Properties

Label 538.2.e.a.103.18
Level $538$
Weight $2$
Character 538.103
Analytic conductor $4.296$
Analytic rank $0$
Dimension $1452$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(9,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(134))
 
chi = DirichletCharacter(H, H._module([109]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.e (of order \(134\), degree \(66\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(1452\)
Relative dimension: \(22\) over \(\Q(\zeta_{134})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{134}]$

Embedding invariants

Embedding label 103.18
Character \(\chi\) \(=\) 538.103
Dual form 538.2.e.a.491.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366380 + 0.930465i) q^{2} +(0.0346500 + 0.738432i) q^{3} +(-0.731531 + 0.681808i) q^{4} +(1.57982 + 0.895722i) q^{5} +(-0.674390 + 0.302787i) q^{6} +(2.33096 + 2.07256i) q^{7} +(-0.902417 - 0.430864i) q^{8} +(2.44274 - 0.229751i) q^{9} +O(q^{10})\) \(q+(0.366380 + 0.930465i) q^{2} +(0.0346500 + 0.738432i) q^{3} +(-0.731531 + 0.681808i) q^{4} +(1.57982 + 0.895722i) q^{5} +(-0.674390 + 0.302787i) q^{6} +(2.33096 + 2.07256i) q^{7} +(-0.902417 - 0.430864i) q^{8} +(2.44274 - 0.229751i) q^{9} +(-0.254624 + 1.79814i) q^{10} +(0.475355 - 4.03653i) q^{11} +(-0.528816 - 0.516561i) q^{12} +(2.62969 + 0.372374i) q^{13} +(-1.07443 + 2.92822i) q^{14} +(-0.606689 + 1.19763i) q^{15} +(0.0702762 - 0.997528i) q^{16} +(-1.35233 + 0.159255i) q^{17} +(1.10875 + 2.18871i) q^{18} +(-3.22621 + 1.35855i) q^{19} +(-1.76640 + 0.421886i) q^{20} +(-1.44968 + 1.79307i) q^{21} +(3.93001 - 1.03660i) q^{22} +(1.14036 - 0.0535103i) q^{23} +(0.286895 - 0.681303i) q^{24} +(-0.873854 - 1.46036i) q^{25} +(0.616986 + 2.58327i) q^{26} +(0.565233 + 3.99166i) q^{27} +(-3.11826 + 0.0731201i) q^{28} +(-9.14111 - 5.46987i) q^{29} +(-1.33663 - 0.125716i) q^{30} +(-2.15304 + 9.01461i) q^{31} +(0.953913 - 0.300085i) q^{32} +(2.99717 + 0.211152i) q^{33} +(-0.643649 - 1.19995i) q^{34} +(1.82606 + 5.36217i) q^{35} +(-1.63029 + 1.83355i) q^{36} +(-0.587157 - 0.884342i) q^{37} +(-2.44610 - 2.50413i) q^{38} +(-0.183854 + 1.95475i) q^{39} +(-1.03972 - 1.48900i) q^{40} +(7.48293 + 2.94648i) q^{41} +(-2.19952 - 0.691931i) q^{42} +(1.25544 - 2.09806i) q^{43} +(2.40440 + 3.27695i) q^{44} +(4.06488 + 1.82505i) q^{45} +(0.467596 + 1.04146i) q^{46} +(-6.88914 - 4.34484i) q^{47} +(0.739041 + 0.0173298i) q^{48} +(0.319157 + 2.71015i) q^{49} +(1.03865 - 1.34814i) q^{50} +(-0.164458 - 0.993087i) q^{51} +(-2.17759 + 1.52054i) q^{52} +(1.96123 - 6.23439i) q^{53} +(-3.50701 + 1.98839i) q^{54} +(4.36658 - 5.95120i) q^{55} +(-1.21050 - 2.87464i) q^{56} +(-1.11498 - 2.33526i) q^{57} +(1.74041 - 10.5095i) q^{58} +(5.49964 + 5.90073i) q^{59} +(-0.372739 - 1.28975i) q^{60} +(-1.14853 + 5.36218i) q^{61} +(-9.17661 + 1.29944i) q^{62} +(6.17009 + 4.52719i) q^{63} +(0.628713 + 0.777638i) q^{64} +(3.82090 + 2.94376i) q^{65} +(0.901634 + 2.86612i) q^{66} +(-10.1693 - 9.47810i) q^{67} +(0.880692 - 1.03853i) q^{68} +(0.0790273 + 0.840227i) q^{69} +(-4.32028 + 3.66367i) q^{70} +(-14.4431 + 5.29952i) q^{71} +(-2.30336 - 0.845156i) q^{72} +(-0.576893 - 0.489215i) q^{73} +(0.607727 - 0.870334i) q^{74} +(1.04810 - 0.695883i) q^{75} +(1.43380 - 3.19347i) q^{76} +(9.47399 - 8.42377i) q^{77} +(-1.88619 + 0.545112i) q^{78} +(-2.46676 - 9.35211i) q^{79} +(1.00453 - 1.51297i) q^{80} +(4.30349 - 0.816752i) q^{81} +8.04214i q^{82} +(-2.01429 - 10.6133i) q^{83} +(-0.162042 - 2.30009i) q^{84} +(-2.27909 - 0.959720i) q^{85} +(2.41214 + 0.399457i) q^{86} +(3.72239 - 6.93961i) q^{87} +(-2.16816 + 3.43782i) q^{88} +(14.9829 - 5.10235i) q^{89} +(-0.208853 + 4.45089i) q^{90} +(5.35793 + 6.31819i) q^{91} +(-0.797728 + 0.816654i) q^{92} +(-6.73127 - 1.27752i) q^{93} +(1.51868 - 8.00197i) q^{94} +(-6.31371 - 0.743525i) q^{95} +(0.254645 + 0.694001i) q^{96} +(-1.23928 - 5.78586i) q^{97} +(-2.40477 + 1.28991i) q^{98} +(0.233772 - 9.96939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1452 q + 22 q^{4} - 2 q^{5} + 2 q^{6} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 1452 q + 22 q^{4} - 2 q^{5} + 2 q^{6} + 20 q^{9} + 2 q^{11} - 10 q^{13} + 12 q^{14} - 22 q^{16} + 2 q^{20} + 12 q^{21} - 4 q^{23} - 2 q^{24} - 24 q^{25} - 8 q^{30} - 12 q^{34} - 20 q^{36} - 396 q^{37} - 2 q^{38} + 24 q^{41} + 14 q^{43} - 2 q^{44} - 42 q^{45} - 402 q^{47} + 22 q^{49} + 12 q^{51} + 10 q^{52} - 10 q^{53} - 8 q^{54} - 4 q^{55} - 12 q^{56} + 16 q^{57} - 18 q^{58} - 268 q^{60} - 2 q^{61} + 4 q^{62} + 22 q^{64} + 16 q^{65} + 40 q^{66} + 6 q^{67} - 106 q^{73} + 40 q^{78} + 40 q^{79} - 2 q^{80} - 14 q^{81} - 402 q^{83} - 12 q^{84} - 100 q^{87} + 4 q^{92} - 340 q^{93} + 2 q^{96} - 64 q^{97} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{51}{134}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366380 + 0.930465i 0.259070 + 0.657938i
\(3\) 0.0346500 + 0.738432i 0.0200052 + 0.426334i 0.985893 + 0.167374i \(0.0535288\pi\)
−0.965888 + 0.258959i \(0.916620\pi\)
\(4\) −0.731531 + 0.681808i −0.365766 + 0.340904i
\(5\) 1.57982 + 0.895722i 0.706518 + 0.400579i 0.803977 0.594660i \(-0.202713\pi\)
−0.0974594 + 0.995239i \(0.531072\pi\)
\(6\) −0.674390 + 0.302787i −0.275318 + 0.123612i
\(7\) 2.33096 + 2.07256i 0.881019 + 0.783355i 0.977269 0.212002i \(-0.0679983\pi\)
−0.0962502 + 0.995357i \(0.530685\pi\)
\(8\) −0.902417 0.430864i −0.319053 0.152333i
\(9\) 2.44274 0.229751i 0.814246 0.0765837i
\(10\) −0.254624 + 1.79814i −0.0805190 + 0.568623i
\(11\) 0.475355 4.03653i 0.143325 1.21706i −0.713203 0.700958i \(-0.752756\pi\)
0.856528 0.516101i \(-0.172617\pi\)
\(12\) −0.528816 0.516561i −0.152656 0.149118i
\(13\) 2.62969 + 0.372374i 0.729346 + 0.103278i 0.495022 0.868881i \(-0.335160\pi\)
0.234324 + 0.972159i \(0.424712\pi\)
\(14\) −1.07443 + 2.92822i −0.287154 + 0.782600i
\(15\) −0.606689 + 1.19763i −0.156646 + 0.309226i
\(16\) 0.0702762 0.997528i 0.0175690 0.249382i
\(17\) −1.35233 + 0.159255i −0.327989 + 0.0386251i −0.279344 0.960191i \(-0.590117\pi\)
−0.0486446 + 0.998816i \(0.515490\pi\)
\(18\) 1.10875 + 2.18871i 0.261334 + 0.515883i
\(19\) −3.22621 + 1.35855i −0.740143 + 0.311672i −0.725501 0.688221i \(-0.758392\pi\)
−0.0146415 + 0.999893i \(0.504661\pi\)
\(20\) −1.76640 + 0.421886i −0.394979 + 0.0943365i
\(21\) −1.44968 + 1.79307i −0.316346 + 0.391279i
\(22\) 3.93001 1.03660i 0.837881 0.221004i
\(23\) 1.14036 0.0535103i 0.237782 0.0111577i 0.0723521 0.997379i \(-0.476949\pi\)
0.165430 + 0.986221i \(0.447099\pi\)
\(24\) 0.286895 0.681303i 0.0585621 0.139070i
\(25\) −0.873854 1.46036i −0.174771 0.292072i
\(26\) 0.616986 + 2.58327i 0.121001 + 0.506621i
\(27\) 0.565233 + 3.99166i 0.108779 + 0.768195i
\(28\) −3.11826 + 0.0731201i −0.589295 + 0.0138184i
\(29\) −9.14111 5.46987i −1.69746 1.01573i −0.924422 0.381372i \(-0.875452\pi\)
−0.773040 0.634358i \(-0.781265\pi\)
\(30\) −1.33663 0.125716i −0.244034 0.0229526i
\(31\) −2.15304 + 9.01461i −0.386698 + 1.61907i 0.345804 + 0.938307i \(0.387606\pi\)
−0.732502 + 0.680765i \(0.761648\pi\)
\(32\) 0.953913 0.300085i 0.168630 0.0530480i
\(33\) 2.99717 + 0.211152i 0.521740 + 0.0367568i
\(34\) −0.643649 1.19995i −0.110385 0.205790i
\(35\) 1.82606 + 5.36217i 0.308660 + 0.906372i
\(36\) −1.63029 + 1.83355i −0.271715 + 0.305591i
\(37\) −0.587157 0.884342i −0.0965280 0.145385i 0.781653 0.623714i \(-0.214377\pi\)
−0.878181 + 0.478329i \(0.841243\pi\)
\(38\) −2.44610 2.50413i −0.396810 0.406224i
\(39\) −0.183854 + 1.95475i −0.0294401 + 0.313011i
\(40\) −1.03972 1.48900i −0.164395 0.235432i
\(41\) 7.48293 + 2.94648i 1.16864 + 0.460163i 0.869445 0.494030i \(-0.164477\pi\)
0.299193 + 0.954193i \(0.403283\pi\)
\(42\) −2.19952 0.691931i −0.339393 0.106767i
\(43\) 1.25544 2.09806i 0.191453 0.319952i −0.747335 0.664448i \(-0.768667\pi\)
0.938788 + 0.344496i \(0.111950\pi\)
\(44\) 2.40440 + 3.27695i 0.362477 + 0.494018i
\(45\) 4.06488 + 1.82505i 0.605957 + 0.272062i
\(46\) 0.467596 + 1.04146i 0.0689433 + 0.153556i
\(47\) −6.88914 4.34484i −1.00488 0.633760i −0.0733092 0.997309i \(-0.523356\pi\)
−0.931575 + 0.363549i \(0.881565\pi\)
\(48\) 0.739041 + 0.0173298i 0.106671 + 0.00250134i
\(49\) 0.319157 + 2.71015i 0.0455938 + 0.387164i
\(50\) 1.03865 1.34814i 0.146888 0.190655i
\(51\) −0.164458 0.993087i −0.0230287 0.139060i
\(52\) −2.17759 + 1.52054i −0.301977 + 0.210861i
\(53\) 1.96123 6.23439i 0.269396 0.856359i −0.717717 0.696335i \(-0.754813\pi\)
0.987113 0.160024i \(-0.0511573\pi\)
\(54\) −3.50701 + 1.98839i −0.477244 + 0.270586i
\(55\) 4.36658 5.95120i 0.588790 0.802460i
\(56\) −1.21050 2.87464i −0.161760 0.384140i
\(57\) −1.11498 2.33526i −0.147683 0.309313i
\(58\) 1.74041 10.5095i 0.228526 1.37997i
\(59\) 5.49964 + 5.90073i 0.715993 + 0.768209i 0.980573 0.196155i \(-0.0628454\pi\)
−0.264580 + 0.964364i \(0.585233\pi\)
\(60\) −0.372739 1.28975i −0.0481205 0.166506i
\(61\) −1.14853 + 5.36218i −0.147054 + 0.686557i 0.842057 + 0.539388i \(0.181344\pi\)
−0.989111 + 0.147169i \(0.952984\pi\)
\(62\) −9.17661 + 1.29944i −1.16543 + 0.165029i
\(63\) 6.17009 + 4.52719i 0.777358 + 0.570372i
\(64\) 0.628713 + 0.777638i 0.0785891 + 0.0972047i
\(65\) 3.82090 + 2.94376i 0.473925 + 0.365128i
\(66\) 0.901634 + 2.86612i 0.110983 + 0.352795i
\(67\) −10.1693 9.47810i −1.24238 1.15793i −0.981272 0.192625i \(-0.938300\pi\)
−0.261109 0.965309i \(-0.584088\pi\)
\(68\) 0.880692 1.03853i 0.106800 0.125940i
\(69\) 0.0790273 + 0.840227i 0.00951377 + 0.101151i
\(70\) −4.32028 + 3.66367i −0.516373 + 0.437893i
\(71\) −14.4431 + 5.29952i −1.71409 + 0.628938i −0.997637 0.0687028i \(-0.978114\pi\)
−0.716448 + 0.697640i \(0.754233\pi\)
\(72\) −2.30336 0.845156i −0.271453 0.0996026i
\(73\) −0.576893 0.489215i −0.0675202 0.0572582i 0.612376 0.790567i \(-0.290214\pi\)
−0.679896 + 0.733309i \(0.737975\pi\)
\(74\) 0.607727 0.870334i 0.0706468 0.101174i
\(75\) 1.04810 0.695883i 0.121024 0.0803536i
\(76\) 1.43380 3.19347i 0.164469 0.366317i
\(77\) 9.47399 8.42377i 1.07966 0.959977i
\(78\) −1.88619 + 0.545112i −0.213569 + 0.0617218i
\(79\) −2.46676 9.35211i −0.277533 1.05219i −0.950046 0.312110i \(-0.898964\pi\)
0.672514 0.740085i \(-0.265215\pi\)
\(80\) 1.00453 1.51297i 0.112310 0.169155i
\(81\) 4.30349 0.816752i 0.478165 0.0907502i
\(82\) 8.04214i 0.888106i
\(83\) −2.01429 10.6133i −0.221097 1.16497i −0.901716 0.432329i \(-0.857692\pi\)
0.680619 0.732638i \(-0.261711\pi\)
\(84\) −0.162042 2.30009i −0.0176802 0.250960i
\(85\) −2.27909 0.959720i −0.247202 0.104096i
\(86\) 2.41214 + 0.399457i 0.260108 + 0.0430745i
\(87\) 3.72239 6.93961i 0.399082 0.744005i
\(88\) −2.16816 + 3.43782i −0.231127 + 0.366472i
\(89\) 14.9829 5.10235i 1.58819 0.540848i 0.618624 0.785687i \(-0.287690\pi\)
0.969564 + 0.244839i \(0.0787352\pi\)
\(90\) −0.208853 + 4.45089i −0.0220150 + 0.469165i
\(91\) 5.35793 + 6.31819i 0.561664 + 0.662326i
\(92\) −0.797728 + 0.816654i −0.0831689 + 0.0851420i
\(93\) −6.73127 1.27752i −0.698001 0.132472i
\(94\) 1.51868 8.00197i 0.156640 0.825340i
\(95\) −6.31371 0.743525i −0.647773 0.0762841i
\(96\) 0.254645 + 0.694001i 0.0259896 + 0.0708312i
\(97\) −1.23928 5.78586i −0.125829 0.587465i −0.995575 0.0939651i \(-0.970046\pi\)
0.869746 0.493500i \(-0.164283\pi\)
\(98\) −2.40477 + 1.28991i −0.242918 + 0.130301i
\(99\) 0.233772 9.96939i 0.0234950 1.00196i
\(100\) 1.63494 + 0.472500i 0.163494 + 0.0472500i
\(101\) 1.68023 0.802236i 0.167189 0.0798255i −0.345416 0.938450i \(-0.612262\pi\)
0.512606 + 0.858624i \(0.328680\pi\)
\(102\) 0.863779 0.516869i 0.0855269 0.0511777i
\(103\) 2.27519 1.43492i 0.224181 0.141387i −0.416654 0.909065i \(-0.636797\pi\)
0.640835 + 0.767679i \(0.278588\pi\)
\(104\) −2.21264 1.46908i −0.216967 0.144055i
\(105\) −3.89632 + 1.53422i −0.380242 + 0.149724i
\(106\) 6.51944 0.459297i 0.633224 0.0446109i
\(107\) 6.35722 + 10.0799i 0.614575 + 0.974465i 0.998689 + 0.0511793i \(0.0162980\pi\)
−0.384114 + 0.923286i \(0.625493\pi\)
\(108\) −3.13503 2.53464i −0.301668 0.243896i
\(109\) −7.93153 1.69886i −0.759702 0.162721i −0.186860 0.982387i \(-0.559831\pi\)
−0.572843 + 0.819665i \(0.694159\pi\)
\(110\) 7.13722 + 1.88255i 0.680507 + 0.179494i
\(111\) 0.632681 0.464218i 0.0600514 0.0440616i
\(112\) 2.23125 2.17954i 0.210833 0.205947i
\(113\) 7.50234 + 9.73779i 0.705761 + 0.916054i 0.999203 0.0399229i \(-0.0127112\pi\)
−0.293442 + 0.955977i \(0.594801\pi\)
\(114\) 1.76437 1.89304i 0.165249 0.177300i
\(115\) 1.84950 + 0.936913i 0.172467 + 0.0873676i
\(116\) 10.4164 2.23110i 0.967139 0.207152i
\(117\) 6.50920 + 0.305437i 0.601776 + 0.0282376i
\(118\) −3.47546 + 7.27913i −0.319942 + 0.670099i
\(119\) −3.48230 2.43158i −0.319222 0.222902i
\(120\) 1.06350 0.819359i 0.0970838 0.0747969i
\(121\) −5.36851 1.28221i −0.488046 0.116565i
\(122\) −5.41012 + 0.895929i −0.489809 + 0.0811136i
\(123\) −1.91649 + 5.62773i −0.172804 + 0.507435i
\(124\) −4.57121 8.06243i −0.410507 0.724028i
\(125\) −0.285322 12.1678i −0.0255200 1.08832i
\(126\) −1.95179 + 7.39973i −0.173880 + 0.659220i
\(127\) 8.13558 + 9.14987i 0.721916 + 0.811920i 0.988393 0.151922i \(-0.0485461\pi\)
−0.266477 + 0.963841i \(0.585860\pi\)
\(128\) −0.493217 + 0.869906i −0.0435946 + 0.0768896i
\(129\) 1.59278 + 0.854360i 0.140236 + 0.0752222i
\(130\) −1.33916 + 4.63375i −0.117452 + 0.406407i
\(131\) 14.6134 7.40281i 1.27678 0.646786i 0.322747 0.946485i \(-0.395394\pi\)
0.954034 + 0.299699i \(0.0968862\pi\)
\(132\) −2.33649 + 1.88903i −0.203365 + 0.164419i
\(133\) −10.3358 3.51980i −0.896230 0.305206i
\(134\) 5.09321 12.9348i 0.439986 1.11740i
\(135\) −2.68245 + 6.81240i −0.230869 + 0.586318i
\(136\) 1.28899 + 0.438956i 0.110530 + 0.0376402i
\(137\) 10.7895 8.72319i 0.921806 0.745272i −0.0454784 0.998965i \(-0.514481\pi\)
0.967285 + 0.253693i \(0.0816454\pi\)
\(138\) −0.752848 + 0.381375i −0.0640867 + 0.0324648i
\(139\) −4.43957 + 15.3617i −0.376559 + 1.30296i 0.517757 + 0.855528i \(0.326767\pi\)
−0.894316 + 0.447436i \(0.852337\pi\)
\(140\) −4.99179 2.67758i −0.421883 0.226297i
\(141\) 2.96966 5.23771i 0.250090 0.441094i
\(142\) −10.2227 11.4972i −0.857870 0.964824i
\(143\) 2.75314 10.4378i 0.230229 0.872854i
\(144\) −0.0575168 2.45284i −0.00479307 0.204404i
\(145\) −9.54184 16.8293i −0.792406 1.39760i
\(146\) 0.243835 0.716017i 0.0201800 0.0592580i
\(147\) −1.99020 + 0.329582i −0.164149 + 0.0271835i
\(148\) 1.03247 + 0.246596i 0.0848689 + 0.0202700i
\(149\) 6.78519 5.22755i 0.555865 0.428258i −0.293581 0.955934i \(-0.594847\pi\)
0.849446 + 0.527676i \(0.176937\pi\)
\(150\) 1.03150 + 0.720261i 0.0842214 + 0.0588091i
\(151\) −6.32369 + 13.2446i −0.514615 + 1.07783i 0.466521 + 0.884510i \(0.345507\pi\)
−0.981136 + 0.193318i \(0.938075\pi\)
\(152\) 3.49673 + 0.164080i 0.283623 + 0.0133087i
\(153\) −3.26680 + 0.699719i −0.264105 + 0.0565689i
\(154\) 11.3091 + 5.72892i 0.911313 + 0.461649i
\(155\) −11.4760 + 12.3129i −0.921776 + 0.989000i
\(156\) −1.19827 1.55531i −0.0959384 0.124525i
\(157\) −4.08048 + 3.98592i −0.325658 + 0.318111i −0.843255 0.537513i \(-0.819364\pi\)
0.517597 + 0.855624i \(0.326827\pi\)
\(158\) 7.79804 5.72166i 0.620379 0.455191i
\(159\) 4.67163 + 1.23221i 0.370484 + 0.0977210i
\(160\) 1.77580 + 0.380361i 0.140390 + 0.0300702i
\(161\) 2.76904 + 2.23875i 0.218231 + 0.176438i
\(162\) 2.33667 + 3.70500i 0.183586 + 0.291093i
\(163\) 6.04865 0.426130i 0.473767 0.0333771i 0.168618 0.985682i \(-0.446070\pi\)
0.305149 + 0.952304i \(0.401294\pi\)
\(164\) −7.48293 + 2.94648i −0.584319 + 0.230081i
\(165\) 4.54586 + 3.01821i 0.353895 + 0.234968i
\(166\) 9.13736 5.76275i 0.709196 0.447276i
\(167\) −20.0180 + 11.9784i −1.54904 + 0.926914i −0.553468 + 0.832871i \(0.686696\pi\)
−0.995568 + 0.0940439i \(0.970021\pi\)
\(168\) 2.08078 0.993480i 0.160536 0.0766487i
\(169\) −5.71228 1.65086i −0.439407 0.126989i
\(170\) 0.0579716 2.47224i 0.00444622 0.189612i
\(171\) −7.56865 + 4.05980i −0.578789 + 0.310461i
\(172\) 0.512080 + 2.39077i 0.0390458 + 0.182294i
\(173\) −2.36297 6.43997i −0.179653 0.489622i 0.816490 0.577359i \(-0.195917\pi\)
−0.996144 + 0.0877378i \(0.972036\pi\)
\(174\) 7.82088 + 0.921014i 0.592899 + 0.0698219i
\(175\) 0.989777 5.21516i 0.0748201 0.394229i
\(176\) −3.99314 0.757852i −0.300994 0.0571252i
\(177\) −4.16672 + 4.26557i −0.313190 + 0.320620i
\(178\) 10.2370 + 12.0717i 0.767296 + 0.904812i
\(179\) −0.195376 + 4.16369i −0.0146031 + 0.311209i 0.979405 + 0.201905i \(0.0647131\pi\)
−0.994008 + 0.109304i \(0.965138\pi\)
\(180\) −4.21792 + 1.43639i −0.314385 + 0.107062i
\(181\) 6.65243 10.5480i 0.494471 0.784029i −0.502268 0.864712i \(-0.667501\pi\)
0.996740 + 0.0806826i \(0.0257100\pi\)
\(182\) −3.91582 + 7.30023i −0.290260 + 0.541129i
\(183\) −3.99940 0.662310i −0.295644 0.0489594i
\(184\) −1.05214 0.443053i −0.0775648 0.0326623i
\(185\) −0.135478 1.92303i −0.00996056 0.141384i
\(186\) −1.27752 6.73127i −0.0936722 0.493561i
\(187\) 5.53443i 0.404718i
\(188\) 8.00197 1.51868i 0.583604 0.110761i
\(189\) −6.95543 + 10.4759i −0.505933 + 0.762007i
\(190\) −1.62139 6.14710i −0.117628 0.445958i
\(191\) 16.2837 4.70603i 1.17825 0.340517i 0.369817 0.929105i \(-0.379420\pi\)
0.808433 + 0.588588i \(0.200316\pi\)
\(192\) −0.552447 + 0.491207i −0.0398694 + 0.0354498i
\(193\) 4.65642 10.3711i 0.335176 0.746529i −0.664824 0.747000i \(-0.731493\pi\)
1.00000 0.000471156i \(0.000149974\pi\)
\(194\) 4.92949 3.27293i 0.353917 0.234982i
\(195\) −2.04137 + 2.92348i −0.146186 + 0.209354i
\(196\) −2.08128 1.76496i −0.148663 0.126068i
\(197\) −0.0129898 0.00476627i −0.000925487 0.000339582i 0.344004 0.938968i \(-0.388217\pi\)
−0.344930 + 0.938629i \(0.612097\pi\)
\(198\) 9.36182 3.43507i 0.665315 0.244120i
\(199\) −13.4970 + 11.4457i −0.956778 + 0.811364i −0.982109 0.188316i \(-0.939697\pi\)
0.0253309 + 0.999679i \(0.491936\pi\)
\(200\) 0.159363 + 1.69437i 0.0112687 + 0.119810i
\(201\) 6.64656 7.83777i 0.468812 0.552834i
\(202\) 1.36206 + 1.26948i 0.0958340 + 0.0893200i
\(203\) −9.97088 31.6956i −0.699819 2.22459i
\(204\) 0.797400 + 0.614346i 0.0558292 + 0.0430128i
\(205\) 9.18247 + 11.3575i 0.641331 + 0.793245i
\(206\) 2.16873 + 1.59126i 0.151102 + 0.110868i
\(207\) 2.77332 0.392711i 0.192759 0.0272953i
\(208\) 0.556258 2.59702i 0.0385696 0.180071i
\(209\) 3.95021 + 13.6685i 0.273242 + 0.945468i
\(210\) −2.85507 3.06329i −0.197019 0.211387i
\(211\) 0.644653 3.89277i 0.0443797 0.267990i −0.955232 0.295858i \(-0.904394\pi\)
0.999612 + 0.0278686i \(0.00887201\pi\)
\(212\) 2.81595 + 5.89784i 0.193400 + 0.405065i
\(213\) −4.41379 10.4816i −0.302428 0.718190i
\(214\) −7.04988 + 9.60826i −0.481920 + 0.656807i
\(215\) 3.86266 2.19004i 0.263431 0.149359i
\(216\) 1.20979 3.84568i 0.0823155 0.261665i
\(217\) −23.7020 + 16.5504i −1.60900 + 1.12351i
\(218\) −1.32522 8.00244i −0.0897555 0.541993i
\(219\) 0.341262 0.442947i 0.0230604 0.0299316i
\(220\) 0.863285 + 7.33066i 0.0582026 + 0.494233i
\(221\) −3.61552 0.0847804i −0.243206 0.00570295i
\(222\) 0.663740 + 0.418607i 0.0445473 + 0.0280951i
\(223\) 0.492095 + 1.09603i 0.0329531 + 0.0733957i 0.928008 0.372561i \(-0.121520\pi\)
−0.895055 + 0.445957i \(0.852864\pi\)
\(224\) 2.84547 + 1.27756i 0.190121 + 0.0853605i
\(225\) −2.47011 3.36651i −0.164674 0.224434i
\(226\) −6.31197 + 10.5484i −0.419866 + 0.701669i
\(227\) −12.5169 3.93762i −0.830778 0.261349i −0.145250 0.989395i \(-0.546399\pi\)
−0.685528 + 0.728046i \(0.740429\pi\)
\(228\) 2.40784 + 0.948112i 0.159463 + 0.0627903i
\(229\) 12.3153 + 17.6370i 0.813820 + 1.16548i 0.983664 + 0.180013i \(0.0576139\pi\)
−0.169844 + 0.985471i \(0.554326\pi\)
\(230\) −0.194144 + 2.06416i −0.0128015 + 0.136107i
\(231\) 6.54865 + 6.70401i 0.430869 + 0.441091i
\(232\) 5.89232 + 8.87468i 0.386850 + 0.582651i
\(233\) −5.67926 + 6.38732i −0.372061 + 0.418447i −0.903459 0.428675i \(-0.858980\pi\)
0.531398 + 0.847122i \(0.321667\pi\)
\(234\) 2.10064 + 6.16849i 0.137323 + 0.403247i
\(235\) −6.99184 13.0348i −0.456097 0.850299i
\(236\) −8.04632 0.566866i −0.523771 0.0368999i
\(237\) 6.82042 2.14559i 0.443034 0.139371i
\(238\) 0.986654 4.13104i 0.0639553 0.267775i
\(239\) −6.12133 0.575740i −0.395956 0.0372415i −0.106207 0.994344i \(-0.533870\pi\)
−0.289749 + 0.957103i \(0.593572\pi\)
\(240\) 1.15203 + 0.689353i 0.0743632 + 0.0444976i
\(241\) −8.55702 + 0.200654i −0.551206 + 0.0129252i −0.298137 0.954523i \(-0.596365\pi\)
−0.253069 + 0.967448i \(0.581440\pi\)
\(242\) −0.773862 5.46499i −0.0497457 0.351303i
\(243\) 3.56184 + 14.9131i 0.228492 + 0.956676i
\(244\) −2.81579 4.70568i −0.180263 0.301250i
\(245\) −1.92333 + 4.56743i −0.122877 + 0.291802i
\(246\) −5.93857 + 0.278660i −0.378629 + 0.0177667i
\(247\) −8.98982 + 2.37121i −0.572009 + 0.150876i
\(248\) 5.82701 7.20727i 0.370016 0.457662i
\(249\) 7.76744 1.85517i 0.492241 0.117567i
\(250\) 11.2171 4.72351i 0.709434 0.298741i
\(251\) −9.38290 18.5222i −0.592243 1.16911i −0.969977 0.243197i \(-0.921804\pi\)
0.377734 0.925914i \(-0.376703\pi\)
\(252\) −7.60029 + 0.895036i −0.478773 + 0.0563820i
\(253\) 0.326083 4.62855i 0.0205007 0.290994i
\(254\) −5.53292 + 10.9222i −0.347166 + 0.685320i
\(255\) 0.629717 1.71621i 0.0394344 0.107473i
\(256\) −0.990123 0.140205i −0.0618827 0.00876280i
\(257\) −17.6912 17.2812i −1.10354 1.07797i −0.996490 0.0837170i \(-0.973321\pi\)
−0.107054 0.994253i \(-0.534142\pi\)
\(258\) −0.211391 + 1.79504i −0.0131606 + 0.111755i
\(259\) 0.464216 3.27828i 0.0288450 0.203703i
\(260\) −4.80219 + 0.451669i −0.297819 + 0.0280113i
\(261\) −23.5860 11.2613i −1.45994 0.697056i
\(262\) 12.2421 + 10.8850i 0.756321 + 0.672480i
\(263\) 6.54365 2.93796i 0.403499 0.181163i −0.197699 0.980263i \(-0.563347\pi\)
0.601198 + 0.799100i \(0.294690\pi\)
\(264\) −2.61372 1.48192i −0.160863 0.0912058i
\(265\) 8.68268 8.09250i 0.533373 0.497119i
\(266\) −0.511785 10.9067i −0.0313795 0.668734i
\(267\) 4.28689 + 10.8871i 0.262354 + 0.666278i
\(268\) 13.9014 0.849165
\(269\) −0.747582 + 16.3842i −0.0455809 + 0.998961i
\(270\) −7.32150 −0.445572
\(271\) 9.73461 + 24.7222i 0.591336 + 1.50177i 0.845158 + 0.534516i \(0.179506\pi\)
−0.253823 + 0.967251i \(0.581688\pi\)
\(272\) 0.0638249 + 1.36018i 0.00386995 + 0.0824731i
\(273\) −4.47990 + 4.17539i −0.271136 + 0.252706i
\(274\) 12.0697 + 6.84322i 0.729155 + 0.413414i
\(275\) −6.31018 + 2.83314i −0.380518 + 0.170845i
\(276\) −0.630684 0.560771i −0.0379627 0.0337544i
\(277\) 20.5357 + 9.80488i 1.23387 + 0.589118i 0.931385 0.364035i \(-0.118601\pi\)
0.302486 + 0.953154i \(0.402183\pi\)
\(278\) −15.9201 + 1.49736i −0.954825 + 0.0898058i
\(279\) −3.18820 + 22.5150i −0.190873 + 1.34794i
\(280\) 0.662502 5.62569i 0.0395920 0.336200i
\(281\) −5.68795 5.55614i −0.339315 0.331452i 0.509175 0.860663i \(-0.329951\pi\)
−0.848490 + 0.529211i \(0.822488\pi\)
\(282\) 5.96153 + 0.844174i 0.355004 + 0.0502698i
\(283\) −3.64818 + 9.94263i −0.216862 + 0.591028i −0.999506 0.0314418i \(-0.989990\pi\)
0.782644 + 0.622470i \(0.213871\pi\)
\(284\) 6.95235 13.7242i 0.412546 0.814382i
\(285\) 0.330272 4.68801i 0.0195636 0.277694i
\(286\) 10.7207 1.26251i 0.633929 0.0746537i
\(287\) 11.3356 + 22.3770i 0.669121 + 1.32087i
\(288\) 2.26121 0.952190i 0.133243 0.0561084i
\(289\) −14.7315 + 3.51846i −0.866558 + 0.206968i
\(290\) 12.1632 15.0443i 0.714245 0.883430i
\(291\) 4.22952 1.11560i 0.247939 0.0653977i
\(292\) 0.755565 0.0354540i 0.0442161 0.00207479i
\(293\) 0.738611 1.75402i 0.0431501 0.102471i −0.898620 0.438727i \(-0.855430\pi\)
0.941771 + 0.336256i \(0.109161\pi\)
\(294\) −1.03584 1.73106i −0.0604111 0.100958i
\(295\) 3.40304 + 14.2482i 0.198133 + 0.829565i
\(296\) 0.148830 + 1.05103i 0.00865054 + 0.0610898i
\(297\) 16.3811 0.384121i 0.950529 0.0222890i
\(298\) 7.35002 + 4.39811i 0.425775 + 0.254776i
\(299\) 3.01873 + 0.283926i 0.174578 + 0.0164199i
\(300\) −0.292258 + 1.22366i −0.0168735 + 0.0706481i
\(301\) 7.27475 2.28851i 0.419310 0.131908i
\(302\) −14.6405 1.03143i −0.842466 0.0593520i
\(303\) 0.650617 + 1.21294i 0.0373769 + 0.0696815i
\(304\) 1.12846 + 3.31371i 0.0647218 + 0.190054i
\(305\) −6.61750 + 7.44252i −0.378917 + 0.426158i
\(306\) −1.84796 2.78329i −0.105641 0.159110i
\(307\) −16.9301 17.3317i −0.966250 0.989173i 0.0336975 0.999432i \(-0.489272\pi\)
−0.999947 + 0.0102590i \(0.996734\pi\)
\(308\) −1.18713 + 12.6217i −0.0676430 + 0.719187i
\(309\) 1.13842 + 1.63035i 0.0647627 + 0.0927476i
\(310\) −15.6614 6.16681i −0.889505 0.350251i
\(311\) −8.54828 2.68914i −0.484728 0.152487i 0.0478731 0.998853i \(-0.484756\pi\)
−0.532602 + 0.846366i \(0.678786\pi\)
\(312\) 1.00814 1.68478i 0.0570749 0.0953821i
\(313\) 9.15686 + 12.4799i 0.517576 + 0.705403i 0.983801 0.179263i \(-0.0573714\pi\)
−0.466225 + 0.884666i \(0.654386\pi\)
\(314\) −5.20377 2.33639i −0.293666 0.131850i
\(315\) 5.69254 + 12.6788i 0.320738 + 0.714372i
\(316\) 8.18086 + 5.15950i 0.460209 + 0.290245i
\(317\) −15.3789 0.360620i −0.863764 0.0202544i −0.410740 0.911753i \(-0.634730\pi\)
−0.453024 + 0.891498i \(0.649655\pi\)
\(318\) 0.565058 + 4.79825i 0.0316869 + 0.269072i
\(319\) −26.4246 + 34.2982i −1.47949 + 1.92033i
\(320\) 0.296707 + 1.79168i 0.0165864 + 0.100158i
\(321\) −7.22307 + 5.04364i −0.403152 + 0.281509i
\(322\) −1.06855 + 3.39673i −0.0595482 + 0.189292i
\(323\) 4.14655 2.35100i 0.230720 0.130813i
\(324\) −2.59127 + 3.53163i −0.143959 + 0.196202i
\(325\) −1.75417 4.16570i −0.0973036 0.231072i
\(326\) 2.61260 + 5.47194i 0.144699 + 0.303063i
\(327\) 0.979663 5.91575i 0.0541755 0.327142i
\(328\) −5.48319 5.88308i −0.302759 0.324839i
\(329\) −7.05333 24.4058i −0.388863 1.34554i
\(330\) −1.14283 + 5.33558i −0.0629108 + 0.293714i
\(331\) 23.7901 3.36876i 1.30762 0.185164i 0.548520 0.836137i \(-0.315191\pi\)
0.759100 + 0.650974i \(0.225639\pi\)
\(332\) 8.70978 + 6.39064i 0.478011 + 0.350732i
\(333\) −1.63745 2.02531i −0.0897316 0.110987i
\(334\) −18.4796 14.2374i −1.01116 0.779035i
\(335\) −7.57598 24.0826i −0.413920 1.31577i
\(336\) 1.68676 + 1.57210i 0.0920201 + 0.0857653i
\(337\) −11.2051 + 13.2133i −0.610382 + 0.719776i −0.977626 0.210349i \(-0.932540\pi\)
0.367244 + 0.930125i \(0.380301\pi\)
\(338\) −0.556797 5.91993i −0.0302858 0.322002i
\(339\) −6.93073 + 5.87738i −0.376426 + 0.319215i
\(340\) 2.32157 0.851838i 0.125905 0.0461974i
\(341\) 35.3642 + 12.9760i 1.91508 + 0.702688i
\(342\) −6.55050 5.55494i −0.354211 0.300377i
\(343\) 7.62703 10.9228i 0.411821 0.589775i
\(344\) −2.03691 + 1.35240i −0.109823 + 0.0729167i
\(345\) −0.627761 + 1.39819i −0.0337975 + 0.0752763i
\(346\) 5.12642 4.55814i 0.275598 0.245047i
\(347\) 4.30695 1.24472i 0.231209 0.0668200i −0.160018 0.987114i \(-0.551155\pi\)
0.391227 + 0.920294i \(0.372051\pi\)
\(348\) 2.00844 + 7.61450i 0.107664 + 0.408180i
\(349\) −2.85567 + 4.30104i −0.152860 + 0.230229i −0.901533 0.432711i \(-0.857557\pi\)
0.748673 + 0.662940i \(0.230692\pi\)
\(350\) 5.21516 0.989777i 0.278762 0.0529058i
\(351\) 10.7073i 0.571514i
\(352\) −0.757852 3.99314i −0.0403936 0.212835i
\(353\) 2.05474 + 29.1657i 0.109363 + 1.55233i 0.681280 + 0.732023i \(0.261424\pi\)
−0.571917 + 0.820311i \(0.693800\pi\)
\(354\) −5.49557 2.31417i −0.292086 0.122997i
\(355\) −27.5645 4.56475i −1.46297 0.242272i
\(356\) −7.48166 + 13.9480i −0.396527 + 0.739243i
\(357\) 1.67489 2.65569i 0.0886447 0.140554i
\(358\) −3.94575 + 1.34370i −0.208539 + 0.0710169i
\(359\) −0.428171 + 9.12481i −0.0225980 + 0.481589i 0.958145 + 0.286285i \(0.0924203\pi\)
−0.980743 + 0.195305i \(0.937430\pi\)
\(360\) −2.88187 3.39837i −0.151888 0.179110i
\(361\) −4.71385 + 4.82568i −0.248097 + 0.253983i
\(362\) 12.2519 + 2.32527i 0.643945 + 0.122213i
\(363\) 0.760806 4.00870i 0.0399319 0.210402i
\(364\) −8.22729 0.968874i −0.431227 0.0507828i
\(365\) −0.473187 1.28961i −0.0247677 0.0675011i
\(366\) −0.849043 3.96396i −0.0443802 0.207199i
\(367\) 3.82323 2.05077i 0.199571 0.107049i −0.369863 0.929086i \(-0.620595\pi\)
0.569434 + 0.822037i \(0.307163\pi\)
\(368\) 0.0267625 1.14131i 0.00139509 0.0594947i
\(369\) 18.9558 + 5.47826i 0.986799 + 0.285187i
\(370\) 1.73968 0.830618i 0.0904415 0.0431818i
\(371\) 17.4927 10.4673i 0.908177 0.543436i
\(372\) 5.79516 3.65489i 0.300465 0.189497i
\(373\) −4.82714 3.20497i −0.249940 0.165947i 0.421903 0.906641i \(-0.361362\pi\)
−0.671842 + 0.740694i \(0.734497\pi\)
\(374\) −5.14959 + 2.02770i −0.266279 + 0.104850i
\(375\) 8.97517 0.632304i 0.463476 0.0326520i
\(376\) 4.34484 + 6.88914i 0.224068 + 0.355280i
\(377\) −22.0015 17.7880i −1.13313 0.916128i
\(378\) −12.2958 2.63364i −0.632426 0.135460i
\(379\) −9.74285 2.56983i −0.500456 0.132003i −0.00387360 0.999992i \(-0.501233\pi\)
−0.496583 + 0.867989i \(0.665412\pi\)
\(380\) 5.12562 3.76083i 0.262939 0.192926i
\(381\) −6.47465 + 6.32461i −0.331707 + 0.324020i
\(382\) 10.3448 + 13.4273i 0.529288 + 0.686998i
\(383\) 12.3444 13.2447i 0.630770 0.676771i −0.333178 0.942864i \(-0.608121\pi\)
0.963947 + 0.266093i \(0.0857329\pi\)
\(384\) −0.659456 0.334065i −0.0336527 0.0170477i
\(385\) 22.5126 4.82198i 1.14735 0.245751i
\(386\) 11.3560 + 0.532866i 0.578004 + 0.0271222i
\(387\) 2.58468 5.41346i 0.131387 0.275181i
\(388\) 4.85141 + 3.38759i 0.246293 + 0.171979i
\(389\) 17.9813 13.8534i 0.911687 0.702396i −0.0432942 0.999062i \(-0.513785\pi\)
0.954981 + 0.296666i \(0.0958748\pi\)
\(390\) −3.46811 0.828321i −0.175615 0.0419437i
\(391\) −1.53363 + 0.253973i −0.0775590 + 0.0128440i
\(392\) 0.879693 2.58320i 0.0444312 0.130471i
\(393\) 5.97282 + 10.5345i 0.301289 + 0.531396i
\(394\) −0.000324367 0.0138328i −1.63414e−5 0.000696889i
\(395\) 4.47985 16.9842i 0.225406 0.854568i
\(396\) 6.62619 + 7.45231i 0.332979 + 0.374493i
\(397\) 16.2867 28.7255i 0.817405 1.44169i −0.0782460 0.996934i \(-0.524932\pi\)
0.895651 0.444757i \(-0.146710\pi\)
\(398\) −15.5949 8.36503i −0.781699 0.419301i
\(399\) 2.24100 7.75426i 0.112190 0.388199i
\(400\) −1.51816 + 0.769064i −0.0759081 + 0.0384532i
\(401\) 13.2970 10.7505i 0.664023 0.536856i −0.236519 0.971627i \(-0.576006\pi\)
0.900541 + 0.434771i \(0.143171\pi\)
\(402\) 9.72794 + 3.31279i 0.485186 + 0.165227i
\(403\) −9.01865 + 22.9039i −0.449251 + 1.14093i
\(404\) −0.682172 + 1.73246i −0.0339393 + 0.0861929i
\(405\) 7.53033 + 2.56441i 0.374185 + 0.127426i
\(406\) 25.8385 20.8902i 1.28234 1.03676i
\(407\) −3.84878 + 1.94970i −0.190777 + 0.0966429i
\(408\) −0.279476 + 0.967037i −0.0138361 + 0.0478755i
\(409\) 3.02161 + 1.62078i 0.149409 + 0.0801424i 0.545691 0.837986i \(-0.316267\pi\)
−0.396283 + 0.918129i \(0.629700\pi\)
\(410\) −7.20352 + 12.7051i −0.355757 + 0.627462i
\(411\) 6.81533 + 7.66502i 0.336175 + 0.378088i
\(412\) −0.686036 + 2.60093i −0.0337986 + 0.128139i
\(413\) 0.589806 + 25.1527i 0.0290225 + 1.23768i
\(414\) 1.38149 + 2.43659i 0.0678966 + 0.119752i
\(415\) 6.32439 18.5714i 0.310452 0.911636i
\(416\) 2.62024 0.433918i 0.128468 0.0212746i
\(417\) −11.4974 2.74603i −0.563030 0.134474i
\(418\) −11.2708 + 8.68339i −0.551271 + 0.424719i
\(419\) −15.2952 10.6802i −0.747220 0.521760i 0.136005 0.990708i \(-0.456574\pi\)
−0.883226 + 0.468948i \(0.844633\pi\)
\(420\) 1.80424 3.77887i 0.0880380 0.184390i
\(421\) −9.19912 0.431658i −0.448337 0.0210377i −0.178492 0.983941i \(-0.557122\pi\)
−0.269845 + 0.962904i \(0.586973\pi\)
\(422\) 3.85828 0.826408i 0.187818 0.0402289i
\(423\) −17.8266 9.03052i −0.866759 0.439079i
\(424\) −4.45602 + 4.78100i −0.216404 + 0.232186i
\(425\) 1.41431 + 1.83573i 0.0686042 + 0.0890459i
\(426\) 8.13568 7.94714i 0.394175 0.385040i
\(427\) −13.7906 + 10.1186i −0.667375 + 0.489674i
\(428\) −11.5231 3.03939i −0.556990 0.146915i
\(429\) 7.80301 + 1.67133i 0.376733 + 0.0806926i
\(430\) 3.45295 + 2.79168i 0.166516 + 0.134627i
\(431\) 3.83199 + 6.07597i 0.184580 + 0.292669i 0.925368 0.379071i \(-0.123756\pi\)
−0.740787 + 0.671740i \(0.765547\pi\)
\(432\) 4.02151 0.283317i 0.193485 0.0136311i
\(433\) −1.22524 + 0.482451i −0.0588813 + 0.0231851i −0.395637 0.918407i \(-0.629476\pi\)
0.336756 + 0.941592i \(0.390670\pi\)
\(434\) −24.0835 15.9902i −1.15604 0.767553i
\(435\) 12.0967 7.62913i 0.579991 0.365789i
\(436\) 6.96046 4.16501i 0.333345 0.199468i
\(437\) −3.60636 + 1.72187i −0.172515 + 0.0823684i
\(438\) 0.537178 + 0.155246i 0.0256674 + 0.00741792i
\(439\) −0.219218 + 9.34870i −0.0104627 + 0.446189i 0.969284 + 0.245946i \(0.0790986\pi\)
−0.979746 + 0.200243i \(0.935827\pi\)
\(440\) −6.50464 + 3.48907i −0.310096 + 0.166335i
\(441\) 1.40228 + 6.54686i 0.0667751 + 0.311755i
\(442\) −1.24577 3.39518i −0.0592552 0.161492i
\(443\) 23.8041 + 2.80326i 1.13097 + 0.133187i 0.661629 0.749832i \(-0.269865\pi\)
0.469339 + 0.883018i \(0.344492\pi\)
\(444\) −0.146319 + 0.770956i −0.00694397 + 0.0365880i
\(445\) 28.2407 + 5.35975i 1.33874 + 0.254077i
\(446\) −0.839525 + 0.859441i −0.0397526 + 0.0406957i
\(447\) 4.09530 + 4.82926i 0.193701 + 0.228416i
\(448\) −0.146200 + 3.11569i −0.00690730 + 0.147202i
\(449\) 28.0436 9.55010i 1.32346 0.450697i 0.431216 0.902249i \(-0.358085\pi\)
0.892245 + 0.451552i \(0.149129\pi\)
\(450\) 2.22742 3.53178i 0.105002 0.166490i
\(451\) 15.4506 28.8044i 0.727540 1.35635i
\(452\) −12.1275 2.00834i −0.570429 0.0944645i
\(453\) −9.99933 4.21069i −0.469809 0.197835i
\(454\) −0.922142 13.0892i −0.0432783 0.614309i
\(455\) 2.80523 + 14.7808i 0.131511 + 0.692936i
\(456\) 2.58778i 0.121184i
\(457\) −34.7677 + 6.59850i −1.62636 + 0.308665i −0.917818 0.397001i \(-0.870051\pi\)
−0.708545 + 0.705666i \(0.750648\pi\)
\(458\) −11.8985 + 17.9208i −0.555980 + 0.837385i
\(459\) −1.40008 5.30804i −0.0653500 0.247758i
\(460\) −1.99176 + 0.575624i −0.0928665 + 0.0268386i
\(461\) 16.0354 14.2578i 0.746844 0.664054i −0.202148 0.979355i \(-0.564792\pi\)
0.948992 + 0.315301i \(0.102106\pi\)
\(462\) −3.83855 + 8.54950i −0.178586 + 0.397759i
\(463\) 5.71612 3.79520i 0.265651 0.176378i −0.413230 0.910627i \(-0.635600\pi\)
0.678881 + 0.734248i \(0.262465\pi\)
\(464\) −6.09875 + 8.73411i −0.283127 + 0.405471i
\(465\) −9.48991 8.04761i −0.440084 0.373199i
\(466\) −8.02395 2.94417i −0.371702 0.136386i
\(467\) −13.7717 + 5.05314i −0.637277 + 0.233832i −0.642657 0.766154i \(-0.722168\pi\)
0.00538021 + 0.999986i \(0.498287\pi\)
\(468\) −4.96994 + 4.21459i −0.229735 + 0.194819i
\(469\) −4.06031 43.1696i −0.187488 1.99339i
\(470\) 9.56679 11.2814i 0.441283 0.520371i
\(471\) −3.08472 2.87505i −0.142136 0.132475i
\(472\) −2.42056 7.69451i −0.111415 0.354169i
\(473\) −7.87210 6.06495i −0.361960 0.278867i
\(474\) 4.49526 + 5.56006i 0.206474 + 0.255382i
\(475\) 4.80320 + 3.52426i 0.220386 + 0.161704i
\(476\) 4.20528 0.595482i 0.192749 0.0272939i
\(477\) 3.35842 15.6796i 0.153771 0.717918i
\(478\) −1.70703 5.90663i −0.0780776 0.270163i
\(479\) −14.7842 15.8624i −0.675508 0.724772i 0.297710 0.954656i \(-0.403777\pi\)
−0.973218 + 0.229885i \(0.926165\pi\)
\(480\) −0.219339 + 1.32449i −0.0100114 + 0.0604544i
\(481\) −1.21474 2.54419i −0.0553872 0.116005i
\(482\) −3.32182 7.88849i −0.151305 0.359311i
\(483\) −1.55721 + 2.12232i −0.0708557 + 0.0965690i
\(484\) 4.80145 2.72231i 0.218248 0.123742i
\(485\) 3.22469 10.2507i 0.146425 0.465459i
\(486\) −12.5711 + 8.77803i −0.570238 + 0.398179i
\(487\) 5.19222 + 31.3535i 0.235282 + 1.42076i 0.802233 + 0.597011i \(0.203645\pi\)
−0.566951 + 0.823752i \(0.691877\pi\)
\(488\) 3.34682 4.34406i 0.151503 0.196646i
\(489\) 0.524254 + 4.45175i 0.0237076 + 0.201315i
\(490\) −4.95451 0.116178i −0.223822 0.00524840i
\(491\) −9.34572 5.89416i −0.421766 0.266000i 0.305720 0.952121i \(-0.401103\pi\)
−0.727487 + 0.686122i \(0.759312\pi\)
\(492\) −2.43506 5.42354i −0.109781 0.244512i
\(493\) 13.2329 + 5.94131i 0.595981 + 0.267583i
\(494\) −5.50002 7.49596i −0.247457 0.337259i
\(495\) 9.29912 15.5405i 0.417964 0.698492i
\(496\) 8.84101 + 2.78123i 0.396973 + 0.124881i
\(497\) −44.6499 17.5814i −2.00282 0.788632i
\(498\) 4.57200 + 6.54763i 0.204876 + 0.293406i
\(499\) −0.753105 + 8.00709i −0.0337136 + 0.358447i 0.962485 + 0.271335i \(0.0874651\pi\)
−0.996199 + 0.0871115i \(0.972236\pi\)
\(500\) 8.50479 + 8.70656i 0.380346 + 0.389369i
\(501\) −9.53883 14.3668i −0.426164 0.641863i
\(502\) 13.7966 15.5166i 0.615770 0.692541i
\(503\) −6.54044 19.2058i −0.291624 0.856346i −0.990056 0.140671i \(-0.955074\pi\)
0.698433 0.715676i \(-0.253881\pi\)
\(504\) −3.61739 6.74388i −0.161132 0.300396i
\(505\) 3.37305 + 0.237633i 0.150099 + 0.0105745i
\(506\) 4.42617 1.39240i 0.196767 0.0618997i
\(507\) 1.02112 4.27533i 0.0453494 0.189874i
\(508\) −12.1899 1.14652i −0.540839 0.0508684i
\(509\) −3.29553 1.97198i −0.146072 0.0874067i 0.438575 0.898695i \(-0.355483\pi\)
−0.584647 + 0.811288i \(0.698767\pi\)
\(510\) 1.82759 0.0428551i 0.0809270 0.00189766i
\(511\) −0.330784 2.33598i −0.0146330 0.103338i
\(512\) −0.232305 0.972643i −0.0102665 0.0429851i
\(513\) −7.24642 12.1100i −0.319937 0.534671i
\(514\) 9.59785 22.7925i 0.423343 1.00533i
\(515\) 4.87969 0.228974i 0.215025 0.0100898i
\(516\) −1.74768 + 0.460977i −0.0769371 + 0.0202934i
\(517\) −20.8129 + 25.7428i −0.915348 + 1.13217i
\(518\) 3.22041 0.769160i 0.141497 0.0337949i
\(519\) 4.67360 1.96804i 0.205148 0.0863873i
\(520\) −2.17969 4.30279i −0.0955856 0.188690i
\(521\) 14.5384 1.71210i 0.636940 0.0750083i 0.207691 0.978195i \(-0.433405\pi\)
0.429249 + 0.903186i \(0.358778\pi\)
\(522\) 1.83677 26.0719i 0.0803935 1.14114i
\(523\) 0.800520 1.58026i 0.0350043 0.0690998i −0.873897 0.486111i \(-0.838415\pi\)
0.908901 + 0.417011i \(0.136922\pi\)
\(524\) −5.64289 + 15.3789i −0.246511 + 0.671832i
\(525\) 3.88533 + 0.550177i 0.169570 + 0.0240117i
\(526\) 5.13114 + 5.01223i 0.223728 + 0.218543i
\(527\) 1.47600 12.5336i 0.0642958 0.545974i
\(528\) 0.421259 2.97492i 0.0183330 0.129467i
\(529\) −21.6014 + 2.03171i −0.939190 + 0.0883353i
\(530\) 10.7110 + 5.11400i 0.465254 + 0.222138i
\(531\) 14.7899 + 13.1504i 0.641826 + 0.570678i
\(532\) 9.96081 4.47220i 0.431856 0.193894i
\(533\) 18.5806 + 10.5348i 0.804816 + 0.456312i
\(534\) −8.55941 + 7.97761i −0.370402 + 0.345225i
\(535\) 1.01444 + 21.6188i 0.0438580 + 0.934663i
\(536\) 5.09321 + 12.9348i 0.219993 + 0.558698i
\(537\) −3.08137 −0.132971
\(538\) −15.5188 + 5.30723i −0.669063 + 0.228811i
\(539\) 11.0913 0.477736
\(540\) −2.68245 6.81240i −0.115434 0.293159i
\(541\) 0.479647 + 10.2218i 0.0206216 + 0.439470i 0.984744 + 0.174011i \(0.0556728\pi\)
−0.964122 + 0.265459i \(0.914476\pi\)
\(542\) −19.4366 + 18.1154i −0.834873 + 0.778125i
\(543\) 8.01951 + 4.54688i 0.344150 + 0.195125i
\(544\) −1.24222 + 0.557730i −0.0532596 + 0.0239125i
\(545\) −11.0087 9.78834i −0.471560 0.419286i
\(546\) −5.52640 2.63861i −0.236508 0.112922i
\(547\) 7.83343 0.736771i 0.334933 0.0315021i 0.0751593 0.997172i \(-0.476053\pi\)
0.259774 + 0.965669i \(0.416352\pi\)
\(548\) −1.94530 + 13.7376i −0.0830990 + 0.586842i
\(549\) −1.57359 + 13.3623i −0.0671591 + 0.570288i
\(550\) −4.94806 4.83340i −0.210986 0.206097i
\(551\) 36.9222 + 5.22831i 1.57294 + 0.222734i
\(552\) 0.290708 0.792285i 0.0123733 0.0337219i
\(553\) 13.6329 26.9119i 0.579730 1.14441i
\(554\) −1.59923 + 22.7001i −0.0679447 + 0.964434i
\(555\) 1.41533 0.166675i 0.0600775 0.00707494i
\(556\) −7.22606 14.2645i −0.306453 0.604950i
\(557\) 17.3524 7.30704i 0.735244 0.309609i 0.0117419 0.999931i \(-0.496262\pi\)
0.723503 + 0.690322i \(0.242531\pi\)
\(558\) −22.1175 + 5.28253i −0.936309 + 0.223627i
\(559\) 4.08269 5.04977i 0.172679 0.213582i
\(560\) 5.47724 1.44471i 0.231456 0.0610500i
\(561\) −4.08680 + 0.191768i −0.172545 + 0.00809646i
\(562\) 3.08584 7.32810i 0.130168 0.309117i
\(563\) 5.30917 + 8.87255i 0.223755 + 0.373933i 0.949366 0.314171i \(-0.101727\pi\)
−0.725612 + 0.688105i \(0.758443\pi\)
\(564\) 1.39871 + 5.85628i 0.0588963 + 0.246594i
\(565\) 3.13000 + 22.1040i 0.131680 + 0.929921i
\(566\) −10.5879 + 0.248276i −0.445042 + 0.0104358i
\(567\) 11.7240 + 7.01543i 0.492362 + 0.294621i
\(568\) 15.3171 + 1.44065i 0.642692 + 0.0604482i
\(569\) −4.86132 + 20.3540i −0.203797 + 0.853282i 0.772179 + 0.635405i \(0.219167\pi\)
−0.975976 + 0.217877i \(0.930087\pi\)
\(570\) 4.48303 1.41029i 0.187774 0.0590704i
\(571\) 35.1998 + 2.47984i 1.47307 + 0.103778i 0.783928 0.620851i \(-0.213213\pi\)
0.689139 + 0.724629i \(0.257989\pi\)
\(572\) 5.10258 + 9.51270i 0.213350 + 0.397746i
\(573\) 4.03932 + 11.8614i 0.168745 + 0.495515i
\(574\) −16.6678 + 18.7459i −0.695702 + 0.782438i
\(575\) −1.07466 1.61858i −0.0448162 0.0674996i
\(576\) 1.71444 + 1.75512i 0.0714351 + 0.0731299i
\(577\) 1.46590 15.5856i 0.0610263 0.648838i −0.910754 0.412950i \(-0.864499\pi\)
0.971780 0.235888i \(-0.0758000\pi\)
\(578\) −8.67113 12.4180i −0.360671 0.516523i
\(579\) 7.81970 + 3.07909i 0.324976 + 0.127962i
\(580\) 18.4545 + 5.80547i 0.766282 + 0.241059i
\(581\) 17.3016 28.9140i 0.717792 1.19956i
\(582\) 2.58764 + 3.52669i 0.107261 + 0.146186i
\(583\) −24.2330 10.8801i −1.00363 0.450608i
\(584\) 0.309813 + 0.690038i 0.0128201 + 0.0285540i
\(585\) 10.0098 + 6.31297i 0.413854 + 0.261009i
\(586\) 1.90266 + 0.0446156i 0.0785983 + 0.00184305i
\(587\) −3.79252 32.2045i −0.156534 1.32922i −0.816246 0.577705i \(-0.803949\pi\)
0.659712 0.751519i \(-0.270678\pi\)
\(588\) 1.23118 1.59804i 0.0507731 0.0659019i
\(589\) −5.30061 32.0080i −0.218408 1.31887i
\(590\) −12.0107 + 8.38669i −0.494472 + 0.345274i
\(591\) 0.00306946 0.00975725i 0.000126261 0.000401360i
\(592\) −0.923418 + 0.523557i −0.0379523 + 0.0215181i
\(593\) −5.08032 + 6.92395i −0.208624 + 0.284333i −0.897931 0.440137i \(-0.854930\pi\)
0.689307 + 0.724469i \(0.257915\pi\)
\(594\) 6.35913 + 15.1013i 0.260918 + 0.619615i
\(595\) −3.32339 6.96063i −0.136246 0.285358i
\(596\) −1.39939 + 8.45032i −0.0573214 + 0.346138i
\(597\) −8.91953 9.57002i −0.365052 0.391675i
\(598\) 0.841820 + 2.91285i 0.0344246 + 0.119115i
\(599\) −8.13574 + 37.9836i −0.332417 + 1.55197i 0.428756 + 0.903420i \(0.358952\pi\)
−0.761173 + 0.648549i \(0.775376\pi\)
\(600\) −1.24565 + 0.176389i −0.0508535 + 0.00720104i
\(601\) −29.2451 21.4580i −1.19293 0.875291i −0.198440 0.980113i \(-0.563588\pi\)
−0.994491 + 0.104822i \(0.966573\pi\)
\(602\) 4.79470 + 5.93044i 0.195418 + 0.241707i
\(603\) −27.0186 20.8161i −1.10028 0.847697i
\(604\) −4.40428 14.0004i −0.179207 0.569667i
\(605\) −7.33278 6.83436i −0.298120 0.277856i
\(606\) −0.890225 + 1.04977i −0.0361629 + 0.0426441i
\(607\) −3.76071 39.9843i −0.152642 1.62291i −0.653185 0.757199i \(-0.726567\pi\)
0.500542 0.865712i \(-0.333134\pi\)
\(608\) −2.66984 + 2.26407i −0.108276 + 0.0918202i
\(609\) 23.0595 8.46107i 0.934418 0.342860i
\(610\) −9.34953 3.43056i −0.378551 0.138899i
\(611\) −16.4984 13.9909i −0.667454 0.566013i
\(612\) 1.91270 2.73920i 0.0773161 0.110726i
\(613\) −28.2197 + 18.7364i −1.13978 + 0.756755i −0.973356 0.229299i \(-0.926357\pi\)
−0.166425 + 0.986054i \(0.553222\pi\)
\(614\) 9.92372 22.1028i 0.400489 0.891998i
\(615\) −8.06859 + 7.17416i −0.325357 + 0.289290i
\(616\) −12.1790 + 3.51975i −0.490705 + 0.141815i
\(617\) 8.49013 + 32.1882i 0.341800 + 1.29585i 0.888638 + 0.458609i \(0.151652\pi\)
−0.546838 + 0.837238i \(0.684169\pi\)
\(618\) −1.09989 + 1.65659i −0.0442441 + 0.0666379i
\(619\) 12.9801 2.46348i 0.521716 0.0990157i 0.0810905 0.996707i \(-0.474160\pi\)
0.440625 + 0.897691i \(0.354757\pi\)
\(620\) 16.8317i 0.675979i
\(621\) 0.858167 + 4.52170i 0.0344370 + 0.181450i
\(622\) −0.629765 8.93912i −0.0252513 0.358426i
\(623\) 45.4995 + 19.1597i 1.82290 + 0.767618i
\(624\) 1.93700 + 0.320772i 0.0775420 + 0.0128411i
\(625\) 6.42596 11.9799i 0.257039 0.479195i
\(626\) −8.25718 + 13.0925i −0.330023 + 0.523282i
\(627\) −9.95635 + 3.39058i −0.397618 + 0.135407i
\(628\) 0.267369 5.69793i 0.0106692 0.227372i
\(629\) 0.934867 + 1.10242i 0.0372756 + 0.0439562i
\(630\) −9.71158 + 9.94198i −0.386919 + 0.396098i
\(631\) −12.5398 2.37991i −0.499202 0.0947428i −0.0692589 0.997599i \(-0.522063\pi\)
−0.429943 + 0.902856i \(0.641466\pi\)
\(632\) −1.80343 + 9.50234i −0.0717368 + 0.377983i
\(633\) 2.89688 + 0.341147i 0.115141 + 0.0135594i
\(634\) −5.29897 14.4416i −0.210449 0.573551i
\(635\) 4.65702 + 21.7424i 0.184808 + 0.862820i
\(636\) −4.25757 + 2.28375i −0.168824 + 0.0905565i
\(637\) −0.169905 + 7.24571i −0.00673187 + 0.287086i
\(638\) −41.5947 12.0210i −1.64675 0.475914i
\(639\) −34.0632 + 16.2637i −1.34752 + 0.643381i
\(640\) −1.55839 + 0.932511i −0.0616007 + 0.0368607i
\(641\) 27.0931 17.0871i 1.07011 0.674898i 0.121902 0.992542i \(-0.461101\pi\)
0.948210 + 0.317644i \(0.102892\pi\)
\(642\) −7.33932 4.87293i −0.289660 0.192319i
\(643\) −1.62567 + 0.640123i −0.0641100 + 0.0252440i −0.398218 0.917291i \(-0.630371\pi\)
0.334108 + 0.942535i \(0.391565\pi\)
\(644\) −3.55204 + 0.250242i −0.139970 + 0.00986093i
\(645\) 1.75103 + 2.77642i 0.0689469 + 0.109322i
\(646\) 3.70674 + 2.99686i 0.145840 + 0.117910i
\(647\) 17.9834 + 3.85188i 0.707000 + 0.151433i 0.548775 0.835970i \(-0.315094\pi\)
0.158225 + 0.987403i \(0.449423\pi\)
\(648\) −4.23545 1.11717i −0.166384 0.0438864i
\(649\) 26.4327 19.3945i 1.03757 0.761301i
\(650\) 3.23335 3.15842i 0.126822 0.123883i
\(651\) −13.0426 16.9288i −0.511179 0.663493i
\(652\) −4.13424 + 4.43575i −0.161909 + 0.173717i
\(653\) −38.5340 19.5204i −1.50795 0.763893i −0.512459 0.858712i \(-0.671265\pi\)
−0.995495 + 0.0948191i \(0.969773\pi\)
\(654\) 5.86333 1.25587i 0.229274 0.0491085i
\(655\) 29.7175 + 1.39446i 1.16116 + 0.0544860i
\(656\) 3.46507 7.25736i 0.135288 0.283352i
\(657\) −1.52159 1.06248i −0.0593631 0.0414513i
\(658\) 20.1246 15.5047i 0.784537 0.604436i
\(659\) −22.9352 5.47782i −0.893428 0.213386i −0.240359 0.970684i \(-0.577265\pi\)
−0.653069 + 0.757298i \(0.726519\pi\)
\(660\) −5.38328 + 0.891484i −0.209544 + 0.0347010i
\(661\) −4.63941 + 13.6235i −0.180452 + 0.529894i −0.999008 0.0445333i \(-0.985820\pi\)
0.818556 + 0.574427i \(0.194775\pi\)
\(662\) 11.8507 + 20.9016i 0.460591 + 0.812363i
\(663\) −0.0626734 2.67275i −0.00243403 0.103801i
\(664\) −2.75518 + 10.4456i −0.106922 + 0.405366i
\(665\) −13.1760 14.8187i −0.510943 0.574644i
\(666\) 1.28456 2.26562i 0.0497756 0.0877911i
\(667\) −10.7169 5.74850i −0.414960 0.222583i
\(668\) 6.47681 22.4110i 0.250595 0.867106i
\(669\) −0.792293 + 0.401356i −0.0306318 + 0.0155173i
\(670\) 19.6323 15.8726i 0.758464 0.613211i
\(671\) 21.0986 + 7.18501i 0.814503 + 0.277374i
\(672\) −0.844794 + 2.14545i −0.0325887 + 0.0827627i
\(673\) −6.30448 + 16.0110i −0.243020 + 0.617178i −0.999313 0.0370549i \(-0.988202\pi\)
0.756293 + 0.654233i \(0.227008\pi\)
\(674\) −16.3999 5.58488i −0.631700 0.215122i
\(675\) 5.33534 4.31357i 0.205357 0.166029i
\(676\) 5.30429 2.68702i 0.204011 0.103347i
\(677\) −13.4176 + 46.4274i −0.515681 + 1.78435i 0.0984440 + 0.995143i \(0.468613\pi\)
−0.614125 + 0.789209i \(0.710491\pi\)
\(678\) −8.00798 4.29545i −0.307545 0.164966i
\(679\) 9.10285 16.0551i 0.349335 0.616137i
\(680\) 1.64318 + 1.84805i 0.0630132 + 0.0708693i
\(681\) 2.47395 9.37934i 0.0948019 0.359417i
\(682\) 0.883074 + 37.6593i 0.0338147 + 1.44205i
\(683\) −5.86440 10.3433i −0.224395 0.395775i 0.734902 0.678173i \(-0.237228\pi\)
−0.959297 + 0.282399i \(0.908870\pi\)
\(684\) 2.76870 8.13024i 0.105864 0.310867i
\(685\) 24.8590 4.11671i 0.949813 0.157291i
\(686\) 12.9577 + 3.09480i 0.494726 + 0.118160i
\(687\) −12.5970 + 9.70515i −0.480604 + 0.370275i
\(688\) −2.00465 1.39978i −0.0764265 0.0533662i
\(689\) 7.47896 15.6642i 0.284926 0.596759i
\(690\) −1.53097 0.0718390i −0.0582831 0.00273487i
\(691\) 4.17420 0.894074i 0.158794 0.0340122i −0.129352 0.991599i \(-0.541290\pi\)
0.288146 + 0.957587i \(0.406961\pi\)
\(692\) 6.11941 + 3.09994i 0.232625 + 0.117842i
\(693\) 21.2071 22.7537i 0.805591 0.864342i
\(694\) 2.73615 + 3.55143i 0.103863 + 0.134810i
\(695\) −20.7736 + 20.2922i −0.787986 + 0.769725i
\(696\) −6.34917 + 4.65859i −0.240665 + 0.176583i
\(697\) −10.5887 2.79292i −0.401074 0.105789i
\(698\) −5.04823 1.08128i −0.191078 0.0409272i
\(699\) −4.91338 3.97243i −0.185841 0.150251i
\(700\) 2.83168 + 4.48989i 0.107028 + 0.169702i
\(701\) −12.5418 + 0.883573i −0.473697 + 0.0333721i −0.305115 0.952316i \(-0.598695\pi\)
−0.168582 + 0.985688i \(0.553919\pi\)
\(702\) −9.96279 + 3.92295i −0.376021 + 0.148062i
\(703\) 3.09571 + 2.05539i 0.116757 + 0.0775205i
\(704\) 3.43782 2.16816i 0.129568 0.0817157i
\(705\) 9.38306 5.61465i 0.353387 0.211460i
\(706\) −26.3849 + 12.5976i −0.993008 + 0.474117i
\(707\) 5.57924 + 1.61241i 0.209829 + 0.0606409i
\(708\) 0.139787 5.96130i 0.00525350 0.224039i
\(709\) −6.44354 + 3.45629i −0.241992 + 0.129804i −0.589208 0.807982i \(-0.700560\pi\)
0.347216 + 0.937785i \(0.387127\pi\)
\(710\) −5.85174 27.3202i −0.219612 1.02531i
\(711\) −8.17431 22.2780i −0.306561 0.835490i
\(712\) −15.7193 1.85116i −0.589105 0.0693750i
\(713\) −1.97288 + 10.3951i −0.0738849 + 0.389301i
\(714\) 3.08468 + 0.585436i 0.115441 + 0.0219094i
\(715\) 13.6988 14.0238i 0.512308 0.524462i
\(716\) −2.69591 3.17908i −0.100751 0.118808i
\(717\) 0.213040 4.54013i 0.00795614 0.169554i
\(718\) −8.64720 + 2.94475i −0.322710 + 0.109897i
\(719\) −10.2672 + 16.2796i −0.382903 + 0.607128i −0.980933 0.194346i \(-0.937742\pi\)
0.598030 + 0.801474i \(0.295950\pi\)
\(720\) 2.10620 3.92657i 0.0784935 0.146335i
\(721\) 8.27733 + 1.37075i 0.308264 + 0.0510493i
\(722\) −6.21719 2.61804i −0.231380 0.0974334i
\(723\) −0.444670 6.31182i −0.0165375 0.234739i
\(724\) 2.32527 + 12.2519i 0.0864179 + 0.455338i
\(725\) 18.1292i 0.673301i
\(726\) 4.00870 0.760806i 0.148777 0.0282361i
\(727\) 22.7499 34.2646i 0.843747 1.27080i −0.116932 0.993140i \(-0.537306\pi\)
0.960679 0.277662i \(-0.0895597\pi\)
\(728\) −2.11281 8.01018i −0.0783060 0.296877i
\(729\) 1.73540 0.501534i 0.0642741 0.0185753i
\(730\) 1.02657 0.912770i 0.0379950 0.0337831i
\(731\) −1.36365 + 3.03721i −0.0504363 + 0.112335i
\(732\) 3.37725 2.24232i 0.124827 0.0828786i
\(733\) −16.2392 + 23.2564i −0.599810 + 0.858996i −0.998306 0.0581734i \(-0.981472\pi\)
0.398497 + 0.917170i \(0.369532\pi\)
\(734\) 3.30892 + 2.80602i 0.122134 + 0.103572i
\(735\) −3.43938 1.26199i −0.126863 0.0465491i
\(736\) 1.07175 0.393250i 0.0395052 0.0144954i
\(737\) −43.0927 + 36.5433i −1.58734 + 1.34609i
\(738\) 1.84769 + 19.6448i 0.0680144 + 0.723136i
\(739\) 18.7013 22.0530i 0.687939 0.811232i −0.301913 0.953335i \(-0.597625\pi\)
0.989852 + 0.142103i \(0.0453864\pi\)
\(740\) 1.41024 + 1.31439i 0.0518416 + 0.0483179i
\(741\) −2.06247 6.55621i −0.0757668 0.240848i
\(742\) 16.1485 + 12.4413i 0.592829 + 0.456736i
\(743\) 4.44943 + 5.50338i 0.163234 + 0.201899i 0.852674 0.522443i \(-0.174979\pi\)
−0.689440 + 0.724342i \(0.742143\pi\)
\(744\) 5.52398 + 4.05312i 0.202519 + 0.148594i
\(745\) 15.4018 2.18095i 0.564279 0.0799040i
\(746\) 1.21355 5.66572i 0.0444310 0.207437i
\(747\) −7.35881 25.4628i −0.269245 0.931637i
\(748\) −3.77342 4.04861i −0.137970 0.148032i
\(749\) −6.07292 + 36.6717i −0.221900 + 1.33995i
\(750\) 3.87666 + 8.11942i 0.141556 + 0.296479i
\(751\) 13.7913 + 32.7508i 0.503251 + 1.19509i 0.953282 + 0.302082i \(0.0976816\pi\)
−0.450031 + 0.893013i \(0.648587\pi\)
\(752\) −4.81824 + 6.56677i −0.175703 + 0.239465i
\(753\) 13.3523 7.57042i 0.486583 0.275882i
\(754\) 8.49021 26.9888i 0.309195 0.982873i
\(755\) −21.8538 + 15.2598i −0.795340 + 0.555361i
\(756\) −2.05441 12.4057i −0.0747183 0.451191i
\(757\) −21.7317 + 28.2070i −0.789851 + 1.02520i 0.209030 + 0.977909i \(0.432969\pi\)
−0.998881 + 0.0472909i \(0.984941\pi\)
\(758\) −1.17845 10.0069i −0.0428032 0.363468i
\(759\) 3.42916 + 0.0804105i 0.124471 + 0.00291872i
\(760\) 5.37724 + 3.39132i 0.195053 + 0.123016i
\(761\) 11.1836 + 24.9090i 0.405406 + 0.902949i 0.995424 + 0.0955589i \(0.0304638\pi\)
−0.590018 + 0.807390i \(0.700879\pi\)
\(762\) −8.25701 3.70723i −0.299120 0.134299i
\(763\) −14.9671 20.3986i −0.541844 0.738477i
\(764\) −8.70345 + 14.5450i −0.314880 + 0.526219i
\(765\) −5.78772 1.82072i −0.209256 0.0658282i
\(766\) 16.8464 + 6.63346i 0.608687 + 0.239677i
\(767\) 12.2651 + 17.5650i 0.442867 + 0.634236i