.0983698 + 0.219096i
\(615\) −1.19127 + 1.05922i −0.0480367 + 0.0427117i
\(616\) 6.37347 1.84195i 0.256794 0.0742141i
\(617\) −5.81122 22.0318i −0.233951 0.886966i −0.976205 0.216848i \(-0.930423\pi\)
0.742255 0.670118i \(-0.233757\pi\)
\(618\) 6.74399 10.1574i 0.271283 0.408591i
\(619\) −11.3398 + 2.15217i −0.455786 + 0.0865030i −0.409268 0.912414i \(-0.634216\pi\)
−0.0465189 + 0.998917i \(0.514813\pi\)
\(620\) 0.789451i 0.0317051i
\(621\) −2.30879 12.1651i −0.0926486 0.488168i
\(622\) 1.66552 + 23.6411i 0.0667815 + 0.947922i
\(623\) 29.9924 + 12.6297i 1.20162 + 0.506000i
\(624\) 1.81288 + 0.300218i 0.0725735 + 0.0120183i
\(625\) −5.93673 + 11.0678i −0.237469 + 0.442712i
\(626\) −1.79730 + 2.84978i −0.0718344 + 0.113900i
\(627\) 2.77287 0.944284i 0.110738 0.0377111i
\(628\) −0.0386826 + 0.824369i −0.00154360 + 0.0328959i
\(629\) −47.1925 55.6504i −1.88169 2.21893i
\(630\) −4.06196 + 4.15833i −0.161832 + 0.165672i
\(631\) 5.41282 + 1.02729i 0.215481 + 0.0408958i 0.293076 0.956089i \(-0.405321\pi\)
−0.0775950 + 0.996985i \(0.524724\pi\)
\(632\) −1.55590 + 8.19805i −0.0618902 + 0.326101i
\(633\) 16.6422 + 1.95984i 0.661468 + 0.0778967i
\(634\) −10.7705 29.3536i −0.427751 1.16578i
\(635\) −2.49745 11.6600i −0.0991084 0.462711i
\(636\) −8.97125 + 4.81215i −0.355733 + 0.190814i
\(637\) 0.0428914 1.82914i 0.00169942 0.0724730i
\(638\) −2.73967 0.791770i −0.108465 0.0313465i
\(639\) −2.65226 + 1.26633i −0.104922 + 0.0500954i
\(640\) −0.805488 + 0.481989i −0.0318397 + 0.0190523i
\(641\) −14.3544 + 9.05304i −0.566965 + 0.357574i −0.786079 0.618126i \(-0.787892\pi\)
0.219114 + 0.975699i \(0.429683\pi\)
\(642\) −11.0843 7.35937i −0.437461 0.290451i
\(643\) −11.8526 + 4.66708i −0.467421 + 0.184052i −0.588345 0.808610i \(-0.700220\pi\)
0.120924 + 0.992662i \(0.461414\pi\)
\(644\) −7.47471 + 0.526596i −0.294545 + 0.0207508i
\(645\) 1.12844 + 1.78925i 0.0444325 + 0.0704517i
\(646\) 8.00985 + 6.47589i 0.315143 + 0.254790i
\(647\) 33.3798 + 7.14964i 1.31230 + 0.281081i 0.811433 0.584446i \(-0.198688\pi\)
0.500862 + 0.865527i \(0.333016\pi\)
\(648\) 2.39500 + 0.631718i 0.0940843 + 0.0248162i
\(649\) 1.84679 1.35504i 0.0724927 0.0531901i
\(650\) 6.07229 5.93157i 0.238175 0.232655i
\(651\) −1.28535 1.66835i −0.0503770 0.0653876i
\(652\) −0.325943 + 0.349714i −0.0127649 + 0.0136958i
\(653\) 20.3323 + 10.2999i 0.795666 + 0.403065i 0.802306 0.596913i \(-0.203606\pi\)
−0.00663994 + 0.999978i \(0.502114\pi\)
\(654\) −1.82823 + 0.391590i −0.0714895 + 0.0153124i
\(655\) 16.9445 + 0.795101i 0.662077 + 0.0310672i
\(656\) 0.820619 1.71873i 0.0320398 0.0671053i
\(657\) 8.10991 + 5.66289i 0.316398 + 0.220930i
\(658\) 3.26209 2.51323i 0.127170 0.0979760i
\(659\) 8.32279 + 1.98781i 0.324210 + 0.0774340i 0.391161 0.920322i \(-0.372074\pi\)
−0.0669514 + 0.997756i \(0.521327\pi\)
\(660\) −1.95051 + 0.323010i −0.0759236 + 0.0125731i
\(661\) −13.1263 + 38.5452i −0.510555 + 1.49923i 0.322785 + 0.946472i \(0.395381\pi\)
−0.833340 + 0.552761i \(0.813574\pi\)
\(662\) 4.54807 + 8.02161i 0.176766 + 0.311769i
\(663\) 0.319041 + 13.6058i 0.0123905 + 0.528404i
\(664\) 1.35463 5.13575i 0.0525700 0.199306i
\(665\) 2.43626 + 2.73999i 0.0944740 + 0.106252i
\(666\) −10.7144 + 18.8975i −0.415176 + 0.732263i
\(667\) 2.83845 + 1.52253i 0.109905 + 0.0589527i
\(668\) −0.464876 + 1.60855i −0.0179866 + 0.0622368i
\(669\) −17.3806 + 8.80460i −0.671973 + 0.340405i
\(670\) −3.95738 + 3.19951i −0.152887 + 0.123608i
\(671\) −9.70907 3.30637i −0.374814 0.127641i
\(672\) −0.917481 + 2.33005i −0.0353926 + 0.0898837i
\(673\) 12.7421 32.3601i 0.491173 1.24739i −0.444898 0.895581i \(-0.646760\pi\)
0.936071 0.351811i \(-0.114434\pi\)
\(674\) −9.47544 3.22681i −0.364980 0.124292i
\(675\) −14.8649 + 12.0182i −0.572152 + 0.462579i
\(676\) 7.80799 3.95534i 0.300307 0.152129i
\(677\) 5.22527 18.0804i 0.200823 0.694886i −0.795244 0.606289i \(-0.792657\pi\)
0.996068 0.0885964i \(-0.0282381\pi\)
\(678\) 3.59477 + 1.92822i 0.138056 + 0.0740529i
\(679\) 11.1099 19.5949i 0.426358 0.751984i
\(680\) −4.61947 5.19539i −0.177148 0.199234i
\(681\) −3.36679 + 12.7643i −0.129016 + 0.489130i
\(682\) 0.0465724 + 1.98611i 0.00178335 + 0.0760523i
\(683\) −17.3709 30.6377i −0.664679 1.17232i −0.975109 0.221724i \(-0.928831\pi\)
0.310431 0.950596i \(-0.399527\pi\)
\(684\) 0.988559 2.90288i 0.0377985 0.110994i
\(685\) 4.72347 0.782218i 0.180474 0.0298870i
\(686\) −16.6967 3.98782i −0.637481 0.152256i
\(687\) −10.4900 + 8.08188i −0.400219 + 0.308343i
\(688\) −2.07224 1.44698i −0.0790035 0.0551656i
\(689\) 10.1385 21.2344i 0.386246 0.808967i
\(690\) 2.23060 + 0.104668i 0.0849173 + 0.00398465i
\(691\) 17.1196 3.66687i 0.651262 0.139494i 0.128145 0.991755i \(-0.459098\pi\)
0.523117 + 0.852261i \(0.324769\pi\)
\(692\) 8.21472 + 4.16138i 0.312277 + 0.158192i
\(693\) 9.97384 10.7012i 0.378875 0.406506i
\(694\) −12.2085 15.8462i −0.463428 0.601515i
\(695\) 9.82535 9.59766i 0.372697 0.364060i
\(696\) 0.867878 0.636789i 0.0328968 0.0241374i
\(697\) 13.6393 + 3.59759i 0.516627 + 0.136268i
\(698\) 1.47424 + 0.315769i 0.0558009 + 0.0119520i
\(699\) −7.84994 6.34660i −0.296912 0.240051i
\(700\) 6.17091 + 9.78454i 0.233239 + 0.369821i
\(701\) −5.34426 + 0.376505i −0.201850 + 0.0142204i −0.170841 0.985299i \(-0.554648\pi\)
−0.0310095 + 0.999519i \(0.509872\pi\)
\(702\) 8.89948 3.50426i 0.335889 0.132260i
\(703\) 11.4149 + 7.57887i 0.430520 + 0.285843i
\(704\) 1.99803 1.26012i 0.0753035 0.0474924i
\(705\) −1.05306 + 0.630129i −0.0396604 + 0.0237320i
\(706\) 11.7149 5.59336i 0.440897 0.210509i
\(707\) 6.34078 + 1.83250i 0.238470 + 0.0689182i
\(708\) −0.0202685 + 0.864364i −0.000761737 + 0.0324848i
\(709\) 29.4368 15.7898i 1.10552 0.592998i 0.184626 0.982809i \(-0.440893\pi\)
0.920895 + 0.389811i \(0.127460\pi\)
\(710\) −0.262049 1.22344i −0.00983451 0.0459147i
\(711\) 6.33793 + 17.2732i 0.237691 + 0.647795i
\(712\) 11.5078 + 1.35520i 0.431272 + 0.0507881i
\(713\) 0.418393 2.20452i 0.0156689 0.0825599i
\(714\) −18.2213 3.45818i −0.681913 0.129419i
\(715\) 3.19321 3.26896i 0.119419 0.122252i
\(716\) −3.64312 4.29605i −0.136150 0.160551i
\(717\) 0.653508 13.9270i 0.0244057 0.520113i
\(718\) −21.4099 + 7.29101i −0.799010 + 0.272098i
\(719\) −6.74765 + 10.6990i −0.251645 + 0.399006i −0.947790 0.318896i \(-0.896688\pi\)
0.696145 + 0.717901i \(0.254897\pi\)
\(720\) −0.978361 + 1.82395i −0.0364614 + 0.0679747i
\(721\) −37.8882 6.27438i −1.41103 0.233670i
\(722\) 15.7282 + 6.62310i 0.585343 + 0.246486i
\(723\) 1.71934 + 24.4050i 0.0639429 + 0.907631i
\(724\) −3.79136 19.9767i −0.140905 0.742430i
\(725\) 4.97254i 0.184676i
\(726\) −4.74791 + 0.901099i −0.176212 + 0.0334429i
\(727\) −4.43591 + 6.68111i −0.164519 + 0.247789i −0.906090 0.423086i \(-0.860947\pi\)
0.741571 + 0.670875i \(0.234081\pi\)
\(728\) −1.47621 5.59667i −0.0547119 0.207426i
\(729\) −6.67925 + 1.93032i −0.247380 + 0.0714932i
\(730\) −3.14682 + 2.79799i −0.116469 + 0.103558i
\(731\) 7.66703 17.0766i 0.283575 0.631600i
\(732\) 3.22529 2.14142i 0.119210 0.0791493i
\(733\) 20.8330 29.8353i 0.769485 1.10199i −0.222413 0.974953i \(-0.571393\pi\)
0.991898 0.127038i \(-0.0405470\pi\)
\(734\) 14.1833 + 12.0277i 0.523515 + 0.443950i
\(735\) −0.697569 0.255954i −0.0257302 0.00944101i
\(736\) −2.50475 + 0.919050i −0.0923263 + 0.0338766i
\(737\) 9.76729 8.28283i 0.359783 0.305102i
\(738\) −0.393256 4.18114i −0.0144759 0.153910i
\(739\) −21.7231 + 25.6163i −0.799097 + 0.942313i −0.999299 0.0374421i \(-0.988079\pi\)
0.200202 + 0.979755i \(0.435840\pi\)
\(740\) −6.76516 6.30532i −0.248692 0.231788i
\(741\) −0.766901 2.43783i −0.0281728 0.0895560i
\(742\) 25.4020 + 19.5706i 0.932537 + 0.718460i
\(743\) −14.0555 17.3848i −0.515645 0.637787i 0.451422 0.892311i \(-0.350917\pi\)
−0.967066 + 0.254524i \(0.918081\pi\)
\(744\) −0.604596 0.443611i −0.0221656 0.0162636i
\(745\) −9.18326 + 1.30038i −0.336449 + 0.0476423i
\(746\) 0.0192451 0.0898501i 0.000704612 0.00328965i
\(747\) −3.25160 11.2511i −0.118970 0.411657i
\(748\) 11.9282 + 12.7981i 0.436139 + 0.467947i
\(749\) −6.84690 + 41.3454i −0.250180 + 1.51073i
\(750\) −3.28842 6.88740i −0.120076 0.251492i
\(751\) −11.3214 26.8854i −0.413123 0.981062i −0.986795 0.161977i \(-0.948213\pi\)
0.573672 0.819085i \(-0.305518\pi\)
\(752\) 0.867385 1.18216i 0.0316303 0.0431088i
\(753\) 22.1573 12.5627i 0.807456 0.457809i
\(754\) −0.746622 + 2.37337i −0.0271904 + 0.0864331i
\(755\) 15.6879 10.9543i 0.570940 0.398669i
\(756\) 2.12950 + 12.8591i 0.0774490 + 0.467680i
\(757\) −11.5211 + 14.9540i −0.418741 + 0.543512i −0.953461 0.301517i \(-0.902507\pi\)
0.534719 + 0.845030i \(0.320417\pi\)
\(758\) 0.748280 + 6.35409i 0.0271788 + 0.230791i
\(759\) −5.61795 0.131735i −0.203919 0.00478169i
\(760\) 1.10421 + 0.696406i 0.0400540 + 0.0252613i
\(761\) −20.3531 45.3319i −0.737799 1.64328i −0.765314 0.643658i \(-0.777416\pi\)
0.0275150 0.999621i \(-0.491241\pi\)
\(762\) −10.3331 4.63934i −0.374328 0.168066i
\(763\) 3.48393 + 4.74824i 0.126127 + 0.171898i
\(764\) 2.34539 3.91956i 0.0848533 0.141805i
\(765\) −14.6228 4.60007i −0.528687 0.166316i
\(766\) 21.0904 + 8.30456i 0.762028 + 0.300056i
\(767\) −1.14411 1.63850i −0.0413114 0.0591627i