Properties

Label 538.2.b.a
Level $538$
Weight $2$
Character orbit 538.b
Analytic conductor $4.296$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(537,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.537");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + \beta_1 q^{3} - q^{4} + ( - \beta_{2} + 1) q^{5} - \beta_{2} q^{6} - 3 \beta_{3} q^{7} - \beta_{3} q^{8} + (\beta_{2} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{2} + \beta_1 q^{3} - q^{4} + ( - \beta_{2} + 1) q^{5} - \beta_{2} q^{6} - 3 \beta_{3} q^{7} - \beta_{3} q^{8} + (\beta_{2} + 2) q^{9} + (\beta_{3} - \beta_1) q^{10} + ( - 2 \beta_{2} - 1) q^{11} - \beta_1 q^{12} + (6 \beta_{2} + 3) q^{13} + 3 q^{14} + ( - \beta_{3} + 2 \beta_1) q^{15} + q^{16} - 3 \beta_{3} q^{17} + (2 \beta_{3} + \beta_1) q^{18} + (4 \beta_{3} + 2 \beta_1) q^{19} + (\beta_{2} - 1) q^{20} + 3 \beta_{2} q^{21} + ( - \beta_{3} - 2 \beta_1) q^{22} + (2 \beta_{2} + 7) q^{23} + \beta_{2} q^{24} + ( - 3 \beta_{2} - 3) q^{25} + (3 \beta_{3} + 6 \beta_1) q^{26} + (\beta_{3} + 4 \beta_1) q^{27} + 3 \beta_{3} q^{28} + ( - 7 \beta_{3} - 3 \beta_1) q^{29} + ( - 2 \beta_{2} + 1) q^{30} + (7 \beta_{3} + 2 \beta_1) q^{31} + \beta_{3} q^{32} + ( - 2 \beta_{3} + \beta_1) q^{33} + 3 q^{34} + ( - 3 \beta_{3} + 3 \beta_1) q^{35} + ( - \beta_{2} - 2) q^{36} + q^{37} + ( - 2 \beta_{2} - 4) q^{38} + (6 \beta_{3} - 3 \beta_1) q^{39} + ( - \beta_{3} + \beta_1) q^{40} + (2 \beta_{2} - 2) q^{41} + 3 \beta_1 q^{42} + ( - 6 \beta_{2} - 1) q^{43} + (2 \beta_{2} + 1) q^{44} + q^{45} + (7 \beta_{3} + 2 \beta_1) q^{46} + ( - 7 \beta_{2} + 1) q^{47} + \beta_1 q^{48} - 2 q^{49} + ( - 3 \beta_{3} - 3 \beta_1) q^{50} + 3 \beta_{2} q^{51} + ( - 6 \beta_{2} - 3) q^{52} + (4 \beta_{2} + 8) q^{53} + ( - 4 \beta_{2} - 1) q^{54} + ( - 3 \beta_{2} + 1) q^{55} - 3 q^{56} + ( - 2 \beta_{2} - 2) q^{57} + (3 \beta_{2} + 7) q^{58} + (3 \beta_{3} + 3 \beta_1) q^{59} + (\beta_{3} - 2 \beta_1) q^{60} - q^{61} + ( - 2 \beta_{2} - 7) q^{62} + ( - 6 \beta_{3} - 3 \beta_1) q^{63} - q^{64} + (9 \beta_{2} - 3) q^{65} + ( - \beta_{2} + 2) q^{66} + (6 \beta_{2} + 5) q^{67} + 3 \beta_{3} q^{68} + (2 \beta_{3} + 5 \beta_1) q^{69} + ( - 3 \beta_{2} + 3) q^{70} + ( - 4 \beta_{3} - 12 \beta_1) q^{71} + ( - 2 \beta_{3} - \beta_1) q^{72} - 9 q^{73} + \beta_{3} q^{74} - 3 \beta_{3} q^{75} + ( - 4 \beta_{3} - 2 \beta_1) q^{76} + (3 \beta_{3} + 6 \beta_1) q^{77} + (3 \beta_{2} - 6) q^{78} + ( - 3 \beta_{2} - 9) q^{79} + ( - \beta_{2} + 1) q^{80} + (6 \beta_{2} + 2) q^{81} + ( - 2 \beta_{3} + 2 \beta_1) q^{82} - 6 \beta_1 q^{83} - 3 \beta_{2} q^{84} + ( - 3 \beta_{3} + 3 \beta_1) q^{85} + ( - \beta_{3} - 6 \beta_1) q^{86} + (4 \beta_{2} + 3) q^{87} + (\beta_{3} + 2 \beta_1) q^{88} + (5 \beta_{2} + 7) q^{89} + \beta_{3} q^{90} + ( - 9 \beta_{3} - 18 \beta_1) q^{91} + ( - 2 \beta_{2} - 7) q^{92} + ( - 5 \beta_{2} - 2) q^{93} + (\beta_{3} - 7 \beta_1) q^{94} + 2 \beta_{3} q^{95} - \beta_{2} q^{96} + ( - 12 \beta_{2} - 8) q^{97} - 2 \beta_{3} q^{98} + ( - 3 \beta_{2} - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 6 q^{5} + 2 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 6 q^{5} + 2 q^{6} + 6 q^{9} + 12 q^{14} + 4 q^{16} - 6 q^{20} - 6 q^{21} + 24 q^{23} - 2 q^{24} - 6 q^{25} + 8 q^{30} + 12 q^{34} - 6 q^{36} + 4 q^{37} - 12 q^{38} - 12 q^{41} + 8 q^{43} + 4 q^{45} + 18 q^{47} - 8 q^{49} - 6 q^{51} + 24 q^{53} + 4 q^{54} + 10 q^{55} - 12 q^{56} - 4 q^{57} + 22 q^{58} - 4 q^{61} - 24 q^{62} - 4 q^{64} - 30 q^{65} + 10 q^{66} + 8 q^{67} + 18 q^{70} - 36 q^{73} - 30 q^{78} - 30 q^{79} + 6 q^{80} - 4 q^{81} + 6 q^{84} + 4 q^{87} + 18 q^{89} - 24 q^{92} + 2 q^{93} + 2 q^{96} - 8 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
537.1
0.618034i
1.61803i
1.61803i
0.618034i
1.00000i 0.618034i −1.00000 0.381966 −0.618034 3.00000i 1.00000i 2.61803 0.381966i
537.2 1.00000i 1.61803i −1.00000 2.61803 1.61803 3.00000i 1.00000i 0.381966 2.61803i
537.3 1.00000i 1.61803i −1.00000 2.61803 1.61803 3.00000i 1.00000i 0.381966 2.61803i
537.4 1.00000i 0.618034i −1.00000 0.381966 −0.618034 3.00000i 1.00000i 2.61803 0.381966i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
269.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 538.2.b.a 4
269.b even 2 1 inner 538.2.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
538.2.b.a 4 1.a even 1 1 trivial
538.2.b.a 4 269.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 3T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(538, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} - 3 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 45)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 28T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T^{2} - 12 T + 31)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 83T^{2} + 361 \) Copy content Toggle raw display
$31$ \( T^{4} + 82T^{2} + 961 \) Copy content Toggle raw display
$37$ \( (T - 1)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 6 T + 4)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 4 T - 41)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 9 T - 41)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 12 T + 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 27T^{2} + 81 \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T - 41)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 368 T^{2} + 30976 \) Copy content Toggle raw display
$73$ \( (T + 9)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 15 T + 45)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 108T^{2} + 1296 \) Copy content Toggle raw display
$89$ \( (T^{2} - 9 T - 11)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4 T - 176)^{2} \) Copy content Toggle raw display
show more
show less