Properties

Label 538.2.a.e.1.7
Level $538$
Weight $2$
Character 538.1
Self dual yes
Analytic conductor $4.296$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.59223\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.97499 q^{3} +1.00000 q^{4} +0.0316474 q^{5} +2.97499 q^{6} +1.08414 q^{7} +1.00000 q^{8} +5.85056 q^{9} +0.0316474 q^{10} -1.58058 q^{11} +2.97499 q^{12} -6.36076 q^{13} +1.08414 q^{14} +0.0941507 q^{15} +1.00000 q^{16} -5.53705 q^{17} +5.85056 q^{18} -3.17629 q^{19} +0.0316474 q^{20} +3.22531 q^{21} -1.58058 q^{22} -3.94998 q^{23} +2.97499 q^{24} -4.99900 q^{25} -6.36076 q^{26} +8.48039 q^{27} +1.08414 q^{28} +9.05434 q^{29} +0.0941507 q^{30} +6.51774 q^{31} +1.00000 q^{32} -4.70222 q^{33} -5.53705 q^{34} +0.0343103 q^{35} +5.85056 q^{36} +1.75269 q^{37} -3.17629 q^{38} -18.9232 q^{39} +0.0316474 q^{40} +1.61479 q^{41} +3.22531 q^{42} +11.5998 q^{43} -1.58058 q^{44} +0.185155 q^{45} -3.94998 q^{46} +7.88668 q^{47} +2.97499 q^{48} -5.82464 q^{49} -4.99900 q^{50} -16.4727 q^{51} -6.36076 q^{52} +9.57824 q^{53} +8.48039 q^{54} -0.0500214 q^{55} +1.08414 q^{56} -9.44943 q^{57} +9.05434 q^{58} -12.9416 q^{59} +0.0941507 q^{60} -6.40058 q^{61} +6.51774 q^{62} +6.34284 q^{63} +1.00000 q^{64} -0.201302 q^{65} -4.70222 q^{66} -3.38476 q^{67} -5.53705 q^{68} -11.7511 q^{69} +0.0343103 q^{70} +7.13600 q^{71} +5.85056 q^{72} -3.40593 q^{73} +1.75269 q^{74} -14.8720 q^{75} -3.17629 q^{76} -1.71358 q^{77} -18.9232 q^{78} +8.96616 q^{79} +0.0316474 q^{80} +7.67738 q^{81} +1.61479 q^{82} +7.05816 q^{83} +3.22531 q^{84} -0.175233 q^{85} +11.5998 q^{86} +26.9366 q^{87} -1.58058 q^{88} +11.3958 q^{89} +0.185155 q^{90} -6.89596 q^{91} -3.94998 q^{92} +19.3902 q^{93} +7.88668 q^{94} -0.100521 q^{95} +2.97499 q^{96} -7.66892 q^{97} -5.82464 q^{98} -9.24730 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 7 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 12 q^{9} + 7 q^{10} - 3 q^{11} + q^{12} - 9 q^{13} + 6 q^{14} + 8 q^{15} + 7 q^{16} + 8 q^{17} + 12 q^{18} - 11 q^{19} + 7 q^{20}+ \cdots - 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.97499 1.71761 0.858805 0.512302i \(-0.171207\pi\)
0.858805 + 0.512302i \(0.171207\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.0316474 0.0141532 0.00707658 0.999975i \(-0.497747\pi\)
0.00707658 + 0.999975i \(0.497747\pi\)
\(6\) 2.97499 1.21453
\(7\) 1.08414 0.409767 0.204884 0.978786i \(-0.434318\pi\)
0.204884 + 0.978786i \(0.434318\pi\)
\(8\) 1.00000 0.353553
\(9\) 5.85056 1.95019
\(10\) 0.0316474 0.0100078
\(11\) −1.58058 −0.476564 −0.238282 0.971196i \(-0.576584\pi\)
−0.238282 + 0.971196i \(0.576584\pi\)
\(12\) 2.97499 0.858805
\(13\) −6.36076 −1.76416 −0.882078 0.471103i \(-0.843856\pi\)
−0.882078 + 0.471103i \(0.843856\pi\)
\(14\) 1.08414 0.289749
\(15\) 0.0941507 0.0243096
\(16\) 1.00000 0.250000
\(17\) −5.53705 −1.34293 −0.671466 0.741036i \(-0.734335\pi\)
−0.671466 + 0.741036i \(0.734335\pi\)
\(18\) 5.85056 1.37899
\(19\) −3.17629 −0.728691 −0.364346 0.931264i \(-0.618707\pi\)
−0.364346 + 0.931264i \(0.618707\pi\)
\(20\) 0.0316474 0.00707658
\(21\) 3.22531 0.703820
\(22\) −1.58058 −0.336981
\(23\) −3.94998 −0.823627 −0.411814 0.911268i \(-0.635105\pi\)
−0.411814 + 0.911268i \(0.635105\pi\)
\(24\) 2.97499 0.607267
\(25\) −4.99900 −0.999800
\(26\) −6.36076 −1.24745
\(27\) 8.48039 1.63205
\(28\) 1.08414 0.204884
\(29\) 9.05434 1.68135 0.840674 0.541542i \(-0.182159\pi\)
0.840674 + 0.541542i \(0.182159\pi\)
\(30\) 0.0941507 0.0171895
\(31\) 6.51774 1.17062 0.585310 0.810809i \(-0.300973\pi\)
0.585310 + 0.810809i \(0.300973\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.70222 −0.818551
\(34\) −5.53705 −0.949596
\(35\) 0.0343103 0.00579950
\(36\) 5.85056 0.975094
\(37\) 1.75269 0.288141 0.144070 0.989567i \(-0.453981\pi\)
0.144070 + 0.989567i \(0.453981\pi\)
\(38\) −3.17629 −0.515262
\(39\) −18.9232 −3.03013
\(40\) 0.0316474 0.00500390
\(41\) 1.61479 0.252188 0.126094 0.992018i \(-0.459756\pi\)
0.126094 + 0.992018i \(0.459756\pi\)
\(42\) 3.22531 0.497676
\(43\) 11.5998 1.76895 0.884476 0.466585i \(-0.154516\pi\)
0.884476 + 0.466585i \(0.154516\pi\)
\(44\) −1.58058 −0.238282
\(45\) 0.185155 0.0276013
\(46\) −3.94998 −0.582393
\(47\) 7.88668 1.15039 0.575196 0.818016i \(-0.304926\pi\)
0.575196 + 0.818016i \(0.304926\pi\)
\(48\) 2.97499 0.429403
\(49\) −5.82464 −0.832091
\(50\) −4.99900 −0.706965
\(51\) −16.4727 −2.30663
\(52\) −6.36076 −0.882078
\(53\) 9.57824 1.31567 0.657836 0.753161i \(-0.271472\pi\)
0.657836 + 0.753161i \(0.271472\pi\)
\(54\) 8.48039 1.15403
\(55\) −0.0500214 −0.00674488
\(56\) 1.08414 0.144875
\(57\) −9.44943 −1.25161
\(58\) 9.05434 1.18889
\(59\) −12.9416 −1.68485 −0.842424 0.538816i \(-0.818872\pi\)
−0.842424 + 0.538816i \(0.818872\pi\)
\(60\) 0.0941507 0.0121548
\(61\) −6.40058 −0.819510 −0.409755 0.912196i \(-0.634386\pi\)
−0.409755 + 0.912196i \(0.634386\pi\)
\(62\) 6.51774 0.827754
\(63\) 6.34284 0.799123
\(64\) 1.00000 0.125000
\(65\) −0.201302 −0.0249684
\(66\) −4.70222 −0.578803
\(67\) −3.38476 −0.413514 −0.206757 0.978392i \(-0.566291\pi\)
−0.206757 + 0.978392i \(0.566291\pi\)
\(68\) −5.53705 −0.671466
\(69\) −11.7511 −1.41467
\(70\) 0.0343103 0.00410086
\(71\) 7.13600 0.846888 0.423444 0.905922i \(-0.360821\pi\)
0.423444 + 0.905922i \(0.360821\pi\)
\(72\) 5.85056 0.689495
\(73\) −3.40593 −0.398634 −0.199317 0.979935i \(-0.563872\pi\)
−0.199317 + 0.979935i \(0.563872\pi\)
\(74\) 1.75269 0.203746
\(75\) −14.8720 −1.71727
\(76\) −3.17629 −0.364346
\(77\) −1.71358 −0.195280
\(78\) −18.9232 −2.14263
\(79\) 8.96616 1.00877 0.504386 0.863478i \(-0.331719\pi\)
0.504386 + 0.863478i \(0.331719\pi\)
\(80\) 0.0316474 0.00353829
\(81\) 7.67738 0.853043
\(82\) 1.61479 0.178324
\(83\) 7.05816 0.774734 0.387367 0.921926i \(-0.373385\pi\)
0.387367 + 0.921926i \(0.373385\pi\)
\(84\) 3.22531 0.351910
\(85\) −0.175233 −0.0190067
\(86\) 11.5998 1.25084
\(87\) 26.9366 2.88790
\(88\) −1.58058 −0.168491
\(89\) 11.3958 1.20795 0.603976 0.797002i \(-0.293582\pi\)
0.603976 + 0.797002i \(0.293582\pi\)
\(90\) 0.185155 0.0195171
\(91\) −6.89596 −0.722893
\(92\) −3.94998 −0.411814
\(93\) 19.3902 2.01067
\(94\) 7.88668 0.813449
\(95\) −0.100521 −0.0103133
\(96\) 2.97499 0.303634
\(97\) −7.66892 −0.778661 −0.389330 0.921098i \(-0.627294\pi\)
−0.389330 + 0.921098i \(0.627294\pi\)
\(98\) −5.82464 −0.588377
\(99\) −9.24730 −0.929388
\(100\) −4.99900 −0.499900
\(101\) −11.1685 −1.11130 −0.555652 0.831415i \(-0.687531\pi\)
−0.555652 + 0.831415i \(0.687531\pi\)
\(102\) −16.4727 −1.63104
\(103\) 1.16117 0.114413 0.0572065 0.998362i \(-0.481781\pi\)
0.0572065 + 0.998362i \(0.481781\pi\)
\(104\) −6.36076 −0.623724
\(105\) 0.102073 0.00996128
\(106\) 9.57824 0.930321
\(107\) 4.01512 0.388157 0.194078 0.980986i \(-0.437828\pi\)
0.194078 + 0.980986i \(0.437828\pi\)
\(108\) 8.48039 0.816026
\(109\) 6.90453 0.661334 0.330667 0.943748i \(-0.392726\pi\)
0.330667 + 0.943748i \(0.392726\pi\)
\(110\) −0.0500214 −0.00476935
\(111\) 5.21423 0.494913
\(112\) 1.08414 0.102442
\(113\) 3.23449 0.304275 0.152138 0.988359i \(-0.451384\pi\)
0.152138 + 0.988359i \(0.451384\pi\)
\(114\) −9.44943 −0.885020
\(115\) −0.125007 −0.0116569
\(116\) 9.05434 0.840674
\(117\) −37.2140 −3.44044
\(118\) −12.9416 −1.19137
\(119\) −6.00295 −0.550289
\(120\) 0.0941507 0.00859475
\(121\) −8.50176 −0.772887
\(122\) −6.40058 −0.579481
\(123\) 4.80398 0.433161
\(124\) 6.51774 0.585310
\(125\) −0.316442 −0.0283035
\(126\) 6.34284 0.565065
\(127\) 2.95984 0.262643 0.131322 0.991340i \(-0.458078\pi\)
0.131322 + 0.991340i \(0.458078\pi\)
\(128\) 1.00000 0.0883883
\(129\) 34.5093 3.03837
\(130\) −0.201302 −0.0176553
\(131\) 1.33676 0.116793 0.0583965 0.998293i \(-0.481401\pi\)
0.0583965 + 0.998293i \(0.481401\pi\)
\(132\) −4.70222 −0.409276
\(133\) −3.44355 −0.298594
\(134\) −3.38476 −0.292399
\(135\) 0.268382 0.0230987
\(136\) −5.53705 −0.474798
\(137\) 7.93270 0.677736 0.338868 0.940834i \(-0.389956\pi\)
0.338868 + 0.940834i \(0.389956\pi\)
\(138\) −11.7511 −1.00032
\(139\) −21.0168 −1.78262 −0.891312 0.453391i \(-0.850214\pi\)
−0.891312 + 0.453391i \(0.850214\pi\)
\(140\) 0.0343103 0.00289975
\(141\) 23.4628 1.97592
\(142\) 7.13600 0.598840
\(143\) 10.0537 0.840733
\(144\) 5.85056 0.487547
\(145\) 0.286546 0.0237964
\(146\) −3.40593 −0.281877
\(147\) −17.3282 −1.42921
\(148\) 1.75269 0.144070
\(149\) −9.83698 −0.805877 −0.402938 0.915227i \(-0.632011\pi\)
−0.402938 + 0.915227i \(0.632011\pi\)
\(150\) −14.8720 −1.21429
\(151\) −19.6011 −1.59511 −0.797557 0.603244i \(-0.793874\pi\)
−0.797557 + 0.603244i \(0.793874\pi\)
\(152\) −3.17629 −0.257631
\(153\) −32.3948 −2.61897
\(154\) −1.71358 −0.138084
\(155\) 0.206270 0.0165680
\(156\) −18.9232 −1.51507
\(157\) 13.1204 1.04712 0.523560 0.851989i \(-0.324604\pi\)
0.523560 + 0.851989i \(0.324604\pi\)
\(158\) 8.96616 0.713309
\(159\) 28.4952 2.25981
\(160\) 0.0316474 0.00250195
\(161\) −4.28234 −0.337495
\(162\) 7.67738 0.603192
\(163\) −8.72367 −0.683290 −0.341645 0.939829i \(-0.610984\pi\)
−0.341645 + 0.939829i \(0.610984\pi\)
\(164\) 1.61479 0.126094
\(165\) −0.148813 −0.0115851
\(166\) 7.05816 0.547819
\(167\) −8.02478 −0.620976 −0.310488 0.950577i \(-0.600492\pi\)
−0.310488 + 0.950577i \(0.600492\pi\)
\(168\) 3.22531 0.248838
\(169\) 27.4592 2.11225
\(170\) −0.175233 −0.0134398
\(171\) −18.5831 −1.42108
\(172\) 11.5998 0.884476
\(173\) −10.2912 −0.782428 −0.391214 0.920300i \(-0.627945\pi\)
−0.391214 + 0.920300i \(0.627945\pi\)
\(174\) 26.9366 2.04205
\(175\) −5.41962 −0.409685
\(176\) −1.58058 −0.119141
\(177\) −38.5010 −2.89391
\(178\) 11.3958 0.854151
\(179\) 2.95307 0.220723 0.110362 0.993892i \(-0.464799\pi\)
0.110362 + 0.993892i \(0.464799\pi\)
\(180\) 0.185155 0.0138006
\(181\) −17.1817 −1.27711 −0.638555 0.769577i \(-0.720467\pi\)
−0.638555 + 0.769577i \(0.720467\pi\)
\(182\) −6.89596 −0.511163
\(183\) −19.0417 −1.40760
\(184\) −3.94998 −0.291196
\(185\) 0.0554681 0.00407810
\(186\) 19.3902 1.42176
\(187\) 8.75176 0.639992
\(188\) 7.88668 0.575196
\(189\) 9.19395 0.668761
\(190\) −0.100521 −0.00729259
\(191\) 5.35275 0.387311 0.193656 0.981070i \(-0.437966\pi\)
0.193656 + 0.981070i \(0.437966\pi\)
\(192\) 2.97499 0.214701
\(193\) 6.95289 0.500480 0.250240 0.968184i \(-0.419491\pi\)
0.250240 + 0.968184i \(0.419491\pi\)
\(194\) −7.66892 −0.550596
\(195\) −0.598870 −0.0428860
\(196\) −5.82464 −0.416045
\(197\) 20.8427 1.48498 0.742489 0.669859i \(-0.233645\pi\)
0.742489 + 0.669859i \(0.233645\pi\)
\(198\) −9.24730 −0.657177
\(199\) 20.2689 1.43682 0.718412 0.695618i \(-0.244869\pi\)
0.718412 + 0.695618i \(0.244869\pi\)
\(200\) −4.99900 −0.353483
\(201\) −10.0696 −0.710256
\(202\) −11.1685 −0.785811
\(203\) 9.81619 0.688961
\(204\) −16.4727 −1.15332
\(205\) 0.0511039 0.00356925
\(206\) 1.16117 0.0809023
\(207\) −23.1096 −1.60623
\(208\) −6.36076 −0.441039
\(209\) 5.02039 0.347268
\(210\) 0.102073 0.00704369
\(211\) −23.8419 −1.64134 −0.820672 0.571400i \(-0.806400\pi\)
−0.820672 + 0.571400i \(0.806400\pi\)
\(212\) 9.57824 0.657836
\(213\) 21.2295 1.45462
\(214\) 4.01512 0.274468
\(215\) 0.367104 0.0250363
\(216\) 8.48039 0.577017
\(217\) 7.06615 0.479682
\(218\) 6.90453 0.467634
\(219\) −10.1326 −0.684699
\(220\) −0.0500214 −0.00337244
\(221\) 35.2198 2.36914
\(222\) 5.21423 0.349957
\(223\) −3.53518 −0.236733 −0.118367 0.992970i \(-0.537766\pi\)
−0.118367 + 0.992970i \(0.537766\pi\)
\(224\) 1.08414 0.0724373
\(225\) −29.2469 −1.94980
\(226\) 3.23449 0.215155
\(227\) 6.35473 0.421779 0.210889 0.977510i \(-0.432364\pi\)
0.210889 + 0.977510i \(0.432364\pi\)
\(228\) −9.44943 −0.625804
\(229\) 25.6330 1.69388 0.846938 0.531691i \(-0.178443\pi\)
0.846938 + 0.531691i \(0.178443\pi\)
\(230\) −0.125007 −0.00824269
\(231\) −5.09787 −0.335415
\(232\) 9.05434 0.594446
\(233\) −9.97660 −0.653589 −0.326794 0.945095i \(-0.605968\pi\)
−0.326794 + 0.945095i \(0.605968\pi\)
\(234\) −37.2140 −2.43276
\(235\) 0.249593 0.0162817
\(236\) −12.9416 −0.842424
\(237\) 26.6742 1.73268
\(238\) −6.00295 −0.389113
\(239\) −21.0659 −1.36264 −0.681319 0.731986i \(-0.738593\pi\)
−0.681319 + 0.731986i \(0.738593\pi\)
\(240\) 0.0941507 0.00607740
\(241\) −7.70533 −0.496344 −0.248172 0.968716i \(-0.579830\pi\)
−0.248172 + 0.968716i \(0.579830\pi\)
\(242\) −8.50176 −0.546514
\(243\) −2.60103 −0.166856
\(244\) −6.40058 −0.409755
\(245\) −0.184335 −0.0117767
\(246\) 4.80398 0.306291
\(247\) 20.2036 1.28553
\(248\) 6.51774 0.413877
\(249\) 20.9979 1.33069
\(250\) −0.316442 −0.0200136
\(251\) 1.90336 0.120139 0.0600696 0.998194i \(-0.480868\pi\)
0.0600696 + 0.998194i \(0.480868\pi\)
\(252\) 6.34284 0.399561
\(253\) 6.24327 0.392511
\(254\) 2.95984 0.185717
\(255\) −0.521317 −0.0326461
\(256\) 1.00000 0.0625000
\(257\) 23.5548 1.46931 0.734655 0.678441i \(-0.237344\pi\)
0.734655 + 0.678441i \(0.237344\pi\)
\(258\) 34.5093 2.14845
\(259\) 1.90016 0.118071
\(260\) −0.201302 −0.0124842
\(261\) 52.9729 3.27894
\(262\) 1.33676 0.0825851
\(263\) −19.8442 −1.22364 −0.611822 0.790996i \(-0.709563\pi\)
−0.611822 + 0.790996i \(0.709563\pi\)
\(264\) −4.70222 −0.289401
\(265\) 0.303127 0.0186209
\(266\) −3.44355 −0.211138
\(267\) 33.9024 2.07479
\(268\) −3.38476 −0.206757
\(269\) −1.00000 −0.0609711
\(270\) 0.268382 0.0163332
\(271\) −13.4661 −0.818006 −0.409003 0.912533i \(-0.634124\pi\)
−0.409003 + 0.912533i \(0.634124\pi\)
\(272\) −5.53705 −0.335733
\(273\) −20.5154 −1.24165
\(274\) 7.93270 0.479232
\(275\) 7.90133 0.476468
\(276\) −11.7511 −0.707336
\(277\) 0.456454 0.0274257 0.0137128 0.999906i \(-0.495635\pi\)
0.0137128 + 0.999906i \(0.495635\pi\)
\(278\) −21.0168 −1.26051
\(279\) 38.1324 2.28293
\(280\) 0.0343103 0.00205043
\(281\) 20.7243 1.23631 0.618153 0.786058i \(-0.287881\pi\)
0.618153 + 0.786058i \(0.287881\pi\)
\(282\) 23.4628 1.39719
\(283\) 2.38541 0.141798 0.0708989 0.997484i \(-0.477413\pi\)
0.0708989 + 0.997484i \(0.477413\pi\)
\(284\) 7.13600 0.423444
\(285\) −0.299050 −0.0177142
\(286\) 10.0537 0.594488
\(287\) 1.75066 0.103338
\(288\) 5.85056 0.344748
\(289\) 13.6589 0.803465
\(290\) 0.286546 0.0168266
\(291\) −22.8149 −1.33744
\(292\) −3.40593 −0.199317
\(293\) 26.9825 1.57633 0.788167 0.615461i \(-0.211030\pi\)
0.788167 + 0.615461i \(0.211030\pi\)
\(294\) −17.3282 −1.01060
\(295\) −0.409567 −0.0238459
\(296\) 1.75269 0.101873
\(297\) −13.4040 −0.777777
\(298\) −9.83698 −0.569841
\(299\) 25.1249 1.45301
\(300\) −14.8720 −0.858633
\(301\) 12.5758 0.724859
\(302\) −19.6011 −1.12792
\(303\) −33.2261 −1.90879
\(304\) −3.17629 −0.182173
\(305\) −0.202562 −0.0115987
\(306\) −32.3948 −1.85189
\(307\) −23.7098 −1.35319 −0.676594 0.736356i \(-0.736545\pi\)
−0.676594 + 0.736356i \(0.736545\pi\)
\(308\) −1.71358 −0.0976401
\(309\) 3.45446 0.196517
\(310\) 0.206270 0.0117153
\(311\) −11.2199 −0.636221 −0.318110 0.948054i \(-0.603048\pi\)
−0.318110 + 0.948054i \(0.603048\pi\)
\(312\) −18.9232 −1.07131
\(313\) 21.7128 1.22728 0.613639 0.789587i \(-0.289705\pi\)
0.613639 + 0.789587i \(0.289705\pi\)
\(314\) 13.1204 0.740425
\(315\) 0.200734 0.0113101
\(316\) 8.96616 0.504386
\(317\) −2.48557 −0.139604 −0.0698019 0.997561i \(-0.522237\pi\)
−0.0698019 + 0.997561i \(0.522237\pi\)
\(318\) 28.4952 1.59793
\(319\) −14.3111 −0.801269
\(320\) 0.0316474 0.00176914
\(321\) 11.9450 0.666702
\(322\) −4.28234 −0.238645
\(323\) 17.5873 0.978582
\(324\) 7.67738 0.426521
\(325\) 31.7974 1.76380
\(326\) −8.72367 −0.483159
\(327\) 20.5409 1.13591
\(328\) 1.61479 0.0891619
\(329\) 8.55028 0.471392
\(330\) −0.148813 −0.00819189
\(331\) −4.81515 −0.264665 −0.132332 0.991205i \(-0.542247\pi\)
−0.132332 + 0.991205i \(0.542247\pi\)
\(332\) 7.05816 0.387367
\(333\) 10.2542 0.561928
\(334\) −8.02478 −0.439096
\(335\) −0.107119 −0.00585253
\(336\) 3.22531 0.175955
\(337\) −15.4903 −0.843808 −0.421904 0.906640i \(-0.638638\pi\)
−0.421904 + 0.906640i \(0.638638\pi\)
\(338\) 27.4592 1.49359
\(339\) 9.62257 0.522626
\(340\) −0.175233 −0.00950336
\(341\) −10.3018 −0.557875
\(342\) −18.5831 −1.00486
\(343\) −13.9037 −0.750731
\(344\) 11.5998 0.625419
\(345\) −0.371893 −0.0200221
\(346\) −10.2912 −0.553260
\(347\) −17.8412 −0.957767 −0.478884 0.877878i \(-0.658958\pi\)
−0.478884 + 0.877878i \(0.658958\pi\)
\(348\) 26.9366 1.44395
\(349\) 2.40201 0.128577 0.0642885 0.997931i \(-0.479522\pi\)
0.0642885 + 0.997931i \(0.479522\pi\)
\(350\) −5.41962 −0.289691
\(351\) −53.9417 −2.87919
\(352\) −1.58058 −0.0842454
\(353\) 33.5276 1.78449 0.892246 0.451549i \(-0.149128\pi\)
0.892246 + 0.451549i \(0.149128\pi\)
\(354\) −38.5010 −2.04630
\(355\) 0.225836 0.0119861
\(356\) 11.3958 0.603976
\(357\) −17.8587 −0.945183
\(358\) 2.95307 0.156075
\(359\) 18.7359 0.988845 0.494422 0.869222i \(-0.335380\pi\)
0.494422 + 0.869222i \(0.335380\pi\)
\(360\) 0.185155 0.00975853
\(361\) −8.91118 −0.469009
\(362\) −17.1817 −0.903053
\(363\) −25.2926 −1.32752
\(364\) −6.89596 −0.361447
\(365\) −0.107789 −0.00564193
\(366\) −19.0417 −0.995323
\(367\) −23.7327 −1.23884 −0.619419 0.785060i \(-0.712632\pi\)
−0.619419 + 0.785060i \(0.712632\pi\)
\(368\) −3.94998 −0.205907
\(369\) 9.44743 0.491814
\(370\) 0.0554681 0.00288365
\(371\) 10.3842 0.539119
\(372\) 19.3902 1.00534
\(373\) −36.8288 −1.90692 −0.953462 0.301513i \(-0.902508\pi\)
−0.953462 + 0.301513i \(0.902508\pi\)
\(374\) 8.75176 0.452543
\(375\) −0.941413 −0.0486144
\(376\) 7.88668 0.406725
\(377\) −57.5924 −2.96616
\(378\) 9.19395 0.472886
\(379\) −22.7264 −1.16738 −0.583689 0.811977i \(-0.698391\pi\)
−0.583689 + 0.811977i \(0.698391\pi\)
\(380\) −0.100521 −0.00515664
\(381\) 8.80548 0.451119
\(382\) 5.35275 0.273871
\(383\) 5.87594 0.300246 0.150123 0.988667i \(-0.452033\pi\)
0.150123 + 0.988667i \(0.452033\pi\)
\(384\) 2.97499 0.151817
\(385\) −0.0542303 −0.00276383
\(386\) 6.95289 0.353893
\(387\) 67.8653 3.44979
\(388\) −7.66892 −0.389330
\(389\) 14.9916 0.760103 0.380052 0.924965i \(-0.375906\pi\)
0.380052 + 0.924965i \(0.375906\pi\)
\(390\) −0.598870 −0.0303250
\(391\) 21.8712 1.10608
\(392\) −5.82464 −0.294189
\(393\) 3.97684 0.200605
\(394\) 20.8427 1.05004
\(395\) 0.283756 0.0142773
\(396\) −9.24730 −0.464694
\(397\) −25.2744 −1.26849 −0.634244 0.773133i \(-0.718689\pi\)
−0.634244 + 0.773133i \(0.718689\pi\)
\(398\) 20.2689 1.01599
\(399\) −10.2445 −0.512868
\(400\) −4.99900 −0.249950
\(401\) 11.8421 0.591366 0.295683 0.955286i \(-0.404453\pi\)
0.295683 + 0.955286i \(0.404453\pi\)
\(402\) −10.0696 −0.502227
\(403\) −41.4578 −2.06516
\(404\) −11.1685 −0.555652
\(405\) 0.242969 0.0120732
\(406\) 9.81619 0.487169
\(407\) −2.77027 −0.137317
\(408\) −16.4727 −0.815518
\(409\) 25.6036 1.26602 0.633009 0.774145i \(-0.281820\pi\)
0.633009 + 0.774145i \(0.281820\pi\)
\(410\) 0.0511039 0.00252384
\(411\) 23.5997 1.16409
\(412\) 1.16117 0.0572065
\(413\) −14.0305 −0.690395
\(414\) −23.1096 −1.13577
\(415\) 0.223372 0.0109649
\(416\) −6.36076 −0.311862
\(417\) −62.5248 −3.06185
\(418\) 5.02039 0.245555
\(419\) 16.3173 0.797153 0.398576 0.917135i \(-0.369504\pi\)
0.398576 + 0.917135i \(0.369504\pi\)
\(420\) 0.102073 0.00498064
\(421\) −16.7172 −0.814749 −0.407374 0.913261i \(-0.633556\pi\)
−0.407374 + 0.913261i \(0.633556\pi\)
\(422\) −23.8419 −1.16060
\(423\) 46.1415 2.24348
\(424\) 9.57824 0.465161
\(425\) 27.6797 1.34266
\(426\) 21.2295 1.02857
\(427\) −6.93914 −0.335808
\(428\) 4.01512 0.194078
\(429\) 29.9097 1.44405
\(430\) 0.367104 0.0177033
\(431\) −23.6411 −1.13875 −0.569376 0.822077i \(-0.692815\pi\)
−0.569376 + 0.822077i \(0.692815\pi\)
\(432\) 8.48039 0.408013
\(433\) −13.5895 −0.653070 −0.326535 0.945185i \(-0.605881\pi\)
−0.326535 + 0.945185i \(0.605881\pi\)
\(434\) 7.06615 0.339186
\(435\) 0.852472 0.0408729
\(436\) 6.90453 0.330667
\(437\) 12.5463 0.600170
\(438\) −10.1326 −0.484155
\(439\) 35.3166 1.68557 0.842785 0.538251i \(-0.180915\pi\)
0.842785 + 0.538251i \(0.180915\pi\)
\(440\) −0.0500214 −0.00238468
\(441\) −34.0774 −1.62273
\(442\) 35.2198 1.67524
\(443\) 27.3334 1.29865 0.649324 0.760512i \(-0.275052\pi\)
0.649324 + 0.760512i \(0.275052\pi\)
\(444\) 5.21423 0.247457
\(445\) 0.360647 0.0170963
\(446\) −3.53518 −0.167396
\(447\) −29.2649 −1.38418
\(448\) 1.08414 0.0512209
\(449\) −3.54747 −0.167415 −0.0837077 0.996490i \(-0.526676\pi\)
−0.0837077 + 0.996490i \(0.526676\pi\)
\(450\) −29.2469 −1.37871
\(451\) −2.55231 −0.120184
\(452\) 3.23449 0.152138
\(453\) −58.3130 −2.73978
\(454\) 6.35473 0.298242
\(455\) −0.218239 −0.0102312
\(456\) −9.44943 −0.442510
\(457\) 25.2637 1.18178 0.590892 0.806750i \(-0.298776\pi\)
0.590892 + 0.806750i \(0.298776\pi\)
\(458\) 25.6330 1.19775
\(459\) −46.9563 −2.19173
\(460\) −0.125007 −0.00582846
\(461\) 13.5815 0.632553 0.316276 0.948667i \(-0.397567\pi\)
0.316276 + 0.948667i \(0.397567\pi\)
\(462\) −5.09787 −0.237174
\(463\) 20.3739 0.946854 0.473427 0.880833i \(-0.343017\pi\)
0.473427 + 0.880833i \(0.343017\pi\)
\(464\) 9.05434 0.420337
\(465\) 0.613650 0.0284573
\(466\) −9.97660 −0.462157
\(467\) 15.1522 0.701160 0.350580 0.936533i \(-0.385984\pi\)
0.350580 + 0.936533i \(0.385984\pi\)
\(468\) −37.2140 −1.72022
\(469\) −3.66956 −0.169444
\(470\) 0.249593 0.0115129
\(471\) 39.0330 1.79854
\(472\) −12.9416 −0.595684
\(473\) −18.3344 −0.843019
\(474\) 26.6742 1.22519
\(475\) 15.8783 0.728545
\(476\) −6.00295 −0.275145
\(477\) 56.0381 2.56581
\(478\) −21.0659 −0.963531
\(479\) −33.3413 −1.52340 −0.761702 0.647928i \(-0.775636\pi\)
−0.761702 + 0.647928i \(0.775636\pi\)
\(480\) 0.0941507 0.00429737
\(481\) −11.1484 −0.508325
\(482\) −7.70533 −0.350968
\(483\) −12.7399 −0.579686
\(484\) −8.50176 −0.386444
\(485\) −0.242701 −0.0110205
\(486\) −2.60103 −0.117985
\(487\) 35.0213 1.58697 0.793484 0.608591i \(-0.208265\pi\)
0.793484 + 0.608591i \(0.208265\pi\)
\(488\) −6.40058 −0.289741
\(489\) −25.9528 −1.17363
\(490\) −0.184335 −0.00832739
\(491\) −0.715554 −0.0322925 −0.0161462 0.999870i \(-0.505140\pi\)
−0.0161462 + 0.999870i \(0.505140\pi\)
\(492\) 4.80398 0.216580
\(493\) −50.1343 −2.25793
\(494\) 20.2036 0.909004
\(495\) −0.292653 −0.0131538
\(496\) 6.51774 0.292655
\(497\) 7.73644 0.347027
\(498\) 20.9979 0.940941
\(499\) 26.1873 1.17230 0.586152 0.810201i \(-0.300642\pi\)
0.586152 + 0.810201i \(0.300642\pi\)
\(500\) −0.316442 −0.0141517
\(501\) −23.8736 −1.06660
\(502\) 1.90336 0.0849513
\(503\) 35.1795 1.56857 0.784287 0.620398i \(-0.213029\pi\)
0.784287 + 0.620398i \(0.213029\pi\)
\(504\) 6.34284 0.282533
\(505\) −0.353453 −0.0157285
\(506\) 6.24327 0.277547
\(507\) 81.6909 3.62802
\(508\) 2.95984 0.131322
\(509\) −29.4653 −1.30603 −0.653014 0.757346i \(-0.726496\pi\)
−0.653014 + 0.757346i \(0.726496\pi\)
\(510\) −0.521317 −0.0230843
\(511\) −3.69252 −0.163347
\(512\) 1.00000 0.0441942
\(513\) −26.9362 −1.18926
\(514\) 23.5548 1.03896
\(515\) 0.0367479 0.00161931
\(516\) 34.5093 1.51919
\(517\) −12.4656 −0.548235
\(518\) 1.90016 0.0834885
\(519\) −30.6163 −1.34391
\(520\) −0.201302 −0.00882766
\(521\) −42.1517 −1.84670 −0.923350 0.383960i \(-0.874560\pi\)
−0.923350 + 0.383960i \(0.874560\pi\)
\(522\) 52.9729 2.31856
\(523\) −37.6271 −1.64532 −0.822660 0.568534i \(-0.807511\pi\)
−0.822660 + 0.568534i \(0.807511\pi\)
\(524\) 1.33676 0.0583965
\(525\) −16.1233 −0.703679
\(526\) −19.8442 −0.865247
\(527\) −36.0890 −1.57206
\(528\) −4.70222 −0.204638
\(529\) −7.39767 −0.321638
\(530\) 0.303127 0.0131670
\(531\) −75.7154 −3.28577
\(532\) −3.44355 −0.149297
\(533\) −10.2713 −0.444899
\(534\) 33.9024 1.46710
\(535\) 0.127068 0.00549364
\(536\) −3.38476 −0.146199
\(537\) 8.78536 0.379116
\(538\) −1.00000 −0.0431131
\(539\) 9.20632 0.396544
\(540\) 0.268382 0.0115493
\(541\) 14.5345 0.624887 0.312443 0.949936i \(-0.398853\pi\)
0.312443 + 0.949936i \(0.398853\pi\)
\(542\) −13.4661 −0.578418
\(543\) −51.1155 −2.19358
\(544\) −5.53705 −0.237399
\(545\) 0.218510 0.00935996
\(546\) −20.5154 −0.877979
\(547\) −26.6331 −1.13875 −0.569374 0.822078i \(-0.692814\pi\)
−0.569374 + 0.822078i \(0.692814\pi\)
\(548\) 7.93270 0.338868
\(549\) −37.4470 −1.59820
\(550\) 7.90133 0.336914
\(551\) −28.7592 −1.22518
\(552\) −11.7511 −0.500162
\(553\) 9.72059 0.413362
\(554\) 0.456454 0.0193929
\(555\) 0.165017 0.00700458
\(556\) −21.0168 −0.891312
\(557\) 1.27322 0.0539480 0.0269740 0.999636i \(-0.491413\pi\)
0.0269740 + 0.999636i \(0.491413\pi\)
\(558\) 38.1324 1.61427
\(559\) −73.7835 −3.12071
\(560\) 0.0343103 0.00144987
\(561\) 26.0364 1.09926
\(562\) 20.7243 0.874200
\(563\) −33.8825 −1.42798 −0.713989 0.700157i \(-0.753113\pi\)
−0.713989 + 0.700157i \(0.753113\pi\)
\(564\) 23.4628 0.987962
\(565\) 0.102363 0.00430645
\(566\) 2.38541 0.100266
\(567\) 8.32337 0.349549
\(568\) 7.13600 0.299420
\(569\) −11.7954 −0.494487 −0.247244 0.968953i \(-0.579525\pi\)
−0.247244 + 0.968953i \(0.579525\pi\)
\(570\) −0.299050 −0.0125258
\(571\) 5.32310 0.222765 0.111382 0.993778i \(-0.464472\pi\)
0.111382 + 0.993778i \(0.464472\pi\)
\(572\) 10.0537 0.420367
\(573\) 15.9244 0.665250
\(574\) 1.75066 0.0730712
\(575\) 19.7459 0.823462
\(576\) 5.85056 0.243773
\(577\) 19.7441 0.821958 0.410979 0.911645i \(-0.365187\pi\)
0.410979 + 0.911645i \(0.365187\pi\)
\(578\) 13.6589 0.568135
\(579\) 20.6848 0.859630
\(580\) 0.286546 0.0118982
\(581\) 7.65205 0.317460
\(582\) −22.8149 −0.945710
\(583\) −15.1392 −0.627002
\(584\) −3.40593 −0.140939
\(585\) −1.17773 −0.0486930
\(586\) 26.9825 1.11464
\(587\) 7.14170 0.294769 0.147385 0.989079i \(-0.452914\pi\)
0.147385 + 0.989079i \(0.452914\pi\)
\(588\) −17.3282 −0.714604
\(589\) −20.7022 −0.853021
\(590\) −0.409567 −0.0168616
\(591\) 62.0067 2.55061
\(592\) 1.75269 0.0720351
\(593\) 10.5174 0.431897 0.215949 0.976405i \(-0.430716\pi\)
0.215949 + 0.976405i \(0.430716\pi\)
\(594\) −13.4040 −0.549971
\(595\) −0.189978 −0.00778833
\(596\) −9.83698 −0.402938
\(597\) 60.2997 2.46790
\(598\) 25.1249 1.02743
\(599\) −7.20868 −0.294539 −0.147269 0.989096i \(-0.547048\pi\)
−0.147269 + 0.989096i \(0.547048\pi\)
\(600\) −14.8720 −0.607146
\(601\) −32.6760 −1.33288 −0.666441 0.745558i \(-0.732183\pi\)
−0.666441 + 0.745558i \(0.732183\pi\)
\(602\) 12.5758 0.512552
\(603\) −19.8027 −0.806430
\(604\) −19.6011 −0.797557
\(605\) −0.269059 −0.0109388
\(606\) −33.2261 −1.34972
\(607\) 22.5267 0.914331 0.457165 0.889382i \(-0.348865\pi\)
0.457165 + 0.889382i \(0.348865\pi\)
\(608\) −3.17629 −0.128816
\(609\) 29.2030 1.18337
\(610\) −0.202562 −0.00820149
\(611\) −50.1653 −2.02947
\(612\) −32.3948 −1.30948
\(613\) −12.1824 −0.492041 −0.246020 0.969265i \(-0.579123\pi\)
−0.246020 + 0.969265i \(0.579123\pi\)
\(614\) −23.7098 −0.956849
\(615\) 0.152034 0.00613059
\(616\) −1.71358 −0.0690420
\(617\) 29.3903 1.18321 0.591604 0.806228i \(-0.298495\pi\)
0.591604 + 0.806228i \(0.298495\pi\)
\(618\) 3.45446 0.138959
\(619\) −3.19884 −0.128572 −0.0642861 0.997932i \(-0.520477\pi\)
−0.0642861 + 0.997932i \(0.520477\pi\)
\(620\) 0.206270 0.00828399
\(621\) −33.4974 −1.34420
\(622\) −11.2199 −0.449876
\(623\) 12.3547 0.494979
\(624\) −18.9232 −0.757534
\(625\) 24.9850 0.999399
\(626\) 21.7128 0.867816
\(627\) 14.9356 0.596471
\(628\) 13.1204 0.523560
\(629\) −9.70473 −0.386953
\(630\) 0.200734 0.00799745
\(631\) −19.2578 −0.766640 −0.383320 0.923616i \(-0.625219\pi\)
−0.383320 + 0.923616i \(0.625219\pi\)
\(632\) 8.96616 0.356655
\(633\) −70.9294 −2.81919
\(634\) −2.48557 −0.0987148
\(635\) 0.0936712 0.00371723
\(636\) 28.4952 1.12991
\(637\) 37.0491 1.46794
\(638\) −14.3111 −0.566583
\(639\) 41.7496 1.65159
\(640\) 0.0316474 0.00125097
\(641\) 24.0538 0.950068 0.475034 0.879967i \(-0.342436\pi\)
0.475034 + 0.879967i \(0.342436\pi\)
\(642\) 11.9450 0.471430
\(643\) −36.2471 −1.42945 −0.714723 0.699407i \(-0.753447\pi\)
−0.714723 + 0.699407i \(0.753447\pi\)
\(644\) −4.28234 −0.168748
\(645\) 1.09213 0.0430025
\(646\) 17.5873 0.691962
\(647\) 6.84549 0.269124 0.134562 0.990905i \(-0.457037\pi\)
0.134562 + 0.990905i \(0.457037\pi\)
\(648\) 7.67738 0.301596
\(649\) 20.4552 0.802937
\(650\) 31.7974 1.24720
\(651\) 21.0217 0.823907
\(652\) −8.72367 −0.341645
\(653\) 24.7863 0.969964 0.484982 0.874524i \(-0.338826\pi\)
0.484982 + 0.874524i \(0.338826\pi\)
\(654\) 20.5409 0.803213
\(655\) 0.0423049 0.00165299
\(656\) 1.61479 0.0630470
\(657\) −19.9266 −0.777412
\(658\) 8.55028 0.333325
\(659\) −2.21313 −0.0862115 −0.0431057 0.999071i \(-0.513725\pi\)
−0.0431057 + 0.999071i \(0.513725\pi\)
\(660\) −0.148813 −0.00579254
\(661\) 1.73001 0.0672896 0.0336448 0.999434i \(-0.489289\pi\)
0.0336448 + 0.999434i \(0.489289\pi\)
\(662\) −4.81515 −0.187146
\(663\) 104.779 4.06926
\(664\) 7.05816 0.273910
\(665\) −0.108979 −0.00422604
\(666\) 10.2542 0.397343
\(667\) −35.7644 −1.38480
\(668\) −8.02478 −0.310488
\(669\) −10.5171 −0.406616
\(670\) −0.107119 −0.00413836
\(671\) 10.1166 0.390549
\(672\) 3.22531 0.124419
\(673\) −26.5381 −1.02297 −0.511484 0.859293i \(-0.670904\pi\)
−0.511484 + 0.859293i \(0.670904\pi\)
\(674\) −15.4903 −0.596662
\(675\) −42.3935 −1.63172
\(676\) 27.4592 1.05612
\(677\) 6.85812 0.263579 0.131789 0.991278i \(-0.457928\pi\)
0.131789 + 0.991278i \(0.457928\pi\)
\(678\) 9.62257 0.369552
\(679\) −8.31419 −0.319069
\(680\) −0.175233 −0.00671989
\(681\) 18.9053 0.724451
\(682\) −10.3018 −0.394477
\(683\) 22.1665 0.848179 0.424089 0.905620i \(-0.360594\pi\)
0.424089 + 0.905620i \(0.360594\pi\)
\(684\) −18.5831 −0.710542
\(685\) 0.251049 0.00959211
\(686\) −13.9037 −0.530847
\(687\) 76.2579 2.90942
\(688\) 11.5998 0.442238
\(689\) −60.9249 −2.32105
\(690\) −0.371893 −0.0141577
\(691\) −29.3696 −1.11727 −0.558636 0.829413i \(-0.688675\pi\)
−0.558636 + 0.829413i \(0.688675\pi\)
\(692\) −10.2912 −0.391214
\(693\) −10.0254 −0.380833
\(694\) −17.8412 −0.677244
\(695\) −0.665128 −0.0252297
\(696\) 26.9366 1.02103
\(697\) −8.94117 −0.338671
\(698\) 2.40201 0.0909176
\(699\) −29.6803 −1.12261
\(700\) −5.41962 −0.204843
\(701\) 9.99997 0.377694 0.188847 0.982007i \(-0.439525\pi\)
0.188847 + 0.982007i \(0.439525\pi\)
\(702\) −53.9417 −2.03590
\(703\) −5.56705 −0.209965
\(704\) −1.58058 −0.0595705
\(705\) 0.742537 0.0279656
\(706\) 33.5276 1.26183
\(707\) −12.1082 −0.455376
\(708\) −38.5010 −1.44696
\(709\) 8.26504 0.310400 0.155200 0.987883i \(-0.450398\pi\)
0.155200 + 0.987883i \(0.450398\pi\)
\(710\) 0.225836 0.00847548
\(711\) 52.4571 1.96729
\(712\) 11.3958 0.427076
\(713\) −25.7449 −0.964155
\(714\) −17.8587 −0.668345
\(715\) 0.318174 0.0118990
\(716\) 2.95307 0.110362
\(717\) −62.6708 −2.34048
\(718\) 18.7359 0.699219
\(719\) 24.4853 0.913146 0.456573 0.889686i \(-0.349077\pi\)
0.456573 + 0.889686i \(0.349077\pi\)
\(720\) 0.185155 0.00690032
\(721\) 1.25887 0.0468827
\(722\) −8.91118 −0.331640
\(723\) −22.9233 −0.852526
\(724\) −17.1817 −0.638555
\(725\) −45.2626 −1.68101
\(726\) −25.2926 −0.938698
\(727\) 5.22044 0.193615 0.0968077 0.995303i \(-0.469137\pi\)
0.0968077 + 0.995303i \(0.469137\pi\)
\(728\) −6.89596 −0.255581
\(729\) −30.7702 −1.13964
\(730\) −0.107789 −0.00398945
\(731\) −64.2286 −2.37558
\(732\) −19.0417 −0.703800
\(733\) 13.1037 0.483997 0.241998 0.970277i \(-0.422197\pi\)
0.241998 + 0.970277i \(0.422197\pi\)
\(734\) −23.7327 −0.875991
\(735\) −0.548394 −0.0202278
\(736\) −3.94998 −0.145598
\(737\) 5.34989 0.197066
\(738\) 9.44743 0.347765
\(739\) 23.4439 0.862398 0.431199 0.902257i \(-0.358091\pi\)
0.431199 + 0.902257i \(0.358091\pi\)
\(740\) 0.0554681 0.00203905
\(741\) 60.1055 2.20803
\(742\) 10.3842 0.381215
\(743\) −26.2749 −0.963931 −0.481966 0.876190i \(-0.660077\pi\)
−0.481966 + 0.876190i \(0.660077\pi\)
\(744\) 19.3902 0.710879
\(745\) −0.311315 −0.0114057
\(746\) −36.8288 −1.34840
\(747\) 41.2942 1.51088
\(748\) 8.75176 0.319996
\(749\) 4.35297 0.159054
\(750\) −0.941413 −0.0343755
\(751\) 13.6609 0.498493 0.249247 0.968440i \(-0.419817\pi\)
0.249247 + 0.968440i \(0.419817\pi\)
\(752\) 7.88668 0.287598
\(753\) 5.66249 0.206353
\(754\) −57.5924 −2.09739
\(755\) −0.620324 −0.0225759
\(756\) 9.19395 0.334381
\(757\) 17.9708 0.653160 0.326580 0.945170i \(-0.394104\pi\)
0.326580 + 0.945170i \(0.394104\pi\)
\(758\) −22.7264 −0.825461
\(759\) 18.5737 0.674181
\(760\) −0.100521 −0.00364629
\(761\) −26.5465 −0.962311 −0.481155 0.876635i \(-0.659783\pi\)
−0.481155 + 0.876635i \(0.659783\pi\)
\(762\) 8.80548 0.318989
\(763\) 7.48549 0.270993
\(764\) 5.35275 0.193656
\(765\) −1.02521 −0.0370667
\(766\) 5.87594 0.212306
\(767\) 82.3181 2.97233
\(768\) 2.97499 0.107351
\(769\) 17.2130 0.620718 0.310359 0.950619i \(-0.399551\pi\)
0.310359 + 0.950619i \(0.399551\pi\)
\(770\) −0.0542303 −0.00195432
\(771\) 70.0753 2.52370
\(772\) 6.95289 0.250240
\(773\) 31.6287 1.13761 0.568803 0.822474i \(-0.307407\pi\)
0.568803 + 0.822474i \(0.307407\pi\)
\(774\) 67.8653 2.43937
\(775\) −32.5822 −1.17039
\(776\) −7.66892 −0.275298
\(777\) 5.65297 0.202799
\(778\) 14.9916 0.537474
\(779\) −5.12904 −0.183767
\(780\) −0.598870 −0.0214430
\(781\) −11.2790 −0.403596
\(782\) 21.8712 0.782113
\(783\) 76.7843 2.74405
\(784\) −5.82464 −0.208023
\(785\) 0.415226 0.0148200
\(786\) 3.97684 0.141849
\(787\) −28.4125 −1.01280 −0.506399 0.862299i \(-0.669024\pi\)
−0.506399 + 0.862299i \(0.669024\pi\)
\(788\) 20.8427 0.742489
\(789\) −59.0362 −2.10174
\(790\) 0.283756 0.0100956
\(791\) 3.50664 0.124682
\(792\) −9.24730 −0.328588
\(793\) 40.7125 1.44574
\(794\) −25.2744 −0.896956
\(795\) 0.901798 0.0319835
\(796\) 20.2689 0.718412
\(797\) 1.13199 0.0400971 0.0200486 0.999799i \(-0.493618\pi\)
0.0200486 + 0.999799i \(0.493618\pi\)
\(798\) −10.2445 −0.362652
\(799\) −43.6689 −1.54490
\(800\) −4.99900 −0.176741
\(801\) 66.6718 2.35573
\(802\) 11.8421 0.418159
\(803\) 5.38336 0.189975
\(804\) −10.0696 −0.355128
\(805\) −0.135525 −0.00477663
\(806\) −41.4578 −1.46029
\(807\) −2.97499 −0.104725
\(808\) −11.1685 −0.392905
\(809\) 16.1496 0.567790 0.283895 0.958855i \(-0.408373\pi\)
0.283895 + 0.958855i \(0.408373\pi\)
\(810\) 0.242969 0.00853707
\(811\) 43.1152 1.51398 0.756990 0.653427i \(-0.226669\pi\)
0.756990 + 0.653427i \(0.226669\pi\)
\(812\) 9.81619 0.344481
\(813\) −40.0615 −1.40502
\(814\) −2.77027 −0.0970980
\(815\) −0.276081 −0.00967071
\(816\) −16.4727 −0.576658
\(817\) −36.8443 −1.28902
\(818\) 25.6036 0.895210
\(819\) −40.3453 −1.40978
\(820\) 0.0511039 0.00178463
\(821\) 13.5327 0.472296 0.236148 0.971717i \(-0.424115\pi\)
0.236148 + 0.971717i \(0.424115\pi\)
\(822\) 23.5997 0.823134
\(823\) −6.64735 −0.231712 −0.115856 0.993266i \(-0.536961\pi\)
−0.115856 + 0.993266i \(0.536961\pi\)
\(824\) 1.16117 0.0404511
\(825\) 23.5064 0.818387
\(826\) −14.0305 −0.488183
\(827\) 42.7988 1.48826 0.744130 0.668034i \(-0.232864\pi\)
0.744130 + 0.668034i \(0.232864\pi\)
\(828\) −23.1096 −0.803114
\(829\) −40.4386 −1.40449 −0.702246 0.711935i \(-0.747819\pi\)
−0.702246 + 0.711935i \(0.747819\pi\)
\(830\) 0.223372 0.00775337
\(831\) 1.35795 0.0471066
\(832\) −6.36076 −0.220520
\(833\) 32.2513 1.11744
\(834\) −62.5248 −2.16506
\(835\) −0.253964 −0.00878877
\(836\) 5.02039 0.173634
\(837\) 55.2730 1.91051
\(838\) 16.3173 0.563672
\(839\) 50.8175 1.75441 0.877207 0.480112i \(-0.159404\pi\)
0.877207 + 0.480112i \(0.159404\pi\)
\(840\) 0.102073 0.00352184
\(841\) 52.9810 1.82693
\(842\) −16.7172 −0.576114
\(843\) 61.6544 2.12349
\(844\) −23.8419 −0.820672
\(845\) 0.869014 0.0298950
\(846\) 46.1415 1.58638
\(847\) −9.21711 −0.316704
\(848\) 9.57824 0.328918
\(849\) 7.09657 0.243554
\(850\) 27.6797 0.949406
\(851\) −6.92309 −0.237320
\(852\) 21.2295 0.727312
\(853\) 37.1567 1.27222 0.636110 0.771598i \(-0.280542\pi\)
0.636110 + 0.771598i \(0.280542\pi\)
\(854\) −6.93914 −0.237452
\(855\) −0.588107 −0.0201128
\(856\) 4.01512 0.137234
\(857\) 51.7474 1.76766 0.883829 0.467810i \(-0.154957\pi\)
0.883829 + 0.467810i \(0.154957\pi\)
\(858\) 29.9097 1.02110
\(859\) 17.1864 0.586394 0.293197 0.956052i \(-0.405281\pi\)
0.293197 + 0.956052i \(0.405281\pi\)
\(860\) 0.367104 0.0125181
\(861\) 5.20820 0.177495
\(862\) −23.6411 −0.805219
\(863\) −26.1350 −0.889647 −0.444823 0.895618i \(-0.646734\pi\)
−0.444823 + 0.895618i \(0.646734\pi\)
\(864\) 8.48039 0.288509
\(865\) −0.325691 −0.0110738
\(866\) −13.5895 −0.461790
\(867\) 40.6351 1.38004
\(868\) 7.06615 0.239841
\(869\) −14.1718 −0.480744
\(870\) 0.852472 0.0289015
\(871\) 21.5296 0.729503
\(872\) 6.90453 0.233817
\(873\) −44.8675 −1.51853
\(874\) 12.5463 0.424384
\(875\) −0.343069 −0.0115978
\(876\) −10.1326 −0.342349
\(877\) −17.0807 −0.576774 −0.288387 0.957514i \(-0.593119\pi\)
−0.288387 + 0.957514i \(0.593119\pi\)
\(878\) 35.3166 1.19188
\(879\) 80.2726 2.70753
\(880\) −0.0500214 −0.00168622
\(881\) −19.1525 −0.645264 −0.322632 0.946524i \(-0.604568\pi\)
−0.322632 + 0.946524i \(0.604568\pi\)
\(882\) −34.0774 −1.14745
\(883\) −28.0553 −0.944136 −0.472068 0.881562i \(-0.656492\pi\)
−0.472068 + 0.881562i \(0.656492\pi\)
\(884\) 35.2198 1.18457
\(885\) −1.21846 −0.0409580
\(886\) 27.3334 0.918283
\(887\) −36.9015 −1.23903 −0.619515 0.784985i \(-0.712671\pi\)
−0.619515 + 0.784985i \(0.712671\pi\)
\(888\) 5.21423 0.174978
\(889\) 3.20888 0.107622
\(890\) 0.360647 0.0120889
\(891\) −12.1347 −0.406529
\(892\) −3.53518 −0.118367
\(893\) −25.0504 −0.838280
\(894\) −29.2649 −0.978765
\(895\) 0.0934571 0.00312393
\(896\) 1.08414 0.0362186
\(897\) 74.7462 2.49570
\(898\) −3.54747 −0.118381
\(899\) 59.0138 1.96822
\(900\) −29.2469 −0.974898
\(901\) −53.0352 −1.76686
\(902\) −2.55231 −0.0849826
\(903\) 37.4129 1.24502
\(904\) 3.23449 0.107577
\(905\) −0.543758 −0.0180751
\(906\) −58.3130 −1.93732
\(907\) −18.4342 −0.612096 −0.306048 0.952016i \(-0.599007\pi\)
−0.306048 + 0.952016i \(0.599007\pi\)
\(908\) 6.35473 0.210889
\(909\) −65.3418 −2.16725
\(910\) −0.218239 −0.00723457
\(911\) −11.9903 −0.397256 −0.198628 0.980075i \(-0.563649\pi\)
−0.198628 + 0.980075i \(0.563649\pi\)
\(912\) −9.44943 −0.312902
\(913\) −11.1560 −0.369210
\(914\) 25.2637 0.835648
\(915\) −0.602619 −0.0199220
\(916\) 25.6330 0.846938
\(917\) 1.44923 0.0478579
\(918\) −46.9563 −1.54979
\(919\) 13.6219 0.449345 0.224673 0.974434i \(-0.427869\pi\)
0.224673 + 0.974434i \(0.427869\pi\)
\(920\) −0.125007 −0.00412135
\(921\) −70.5363 −2.32425
\(922\) 13.5815 0.447282
\(923\) −45.3904 −1.49404
\(924\) −5.09787 −0.167708
\(925\) −8.76170 −0.288083
\(926\) 20.3739 0.669527
\(927\) 6.79347 0.223127
\(928\) 9.05434 0.297223
\(929\) −14.2112 −0.466253 −0.233127 0.972446i \(-0.574896\pi\)
−0.233127 + 0.972446i \(0.574896\pi\)
\(930\) 0.613650 0.0201224
\(931\) 18.5007 0.606337
\(932\) −9.97660 −0.326794
\(933\) −33.3790 −1.09278
\(934\) 15.1522 0.495795
\(935\) 0.276971 0.00905791
\(936\) −37.2140 −1.21638
\(937\) 28.6353 0.935475 0.467737 0.883867i \(-0.345069\pi\)
0.467737 + 0.883867i \(0.345069\pi\)
\(938\) −3.66956 −0.119815
\(939\) 64.5952 2.10799
\(940\) 0.249593 0.00814083
\(941\) −28.6706 −0.934635 −0.467317 0.884090i \(-0.654779\pi\)
−0.467317 + 0.884090i \(0.654779\pi\)
\(942\) 39.0330 1.27176
\(943\) −6.37839 −0.207709
\(944\) −12.9416 −0.421212
\(945\) 0.290965 0.00946508
\(946\) −18.3344 −0.596104
\(947\) 9.67565 0.314417 0.157208 0.987565i \(-0.449751\pi\)
0.157208 + 0.987565i \(0.449751\pi\)
\(948\) 26.6742 0.866339
\(949\) 21.6643 0.703253
\(950\) 15.8783 0.515159
\(951\) −7.39456 −0.239785
\(952\) −6.00295 −0.194557
\(953\) −51.3712 −1.66408 −0.832039 0.554718i \(-0.812826\pi\)
−0.832039 + 0.554718i \(0.812826\pi\)
\(954\) 56.0381 1.81430
\(955\) 0.169401 0.00548168
\(956\) −21.0659 −0.681319
\(957\) −42.5755 −1.37627
\(958\) −33.3413 −1.07721
\(959\) 8.60017 0.277714
\(960\) 0.0941507 0.00303870
\(961\) 11.4809 0.370353
\(962\) −11.1484 −0.359440
\(963\) 23.4907 0.756978
\(964\) −7.70533 −0.248172
\(965\) 0.220041 0.00708337
\(966\) −12.7399 −0.409900
\(967\) 59.1220 1.90124 0.950618 0.310364i \(-0.100451\pi\)
0.950618 + 0.310364i \(0.100451\pi\)
\(968\) −8.50176 −0.273257
\(969\) 52.3220 1.68082
\(970\) −0.242701 −0.00779267
\(971\) −45.5830 −1.46283 −0.731413 0.681934i \(-0.761139\pi\)
−0.731413 + 0.681934i \(0.761139\pi\)
\(972\) −2.60103 −0.0834281
\(973\) −22.7852 −0.730461
\(974\) 35.0213 1.12216
\(975\) 94.5970 3.02953
\(976\) −6.40058 −0.204878
\(977\) −56.3478 −1.80273 −0.901363 0.433065i \(-0.857432\pi\)
−0.901363 + 0.433065i \(0.857432\pi\)
\(978\) −25.9528 −0.829879
\(979\) −18.0120 −0.575666
\(980\) −0.184335 −0.00588836
\(981\) 40.3954 1.28972
\(982\) −0.715554 −0.0228342
\(983\) 12.1722 0.388233 0.194117 0.980978i \(-0.437816\pi\)
0.194117 + 0.980978i \(0.437816\pi\)
\(984\) 4.80398 0.153145
\(985\) 0.659616 0.0210171
\(986\) −50.1343 −1.59660
\(987\) 25.4370 0.809669
\(988\) 20.2036 0.642763
\(989\) −45.8190 −1.45696
\(990\) −0.292653 −0.00930113
\(991\) −25.4691 −0.809053 −0.404526 0.914526i \(-0.632564\pi\)
−0.404526 + 0.914526i \(0.632564\pi\)
\(992\) 6.51774 0.206938
\(993\) −14.3250 −0.454591
\(994\) 7.73644 0.245385
\(995\) 0.641458 0.0203356
\(996\) 20.9979 0.665345
\(997\) 37.2793 1.18065 0.590324 0.807166i \(-0.299000\pi\)
0.590324 + 0.807166i \(0.299000\pi\)
\(998\) 26.1873 0.828945
\(999\) 14.8635 0.470260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.2.a.e.1.7 7
3.2 odd 2 4842.2.a.n.1.5 7
4.3 odd 2 4304.2.a.h.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.7 7 1.1 even 1 trivial
4304.2.a.h.1.1 7 4.3 odd 2
4842.2.a.n.1.5 7 3.2 odd 2