Properties

Label 538.2.a.e.1.6
Level $538$
Weight $2$
Character 538.1
Self dual yes
Analytic conductor $4.296$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.19866\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.12827 q^{3} +1.00000 q^{4} +3.84433 q^{5} +2.12827 q^{6} -4.95403 q^{7} +1.00000 q^{8} +1.52953 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +2.12827 q^{3} +1.00000 q^{4} +3.84433 q^{5} +2.12827 q^{6} -4.95403 q^{7} +1.00000 q^{8} +1.52953 q^{9} +3.84433 q^{10} -0.453515 q^{11} +2.12827 q^{12} -0.0945931 q^{13} -4.95403 q^{14} +8.18177 q^{15} +1.00000 q^{16} +1.41349 q^{17} +1.52953 q^{18} -2.49192 q^{19} +3.84433 q^{20} -10.5435 q^{21} -0.453515 q^{22} -2.25654 q^{23} +2.12827 q^{24} +9.77888 q^{25} -0.0945931 q^{26} -3.12955 q^{27} -4.95403 q^{28} -6.64864 q^{29} +8.18177 q^{30} +5.36736 q^{31} +1.00000 q^{32} -0.965201 q^{33} +1.41349 q^{34} -19.0449 q^{35} +1.52953 q^{36} +7.31117 q^{37} -2.49192 q^{38} -0.201320 q^{39} +3.84433 q^{40} -10.6653 q^{41} -10.5435 q^{42} -12.2765 q^{43} -0.453515 q^{44} +5.88003 q^{45} -2.25654 q^{46} -1.43212 q^{47} +2.12827 q^{48} +17.5424 q^{49} +9.77888 q^{50} +3.00829 q^{51} -0.0945931 q^{52} +9.96897 q^{53} -3.12955 q^{54} -1.74346 q^{55} -4.95403 q^{56} -5.30347 q^{57} -6.64864 q^{58} +7.89955 q^{59} +8.18177 q^{60} +0.950317 q^{61} +5.36736 q^{62} -7.57735 q^{63} +1.00000 q^{64} -0.363647 q^{65} -0.965201 q^{66} -8.06276 q^{67} +1.41349 q^{68} -4.80253 q^{69} -19.0449 q^{70} -3.06085 q^{71} +1.52953 q^{72} +12.8264 q^{73} +7.31117 q^{74} +20.8121 q^{75} -2.49192 q^{76} +2.24672 q^{77} -0.201320 q^{78} +13.7673 q^{79} +3.84433 q^{80} -11.2491 q^{81} -10.6653 q^{82} +10.1171 q^{83} -10.5435 q^{84} +5.43392 q^{85} -12.2765 q^{86} -14.1501 q^{87} -0.453515 q^{88} -1.77803 q^{89} +5.88003 q^{90} +0.468616 q^{91} -2.25654 q^{92} +11.4232 q^{93} -1.43212 q^{94} -9.57975 q^{95} +2.12827 q^{96} -12.9137 q^{97} +17.5424 q^{98} -0.693665 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 7 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 7 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 12 q^{9} + 7 q^{10} - 3 q^{11} + q^{12} - 9 q^{13} + 6 q^{14} + 8 q^{15} + 7 q^{16} + 8 q^{17} + 12 q^{18} - 11 q^{19} + 7 q^{20} - 6 q^{21} - 3 q^{22} + 12 q^{23} + q^{24} + 22 q^{25} - 9 q^{26} - 14 q^{27} + 6 q^{28} - 5 q^{29} + 8 q^{30} + 14 q^{31} + 7 q^{32} - 4 q^{33} + 8 q^{34} - 4 q^{35} + 12 q^{36} + 13 q^{37} - 11 q^{38} - 18 q^{39} + 7 q^{40} + 12 q^{41} - 6 q^{42} - 11 q^{43} - 3 q^{44} + 3 q^{45} + 12 q^{46} + 2 q^{47} + q^{48} + 15 q^{49} + 22 q^{50} - 26 q^{51} - 9 q^{52} + 19 q^{53} - 14 q^{54} - 40 q^{55} + 6 q^{56} - 12 q^{57} - 5 q^{58} - 9 q^{59} + 8 q^{60} - 3 q^{61} + 14 q^{62} - 26 q^{63} + 7 q^{64} - 10 q^{65} - 4 q^{66} - 33 q^{67} + 8 q^{68} - 64 q^{69} - 4 q^{70} + 28 q^{71} + 12 q^{72} - 14 q^{73} + 13 q^{74} - 45 q^{75} - 11 q^{76} + 10 q^{77} - 18 q^{78} + 2 q^{79} + 7 q^{80} + 15 q^{81} + 12 q^{82} - 7 q^{83} - 6 q^{84} - 16 q^{85} - 11 q^{86} + 16 q^{87} - 3 q^{88} + 18 q^{89} + 3 q^{90} - 26 q^{91} + 12 q^{92} + 6 q^{93} + 2 q^{94} - 34 q^{95} + q^{96} - 4 q^{97} + 15 q^{98} - 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.12827 1.22876 0.614379 0.789011i \(-0.289407\pi\)
0.614379 + 0.789011i \(0.289407\pi\)
\(4\) 1.00000 0.500000
\(5\) 3.84433 1.71924 0.859619 0.510936i \(-0.170701\pi\)
0.859619 + 0.510936i \(0.170701\pi\)
\(6\) 2.12827 0.868863
\(7\) −4.95403 −1.87245 −0.936223 0.351407i \(-0.885703\pi\)
−0.936223 + 0.351407i \(0.885703\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.52953 0.509844
\(10\) 3.84433 1.21568
\(11\) −0.453515 −0.136740 −0.0683699 0.997660i \(-0.521780\pi\)
−0.0683699 + 0.997660i \(0.521780\pi\)
\(12\) 2.12827 0.614379
\(13\) −0.0945931 −0.0262354 −0.0131177 0.999914i \(-0.504176\pi\)
−0.0131177 + 0.999914i \(0.504176\pi\)
\(14\) −4.95403 −1.32402
\(15\) 8.18177 2.11253
\(16\) 1.00000 0.250000
\(17\) 1.41349 0.342822 0.171411 0.985200i \(-0.445167\pi\)
0.171411 + 0.985200i \(0.445167\pi\)
\(18\) 1.52953 0.360514
\(19\) −2.49192 −0.571685 −0.285842 0.958277i \(-0.592273\pi\)
−0.285842 + 0.958277i \(0.592273\pi\)
\(20\) 3.84433 0.859619
\(21\) −10.5435 −2.30078
\(22\) −0.453515 −0.0966896
\(23\) −2.25654 −0.470521 −0.235261 0.971932i \(-0.575594\pi\)
−0.235261 + 0.971932i \(0.575594\pi\)
\(24\) 2.12827 0.434431
\(25\) 9.77888 1.95578
\(26\) −0.0945931 −0.0185512
\(27\) −3.12955 −0.602282
\(28\) −4.95403 −0.936223
\(29\) −6.64864 −1.23462 −0.617311 0.786720i \(-0.711778\pi\)
−0.617311 + 0.786720i \(0.711778\pi\)
\(30\) 8.18177 1.49378
\(31\) 5.36736 0.964006 0.482003 0.876170i \(-0.339909\pi\)
0.482003 + 0.876170i \(0.339909\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.965201 −0.168020
\(34\) 1.41349 0.242412
\(35\) −19.0449 −3.21918
\(36\) 1.52953 0.254922
\(37\) 7.31117 1.20195 0.600974 0.799268i \(-0.294779\pi\)
0.600974 + 0.799268i \(0.294779\pi\)
\(38\) −2.49192 −0.404242
\(39\) −0.201320 −0.0322369
\(40\) 3.84433 0.607842
\(41\) −10.6653 −1.66563 −0.832817 0.553548i \(-0.813274\pi\)
−0.832817 + 0.553548i \(0.813274\pi\)
\(42\) −10.5435 −1.62690
\(43\) −12.2765 −1.87215 −0.936076 0.351798i \(-0.885570\pi\)
−0.936076 + 0.351798i \(0.885570\pi\)
\(44\) −0.453515 −0.0683699
\(45\) 5.88003 0.876543
\(46\) −2.25654 −0.332709
\(47\) −1.43212 −0.208897 −0.104448 0.994530i \(-0.533308\pi\)
−0.104448 + 0.994530i \(0.533308\pi\)
\(48\) 2.12827 0.307189
\(49\) 17.5424 2.50605
\(50\) 9.77888 1.38294
\(51\) 3.00829 0.421245
\(52\) −0.0945931 −0.0131177
\(53\) 9.96897 1.36934 0.684672 0.728852i \(-0.259946\pi\)
0.684672 + 0.728852i \(0.259946\pi\)
\(54\) −3.12955 −0.425878
\(55\) −1.74346 −0.235088
\(56\) −4.95403 −0.662010
\(57\) −5.30347 −0.702462
\(58\) −6.64864 −0.873009
\(59\) 7.89955 1.02843 0.514217 0.857660i \(-0.328083\pi\)
0.514217 + 0.857660i \(0.328083\pi\)
\(60\) 8.18177 1.05626
\(61\) 0.950317 0.121676 0.0608378 0.998148i \(-0.480623\pi\)
0.0608378 + 0.998148i \(0.480623\pi\)
\(62\) 5.36736 0.681655
\(63\) −7.57735 −0.954656
\(64\) 1.00000 0.125000
\(65\) −0.363647 −0.0451049
\(66\) −0.965201 −0.118808
\(67\) −8.06276 −0.985023 −0.492512 0.870306i \(-0.663921\pi\)
−0.492512 + 0.870306i \(0.663921\pi\)
\(68\) 1.41349 0.171411
\(69\) −4.80253 −0.578156
\(70\) −19.0449 −2.27630
\(71\) −3.06085 −0.363256 −0.181628 0.983367i \(-0.558137\pi\)
−0.181628 + 0.983367i \(0.558137\pi\)
\(72\) 1.52953 0.180257
\(73\) 12.8264 1.50121 0.750607 0.660749i \(-0.229761\pi\)
0.750607 + 0.660749i \(0.229761\pi\)
\(74\) 7.31117 0.849906
\(75\) 20.8121 2.40317
\(76\) −2.49192 −0.285842
\(77\) 2.24672 0.256038
\(78\) −0.201320 −0.0227950
\(79\) 13.7673 1.54894 0.774469 0.632611i \(-0.218017\pi\)
0.774469 + 0.632611i \(0.218017\pi\)
\(80\) 3.84433 0.429809
\(81\) −11.2491 −1.24990
\(82\) −10.6653 −1.17778
\(83\) 10.1171 1.11049 0.555246 0.831686i \(-0.312624\pi\)
0.555246 + 0.831686i \(0.312624\pi\)
\(84\) −10.5435 −1.15039
\(85\) 5.43392 0.589392
\(86\) −12.2765 −1.32381
\(87\) −14.1501 −1.51705
\(88\) −0.453515 −0.0483448
\(89\) −1.77803 −0.188471 −0.0942354 0.995550i \(-0.530041\pi\)
−0.0942354 + 0.995550i \(0.530041\pi\)
\(90\) 5.88003 0.619810
\(91\) 0.468616 0.0491244
\(92\) −2.25654 −0.235261
\(93\) 11.4232 1.18453
\(94\) −1.43212 −0.147712
\(95\) −9.57975 −0.982862
\(96\) 2.12827 0.217216
\(97\) −12.9137 −1.31119 −0.655593 0.755115i \(-0.727581\pi\)
−0.655593 + 0.755115i \(0.727581\pi\)
\(98\) 17.5424 1.77205
\(99\) −0.693665 −0.0697160
\(100\) 9.77888 0.977888
\(101\) −6.03448 −0.600453 −0.300226 0.953868i \(-0.597062\pi\)
−0.300226 + 0.953868i \(0.597062\pi\)
\(102\) 3.00829 0.297865
\(103\) −1.09297 −0.107694 −0.0538468 0.998549i \(-0.517148\pi\)
−0.0538468 + 0.998549i \(0.517148\pi\)
\(104\) −0.0945931 −0.00927561
\(105\) −40.5327 −3.95559
\(106\) 9.96897 0.968272
\(107\) 5.58489 0.539911 0.269956 0.962873i \(-0.412991\pi\)
0.269956 + 0.962873i \(0.412991\pi\)
\(108\) −3.12955 −0.301141
\(109\) −6.76759 −0.648218 −0.324109 0.946020i \(-0.605064\pi\)
−0.324109 + 0.946020i \(0.605064\pi\)
\(110\) −1.74346 −0.166232
\(111\) 15.5601 1.47690
\(112\) −4.95403 −0.468111
\(113\) −0.653864 −0.0615103 −0.0307552 0.999527i \(-0.509791\pi\)
−0.0307552 + 0.999527i \(0.509791\pi\)
\(114\) −5.30347 −0.496716
\(115\) −8.67489 −0.808937
\(116\) −6.64864 −0.617311
\(117\) −0.144683 −0.0133760
\(118\) 7.89955 0.727213
\(119\) −7.00247 −0.641915
\(120\) 8.18177 0.746890
\(121\) −10.7943 −0.981302
\(122\) 0.950317 0.0860376
\(123\) −22.6986 −2.04666
\(124\) 5.36736 0.482003
\(125\) 18.3716 1.64321
\(126\) −7.57735 −0.675044
\(127\) 8.29619 0.736168 0.368084 0.929792i \(-0.380014\pi\)
0.368084 + 0.929792i \(0.380014\pi\)
\(128\) 1.00000 0.0883883
\(129\) −26.1277 −2.30042
\(130\) −0.363647 −0.0318940
\(131\) −15.8736 −1.38688 −0.693440 0.720514i \(-0.743906\pi\)
−0.693440 + 0.720514i \(0.743906\pi\)
\(132\) −0.965201 −0.0840100
\(133\) 12.3450 1.07045
\(134\) −8.06276 −0.696517
\(135\) −12.0310 −1.03547
\(136\) 1.41349 0.121206
\(137\) −5.16032 −0.440876 −0.220438 0.975401i \(-0.570749\pi\)
−0.220438 + 0.975401i \(0.570749\pi\)
\(138\) −4.80253 −0.408818
\(139\) 15.2369 1.29237 0.646187 0.763179i \(-0.276363\pi\)
0.646187 + 0.763179i \(0.276363\pi\)
\(140\) −19.0449 −1.60959
\(141\) −3.04794 −0.256683
\(142\) −3.06085 −0.256861
\(143\) 0.0428993 0.00358742
\(144\) 1.52953 0.127461
\(145\) −25.5596 −2.12261
\(146\) 12.8264 1.06152
\(147\) 37.3349 3.07933
\(148\) 7.31117 0.600974
\(149\) 16.0979 1.31879 0.659397 0.751795i \(-0.270812\pi\)
0.659397 + 0.751795i \(0.270812\pi\)
\(150\) 20.8121 1.69930
\(151\) −7.57215 −0.616212 −0.308106 0.951352i \(-0.599695\pi\)
−0.308106 + 0.951352i \(0.599695\pi\)
\(152\) −2.49192 −0.202121
\(153\) 2.16198 0.174786
\(154\) 2.24672 0.181046
\(155\) 20.6339 1.65735
\(156\) −0.201320 −0.0161185
\(157\) 21.8948 1.74739 0.873696 0.486472i \(-0.161717\pi\)
0.873696 + 0.486472i \(0.161717\pi\)
\(158\) 13.7673 1.09527
\(159\) 21.2167 1.68259
\(160\) 3.84433 0.303921
\(161\) 11.1790 0.881025
\(162\) −11.2491 −0.883815
\(163\) −6.02116 −0.471614 −0.235807 0.971800i \(-0.575773\pi\)
−0.235807 + 0.971800i \(0.575773\pi\)
\(164\) −10.6653 −0.832817
\(165\) −3.71055 −0.288866
\(166\) 10.1171 0.785237
\(167\) 19.6784 1.52276 0.761382 0.648304i \(-0.224521\pi\)
0.761382 + 0.648304i \(0.224521\pi\)
\(168\) −10.5435 −0.813449
\(169\) −12.9911 −0.999312
\(170\) 5.43392 0.416763
\(171\) −3.81147 −0.291470
\(172\) −12.2765 −0.936076
\(173\) 12.4812 0.948931 0.474466 0.880274i \(-0.342641\pi\)
0.474466 + 0.880274i \(0.342641\pi\)
\(174\) −14.1501 −1.07272
\(175\) −48.4448 −3.66209
\(176\) −0.453515 −0.0341849
\(177\) 16.8124 1.26370
\(178\) −1.77803 −0.133269
\(179\) 7.84995 0.586733 0.293366 0.956000i \(-0.405224\pi\)
0.293366 + 0.956000i \(0.405224\pi\)
\(180\) 5.88003 0.438272
\(181\) −17.9797 −1.33642 −0.668209 0.743973i \(-0.732939\pi\)
−0.668209 + 0.743973i \(0.732939\pi\)
\(182\) 0.468616 0.0347362
\(183\) 2.02253 0.149510
\(184\) −2.25654 −0.166354
\(185\) 28.1065 2.06643
\(186\) 11.4232 0.837588
\(187\) −0.641038 −0.0468774
\(188\) −1.43212 −0.104448
\(189\) 15.5039 1.12774
\(190\) −9.57975 −0.694988
\(191\) −12.3054 −0.890386 −0.445193 0.895435i \(-0.646865\pi\)
−0.445193 + 0.895435i \(0.646865\pi\)
\(192\) 2.12827 0.153595
\(193\) 5.82207 0.419081 0.209541 0.977800i \(-0.432803\pi\)
0.209541 + 0.977800i \(0.432803\pi\)
\(194\) −12.9137 −0.927148
\(195\) −0.773939 −0.0554229
\(196\) 17.5424 1.25303
\(197\) −21.6619 −1.54334 −0.771671 0.636021i \(-0.780579\pi\)
−0.771671 + 0.636021i \(0.780579\pi\)
\(198\) −0.693665 −0.0492967
\(199\) 5.71843 0.405369 0.202684 0.979244i \(-0.435033\pi\)
0.202684 + 0.979244i \(0.435033\pi\)
\(200\) 9.77888 0.691471
\(201\) −17.1597 −1.21035
\(202\) −6.03448 −0.424584
\(203\) 32.9375 2.31176
\(204\) 3.00829 0.210622
\(205\) −41.0008 −2.86362
\(206\) −1.09297 −0.0761509
\(207\) −3.45145 −0.239892
\(208\) −0.0945931 −0.00655885
\(209\) 1.13012 0.0781721
\(210\) −40.5327 −2.79702
\(211\) −20.0839 −1.38264 −0.691318 0.722551i \(-0.742970\pi\)
−0.691318 + 0.722551i \(0.742970\pi\)
\(212\) 9.96897 0.684672
\(213\) −6.51431 −0.446353
\(214\) 5.58489 0.381775
\(215\) −47.1950 −3.21867
\(216\) −3.12955 −0.212939
\(217\) −26.5900 −1.80505
\(218\) −6.76759 −0.458359
\(219\) 27.2980 1.84463
\(220\) −1.74346 −0.117544
\(221\) −0.133706 −0.00899406
\(222\) 15.5601 1.04433
\(223\) −5.45166 −0.365070 −0.182535 0.983199i \(-0.558430\pi\)
−0.182535 + 0.983199i \(0.558430\pi\)
\(224\) −4.95403 −0.331005
\(225\) 14.9571 0.997141
\(226\) −0.653864 −0.0434944
\(227\) 14.8158 0.983360 0.491680 0.870776i \(-0.336383\pi\)
0.491680 + 0.870776i \(0.336383\pi\)
\(228\) −5.30347 −0.351231
\(229\) 21.9863 1.45289 0.726447 0.687223i \(-0.241170\pi\)
0.726447 + 0.687223i \(0.241170\pi\)
\(230\) −8.67489 −0.572005
\(231\) 4.78163 0.314608
\(232\) −6.64864 −0.436504
\(233\) 17.7722 1.16429 0.582147 0.813084i \(-0.302213\pi\)
0.582147 + 0.813084i \(0.302213\pi\)
\(234\) −0.144683 −0.00945824
\(235\) −5.50555 −0.359143
\(236\) 7.89955 0.514217
\(237\) 29.3005 1.90327
\(238\) −7.00247 −0.453902
\(239\) −12.0820 −0.781517 −0.390759 0.920493i \(-0.627787\pi\)
−0.390759 + 0.920493i \(0.627787\pi\)
\(240\) 8.18177 0.528131
\(241\) 11.3215 0.729285 0.364642 0.931148i \(-0.381191\pi\)
0.364642 + 0.931148i \(0.381191\pi\)
\(242\) −10.7943 −0.693885
\(243\) −14.5525 −0.933545
\(244\) 0.950317 0.0608378
\(245\) 67.4387 4.30850
\(246\) −22.6986 −1.44721
\(247\) 0.235718 0.0149984
\(248\) 5.36736 0.340827
\(249\) 21.5318 1.36453
\(250\) 18.3716 1.16192
\(251\) 8.60802 0.543333 0.271667 0.962391i \(-0.412425\pi\)
0.271667 + 0.962391i \(0.412425\pi\)
\(252\) −7.57735 −0.477328
\(253\) 1.02337 0.0643390
\(254\) 8.29619 0.520550
\(255\) 11.5649 0.724219
\(256\) 1.00000 0.0625000
\(257\) −14.3976 −0.898096 −0.449048 0.893508i \(-0.648237\pi\)
−0.449048 + 0.893508i \(0.648237\pi\)
\(258\) −26.1277 −1.62664
\(259\) −36.2197 −2.25058
\(260\) −0.363647 −0.0225524
\(261\) −10.1693 −0.629464
\(262\) −15.8736 −0.980673
\(263\) −22.3410 −1.37761 −0.688803 0.724949i \(-0.741863\pi\)
−0.688803 + 0.724949i \(0.741863\pi\)
\(264\) −0.965201 −0.0594040
\(265\) 38.3240 2.35423
\(266\) 12.3450 0.756922
\(267\) −3.78413 −0.231585
\(268\) −8.06276 −0.492512
\(269\) −1.00000 −0.0609711
\(270\) −12.0310 −0.732185
\(271\) 16.7534 1.01770 0.508848 0.860856i \(-0.330071\pi\)
0.508848 + 0.860856i \(0.330071\pi\)
\(272\) 1.41349 0.0857054
\(273\) 0.997342 0.0603619
\(274\) −5.16032 −0.311747
\(275\) −4.43487 −0.267432
\(276\) −4.80253 −0.289078
\(277\) 14.7850 0.888345 0.444172 0.895941i \(-0.353498\pi\)
0.444172 + 0.895941i \(0.353498\pi\)
\(278\) 15.2369 0.913846
\(279\) 8.20955 0.491493
\(280\) −19.0449 −1.13815
\(281\) 25.0439 1.49400 0.746998 0.664827i \(-0.231495\pi\)
0.746998 + 0.664827i \(0.231495\pi\)
\(282\) −3.04794 −0.181502
\(283\) 24.6030 1.46249 0.731247 0.682113i \(-0.238939\pi\)
0.731247 + 0.682113i \(0.238939\pi\)
\(284\) −3.06085 −0.181628
\(285\) −20.3883 −1.20770
\(286\) 0.0428993 0.00253669
\(287\) 52.8360 3.11881
\(288\) 1.52953 0.0901286
\(289\) −15.0020 −0.882473
\(290\) −25.5596 −1.50091
\(291\) −27.4838 −1.61113
\(292\) 12.8264 0.750607
\(293\) −11.4618 −0.669607 −0.334804 0.942288i \(-0.608670\pi\)
−0.334804 + 0.942288i \(0.608670\pi\)
\(294\) 37.3349 2.17742
\(295\) 30.3685 1.76812
\(296\) 7.31117 0.424953
\(297\) 1.41930 0.0823560
\(298\) 16.0979 0.932528
\(299\) 0.213453 0.0123443
\(300\) 20.8121 1.20159
\(301\) 60.8182 3.50550
\(302\) −7.57215 −0.435728
\(303\) −12.8430 −0.737811
\(304\) −2.49192 −0.142921
\(305\) 3.65333 0.209189
\(306\) 2.16198 0.123592
\(307\) −17.7679 −1.01407 −0.507033 0.861927i \(-0.669258\pi\)
−0.507033 + 0.861927i \(0.669258\pi\)
\(308\) 2.24672 0.128019
\(309\) −2.32614 −0.132329
\(310\) 20.6339 1.17193
\(311\) 7.62146 0.432173 0.216087 0.976374i \(-0.430671\pi\)
0.216087 + 0.976374i \(0.430671\pi\)
\(312\) −0.201320 −0.0113975
\(313\) 7.97031 0.450509 0.225254 0.974300i \(-0.427679\pi\)
0.225254 + 0.974300i \(0.427679\pi\)
\(314\) 21.8948 1.23559
\(315\) −29.1298 −1.64128
\(316\) 13.7673 0.774469
\(317\) 1.71640 0.0964028 0.0482014 0.998838i \(-0.484651\pi\)
0.0482014 + 0.998838i \(0.484651\pi\)
\(318\) 21.2167 1.18977
\(319\) 3.01525 0.168822
\(320\) 3.84433 0.214905
\(321\) 11.8861 0.663420
\(322\) 11.1790 0.622979
\(323\) −3.52230 −0.195986
\(324\) −11.2491 −0.624952
\(325\) −0.925014 −0.0513106
\(326\) −6.02116 −0.333481
\(327\) −14.4033 −0.796502
\(328\) −10.6653 −0.588891
\(329\) 7.09477 0.391147
\(330\) −3.71055 −0.204259
\(331\) −13.7537 −0.755970 −0.377985 0.925812i \(-0.623383\pi\)
−0.377985 + 0.925812i \(0.623383\pi\)
\(332\) 10.1171 0.555246
\(333\) 11.1827 0.612806
\(334\) 19.6784 1.07676
\(335\) −30.9959 −1.69349
\(336\) −10.5435 −0.575195
\(337\) 18.7032 1.01883 0.509413 0.860522i \(-0.329863\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(338\) −12.9911 −0.706620
\(339\) −1.39160 −0.0755812
\(340\) 5.43392 0.294696
\(341\) −2.43417 −0.131818
\(342\) −3.81147 −0.206101
\(343\) −52.2272 −2.82000
\(344\) −12.2765 −0.661906
\(345\) −18.4625 −0.993988
\(346\) 12.4812 0.670996
\(347\) 12.9029 0.692662 0.346331 0.938112i \(-0.387427\pi\)
0.346331 + 0.938112i \(0.387427\pi\)
\(348\) −14.1501 −0.758525
\(349\) −4.29547 −0.229931 −0.114966 0.993369i \(-0.536676\pi\)
−0.114966 + 0.993369i \(0.536676\pi\)
\(350\) −48.4448 −2.58949
\(351\) 0.296034 0.0158011
\(352\) −0.453515 −0.0241724
\(353\) −22.3707 −1.19067 −0.595337 0.803476i \(-0.702982\pi\)
−0.595337 + 0.803476i \(0.702982\pi\)
\(354\) 16.8124 0.893568
\(355\) −11.7669 −0.624523
\(356\) −1.77803 −0.0942354
\(357\) −14.9031 −0.788758
\(358\) 7.84995 0.414883
\(359\) 32.0628 1.69221 0.846105 0.533016i \(-0.178942\pi\)
0.846105 + 0.533016i \(0.178942\pi\)
\(360\) 5.88003 0.309905
\(361\) −12.7903 −0.673176
\(362\) −17.9797 −0.944991
\(363\) −22.9732 −1.20578
\(364\) 0.468616 0.0245622
\(365\) 49.3088 2.58094
\(366\) 2.02253 0.105719
\(367\) −4.79576 −0.250337 −0.125168 0.992136i \(-0.539947\pi\)
−0.125168 + 0.992136i \(0.539947\pi\)
\(368\) −2.25654 −0.117630
\(369\) −16.3129 −0.849214
\(370\) 28.1065 1.46119
\(371\) −49.3865 −2.56402
\(372\) 11.4232 0.592264
\(373\) 32.9108 1.70406 0.852028 0.523497i \(-0.175373\pi\)
0.852028 + 0.523497i \(0.175373\pi\)
\(374\) −0.641038 −0.0331473
\(375\) 39.0997 2.01910
\(376\) −1.43212 −0.0738561
\(377\) 0.628915 0.0323908
\(378\) 15.5039 0.797433
\(379\) −8.98570 −0.461565 −0.230782 0.973005i \(-0.574129\pi\)
−0.230782 + 0.973005i \(0.574129\pi\)
\(380\) −9.57975 −0.491431
\(381\) 17.6565 0.904572
\(382\) −12.3054 −0.629598
\(383\) 0.787688 0.0402490 0.0201245 0.999797i \(-0.493594\pi\)
0.0201245 + 0.999797i \(0.493594\pi\)
\(384\) 2.12827 0.108608
\(385\) 8.63715 0.440190
\(386\) 5.82207 0.296335
\(387\) −18.7773 −0.954506
\(388\) −12.9137 −0.655593
\(389\) −4.15609 −0.210722 −0.105361 0.994434i \(-0.533600\pi\)
−0.105361 + 0.994434i \(0.533600\pi\)
\(390\) −0.773939 −0.0391899
\(391\) −3.18960 −0.161305
\(392\) 17.5424 0.886024
\(393\) −33.7833 −1.70414
\(394\) −21.6619 −1.09131
\(395\) 52.9259 2.66299
\(396\) −0.693665 −0.0348580
\(397\) 1.90587 0.0956527 0.0478263 0.998856i \(-0.484771\pi\)
0.0478263 + 0.998856i \(0.484771\pi\)
\(398\) 5.71843 0.286639
\(399\) 26.2735 1.31532
\(400\) 9.77888 0.488944
\(401\) −11.0163 −0.550128 −0.275064 0.961426i \(-0.588699\pi\)
−0.275064 + 0.961426i \(0.588699\pi\)
\(402\) −17.1597 −0.855850
\(403\) −0.507715 −0.0252911
\(404\) −6.03448 −0.300226
\(405\) −43.2454 −2.14888
\(406\) 32.9375 1.63466
\(407\) −3.31572 −0.164354
\(408\) 3.00829 0.148932
\(409\) −5.30078 −0.262107 −0.131053 0.991375i \(-0.541836\pi\)
−0.131053 + 0.991375i \(0.541836\pi\)
\(410\) −41.0008 −2.02489
\(411\) −10.9826 −0.541730
\(412\) −1.09297 −0.0538468
\(413\) −39.1346 −1.92569
\(414\) −3.45145 −0.169630
\(415\) 38.8934 1.90920
\(416\) −0.0945931 −0.00463781
\(417\) 32.4281 1.58801
\(418\) 1.13012 0.0552760
\(419\) −25.5590 −1.24864 −0.624319 0.781169i \(-0.714624\pi\)
−0.624319 + 0.781169i \(0.714624\pi\)
\(420\) −40.5327 −1.97779
\(421\) −24.8795 −1.21255 −0.606276 0.795254i \(-0.707337\pi\)
−0.606276 + 0.795254i \(0.707337\pi\)
\(422\) −20.0839 −0.977671
\(423\) −2.19048 −0.106505
\(424\) 9.96897 0.484136
\(425\) 13.8224 0.670483
\(426\) −6.51431 −0.315619
\(427\) −4.70789 −0.227831
\(428\) 5.58489 0.269956
\(429\) 0.0913014 0.00440807
\(430\) −47.1950 −2.27595
\(431\) 19.4524 0.936988 0.468494 0.883467i \(-0.344797\pi\)
0.468494 + 0.883467i \(0.344797\pi\)
\(432\) −3.12955 −0.150571
\(433\) −16.7217 −0.803593 −0.401797 0.915729i \(-0.631614\pi\)
−0.401797 + 0.915729i \(0.631614\pi\)
\(434\) −26.5900 −1.27636
\(435\) −54.3977 −2.60817
\(436\) −6.76759 −0.324109
\(437\) 5.62311 0.268990
\(438\) 27.2980 1.30435
\(439\) −14.8215 −0.707390 −0.353695 0.935361i \(-0.615075\pi\)
−0.353695 + 0.935361i \(0.615075\pi\)
\(440\) −1.74346 −0.0831162
\(441\) 26.8316 1.27770
\(442\) −0.133706 −0.00635976
\(443\) −24.8635 −1.18130 −0.590651 0.806927i \(-0.701129\pi\)
−0.590651 + 0.806927i \(0.701129\pi\)
\(444\) 15.5601 0.738451
\(445\) −6.83533 −0.324026
\(446\) −5.45166 −0.258144
\(447\) 34.2607 1.62048
\(448\) −4.95403 −0.234056
\(449\) 22.0294 1.03963 0.519817 0.854278i \(-0.326000\pi\)
0.519817 + 0.854278i \(0.326000\pi\)
\(450\) 14.9571 0.705085
\(451\) 4.83685 0.227759
\(452\) −0.653864 −0.0307552
\(453\) −16.1156 −0.757175
\(454\) 14.8158 0.695340
\(455\) 1.80152 0.0844564
\(456\) −5.30347 −0.248358
\(457\) −27.1457 −1.26982 −0.634911 0.772585i \(-0.718963\pi\)
−0.634911 + 0.772585i \(0.718963\pi\)
\(458\) 21.9863 1.02735
\(459\) −4.42359 −0.206475
\(460\) −8.67489 −0.404469
\(461\) 27.6585 1.28819 0.644093 0.764947i \(-0.277235\pi\)
0.644093 + 0.764947i \(0.277235\pi\)
\(462\) 4.78163 0.222462
\(463\) 31.2336 1.45155 0.725774 0.687933i \(-0.241482\pi\)
0.725774 + 0.687933i \(0.241482\pi\)
\(464\) −6.64864 −0.308655
\(465\) 43.9145 2.03649
\(466\) 17.7722 0.823280
\(467\) −13.4254 −0.621255 −0.310628 0.950532i \(-0.600539\pi\)
−0.310628 + 0.950532i \(0.600539\pi\)
\(468\) −0.144683 −0.00668798
\(469\) 39.9431 1.84440
\(470\) −5.50555 −0.253952
\(471\) 46.5980 2.14712
\(472\) 7.89955 0.363606
\(473\) 5.56758 0.255998
\(474\) 29.3005 1.34581
\(475\) −24.3682 −1.11809
\(476\) −7.00247 −0.320958
\(477\) 15.2479 0.698152
\(478\) −12.0820 −0.552616
\(479\) 2.09566 0.0957533 0.0478767 0.998853i \(-0.484755\pi\)
0.0478767 + 0.998853i \(0.484755\pi\)
\(480\) 8.18177 0.373445
\(481\) −0.691586 −0.0315336
\(482\) 11.3215 0.515682
\(483\) 23.7918 1.08257
\(484\) −10.7943 −0.490651
\(485\) −49.6445 −2.25424
\(486\) −14.5525 −0.660116
\(487\) −38.1661 −1.72947 −0.864736 0.502226i \(-0.832515\pi\)
−0.864736 + 0.502226i \(0.832515\pi\)
\(488\) 0.950317 0.0430188
\(489\) −12.8147 −0.579499
\(490\) 67.4387 3.04657
\(491\) 6.36732 0.287353 0.143676 0.989625i \(-0.454108\pi\)
0.143676 + 0.989625i \(0.454108\pi\)
\(492\) −22.6986 −1.02333
\(493\) −9.39778 −0.423255
\(494\) 0.235718 0.0106055
\(495\) −2.66668 −0.119858
\(496\) 5.36736 0.241001
\(497\) 15.1635 0.680176
\(498\) 21.5318 0.964865
\(499\) 33.6939 1.50835 0.754173 0.656676i \(-0.228038\pi\)
0.754173 + 0.656676i \(0.228038\pi\)
\(500\) 18.3716 0.821603
\(501\) 41.8810 1.87111
\(502\) 8.60802 0.384195
\(503\) −29.6505 −1.32205 −0.661026 0.750363i \(-0.729879\pi\)
−0.661026 + 0.750363i \(0.729879\pi\)
\(504\) −7.57735 −0.337522
\(505\) −23.1985 −1.03232
\(506\) 1.02337 0.0454945
\(507\) −27.6485 −1.22791
\(508\) 8.29619 0.368084
\(509\) −3.41765 −0.151485 −0.0757423 0.997127i \(-0.524133\pi\)
−0.0757423 + 0.997127i \(0.524133\pi\)
\(510\) 11.5649 0.512100
\(511\) −63.5422 −2.81094
\(512\) 1.00000 0.0441942
\(513\) 7.79858 0.344316
\(514\) −14.3976 −0.635050
\(515\) −4.20174 −0.185151
\(516\) −26.1277 −1.15021
\(517\) 0.649488 0.0285645
\(518\) −36.2197 −1.59140
\(519\) 26.5635 1.16601
\(520\) −0.363647 −0.0159470
\(521\) 28.2730 1.23866 0.619330 0.785130i \(-0.287404\pi\)
0.619330 + 0.785130i \(0.287404\pi\)
\(522\) −10.1693 −0.445099
\(523\) −17.2424 −0.753956 −0.376978 0.926222i \(-0.623037\pi\)
−0.376978 + 0.926222i \(0.623037\pi\)
\(524\) −15.8736 −0.693440
\(525\) −103.104 −4.49981
\(526\) −22.3410 −0.974114
\(527\) 7.58670 0.330482
\(528\) −0.965201 −0.0420050
\(529\) −17.9080 −0.778610
\(530\) 38.3240 1.66469
\(531\) 12.0826 0.524341
\(532\) 12.3450 0.535225
\(533\) 1.00886 0.0436986
\(534\) −3.78413 −0.163755
\(535\) 21.4702 0.928236
\(536\) −8.06276 −0.348258
\(537\) 16.7068 0.720952
\(538\) −1.00000 −0.0431131
\(539\) −7.95572 −0.342677
\(540\) −12.0310 −0.517733
\(541\) −2.32570 −0.0999896 −0.0499948 0.998749i \(-0.515920\pi\)
−0.0499948 + 0.998749i \(0.515920\pi\)
\(542\) 16.7534 0.719620
\(543\) −38.2656 −1.64213
\(544\) 1.41349 0.0606029
\(545\) −26.0169 −1.11444
\(546\) 0.997342 0.0426823
\(547\) 26.5955 1.13714 0.568570 0.822635i \(-0.307497\pi\)
0.568570 + 0.822635i \(0.307497\pi\)
\(548\) −5.16032 −0.220438
\(549\) 1.45354 0.0620356
\(550\) −4.43487 −0.189103
\(551\) 16.5679 0.705814
\(552\) −4.80253 −0.204409
\(553\) −68.2034 −2.90030
\(554\) 14.7850 0.628155
\(555\) 59.8183 2.53915
\(556\) 15.2369 0.646187
\(557\) 19.7222 0.835658 0.417829 0.908526i \(-0.362791\pi\)
0.417829 + 0.908526i \(0.362791\pi\)
\(558\) 8.20955 0.347538
\(559\) 1.16127 0.0491166
\(560\) −19.0449 −0.804795
\(561\) −1.36430 −0.0576009
\(562\) 25.0439 1.05641
\(563\) −25.9388 −1.09319 −0.546595 0.837397i \(-0.684076\pi\)
−0.546595 + 0.837397i \(0.684076\pi\)
\(564\) −3.04794 −0.128342
\(565\) −2.51367 −0.105751
\(566\) 24.6030 1.03414
\(567\) 55.7285 2.34038
\(568\) −3.06085 −0.128430
\(569\) −44.9748 −1.88544 −0.942720 0.333584i \(-0.891742\pi\)
−0.942720 + 0.333584i \(0.891742\pi\)
\(570\) −20.3883 −0.853972
\(571\) −44.4599 −1.86059 −0.930294 0.366814i \(-0.880448\pi\)
−0.930294 + 0.366814i \(0.880448\pi\)
\(572\) 0.0428993 0.00179371
\(573\) −26.1892 −1.09407
\(574\) 52.8360 2.20533
\(575\) −22.0664 −0.920234
\(576\) 1.52953 0.0637305
\(577\) −36.6191 −1.52447 −0.762236 0.647299i \(-0.775898\pi\)
−0.762236 + 0.647299i \(0.775898\pi\)
\(578\) −15.0020 −0.624003
\(579\) 12.3909 0.514949
\(580\) −25.5596 −1.06130
\(581\) −50.1202 −2.07934
\(582\) −27.4838 −1.13924
\(583\) −4.52107 −0.187244
\(584\) 12.8264 0.530759
\(585\) −0.556210 −0.0229965
\(586\) −11.4618 −0.473484
\(587\) 20.5256 0.847184 0.423592 0.905853i \(-0.360769\pi\)
0.423592 + 0.905853i \(0.360769\pi\)
\(588\) 37.3349 1.53967
\(589\) −13.3750 −0.551108
\(590\) 30.3685 1.25025
\(591\) −46.1023 −1.89639
\(592\) 7.31117 0.300487
\(593\) −1.99866 −0.0820753 −0.0410377 0.999158i \(-0.513066\pi\)
−0.0410377 + 0.999158i \(0.513066\pi\)
\(594\) 1.41930 0.0582345
\(595\) −26.9198 −1.10360
\(596\) 16.0979 0.659397
\(597\) 12.1704 0.498100
\(598\) 0.213453 0.00872874
\(599\) 21.2473 0.868141 0.434070 0.900879i \(-0.357077\pi\)
0.434070 + 0.900879i \(0.357077\pi\)
\(600\) 20.8121 0.849650
\(601\) −22.2574 −0.907899 −0.453949 0.891028i \(-0.649985\pi\)
−0.453949 + 0.891028i \(0.649985\pi\)
\(602\) 60.8182 2.47876
\(603\) −12.3323 −0.502208
\(604\) −7.57215 −0.308106
\(605\) −41.4970 −1.68709
\(606\) −12.8430 −0.521711
\(607\) 7.20720 0.292531 0.146266 0.989245i \(-0.453275\pi\)
0.146266 + 0.989245i \(0.453275\pi\)
\(608\) −2.49192 −0.101061
\(609\) 70.0999 2.84059
\(610\) 3.65333 0.147919
\(611\) 0.135469 0.00548048
\(612\) 2.16198 0.0873928
\(613\) 15.9436 0.643956 0.321978 0.946747i \(-0.395652\pi\)
0.321978 + 0.946747i \(0.395652\pi\)
\(614\) −17.7679 −0.717052
\(615\) −87.2608 −3.51870
\(616\) 2.24672 0.0905231
\(617\) 18.0019 0.724729 0.362364 0.932037i \(-0.381970\pi\)
0.362364 + 0.932037i \(0.381970\pi\)
\(618\) −2.32614 −0.0935709
\(619\) −17.9006 −0.719487 −0.359744 0.933051i \(-0.617136\pi\)
−0.359744 + 0.933051i \(0.617136\pi\)
\(620\) 20.6339 0.828677
\(621\) 7.06196 0.283387
\(622\) 7.62146 0.305593
\(623\) 8.80840 0.352901
\(624\) −0.201320 −0.00805923
\(625\) 21.7321 0.869285
\(626\) 7.97031 0.318558
\(627\) 2.40520 0.0960545
\(628\) 21.8948 0.873696
\(629\) 10.3343 0.412054
\(630\) −29.1298 −1.16056
\(631\) 25.6888 1.02265 0.511327 0.859386i \(-0.329154\pi\)
0.511327 + 0.859386i \(0.329154\pi\)
\(632\) 13.7673 0.547633
\(633\) −42.7441 −1.69892
\(634\) 1.71640 0.0681671
\(635\) 31.8933 1.26565
\(636\) 21.2167 0.841295
\(637\) −1.65939 −0.0657473
\(638\) 3.01525 0.119375
\(639\) −4.68166 −0.185204
\(640\) 3.84433 0.151961
\(641\) 25.4553 1.00542 0.502712 0.864454i \(-0.332336\pi\)
0.502712 + 0.864454i \(0.332336\pi\)
\(642\) 11.8861 0.469109
\(643\) 22.7411 0.896823 0.448411 0.893827i \(-0.351990\pi\)
0.448411 + 0.893827i \(0.351990\pi\)
\(644\) 11.1790 0.440513
\(645\) −100.444 −3.95497
\(646\) −3.52230 −0.138583
\(647\) 28.5975 1.12428 0.562142 0.827041i \(-0.309977\pi\)
0.562142 + 0.827041i \(0.309977\pi\)
\(648\) −11.2491 −0.441907
\(649\) −3.58256 −0.140628
\(650\) −0.925014 −0.0362820
\(651\) −56.5907 −2.21797
\(652\) −6.02116 −0.235807
\(653\) −5.54791 −0.217107 −0.108553 0.994091i \(-0.534622\pi\)
−0.108553 + 0.994091i \(0.534622\pi\)
\(654\) −14.4033 −0.563212
\(655\) −61.0233 −2.38438
\(656\) −10.6653 −0.416409
\(657\) 19.6184 0.765385
\(658\) 7.09477 0.276583
\(659\) −27.7914 −1.08260 −0.541299 0.840830i \(-0.682067\pi\)
−0.541299 + 0.840830i \(0.682067\pi\)
\(660\) −3.71055 −0.144433
\(661\) 1.92881 0.0750221 0.0375111 0.999296i \(-0.488057\pi\)
0.0375111 + 0.999296i \(0.488057\pi\)
\(662\) −13.7537 −0.534552
\(663\) −0.284563 −0.0110515
\(664\) 10.1171 0.392618
\(665\) 47.4584 1.84036
\(666\) 11.1827 0.433320
\(667\) 15.0029 0.580915
\(668\) 19.6784 0.761382
\(669\) −11.6026 −0.448583
\(670\) −30.9959 −1.19748
\(671\) −0.430982 −0.0166379
\(672\) −10.5435 −0.406725
\(673\) 19.2283 0.741195 0.370597 0.928794i \(-0.379153\pi\)
0.370597 + 0.928794i \(0.379153\pi\)
\(674\) 18.7032 0.720419
\(675\) −30.6035 −1.17793
\(676\) −12.9911 −0.499656
\(677\) 3.56493 0.137011 0.0685057 0.997651i \(-0.478177\pi\)
0.0685057 + 0.997651i \(0.478177\pi\)
\(678\) −1.39160 −0.0534440
\(679\) 63.9747 2.45512
\(680\) 5.43392 0.208381
\(681\) 31.5320 1.20831
\(682\) −2.43417 −0.0932094
\(683\) 36.0055 1.37771 0.688856 0.724899i \(-0.258113\pi\)
0.688856 + 0.724899i \(0.258113\pi\)
\(684\) −3.81147 −0.145735
\(685\) −19.8380 −0.757971
\(686\) −52.2272 −1.99404
\(687\) 46.7927 1.78525
\(688\) −12.2765 −0.468038
\(689\) −0.942995 −0.0359253
\(690\) −18.4625 −0.702855
\(691\) 6.11836 0.232754 0.116377 0.993205i \(-0.462872\pi\)
0.116377 + 0.993205i \(0.462872\pi\)
\(692\) 12.4812 0.474466
\(693\) 3.43644 0.130539
\(694\) 12.9029 0.489786
\(695\) 58.5755 2.22190
\(696\) −14.1501 −0.536358
\(697\) −15.0752 −0.571016
\(698\) −4.29547 −0.162586
\(699\) 37.8240 1.43063
\(700\) −48.4448 −1.83104
\(701\) −27.4930 −1.03840 −0.519198 0.854654i \(-0.673769\pi\)
−0.519198 + 0.854654i \(0.673769\pi\)
\(702\) 0.296034 0.0111731
\(703\) −18.2188 −0.687136
\(704\) −0.453515 −0.0170925
\(705\) −11.7173 −0.441299
\(706\) −22.3707 −0.841934
\(707\) 29.8949 1.12432
\(708\) 16.8124 0.631848
\(709\) −41.8276 −1.57087 −0.785433 0.618946i \(-0.787560\pi\)
−0.785433 + 0.618946i \(0.787560\pi\)
\(710\) −11.7669 −0.441604
\(711\) 21.0575 0.789717
\(712\) −1.77803 −0.0666345
\(713\) −12.1117 −0.453585
\(714\) −14.9031 −0.557736
\(715\) 0.164919 0.00616763
\(716\) 7.84995 0.293366
\(717\) −25.7137 −0.960295
\(718\) 32.0628 1.19657
\(719\) −36.4204 −1.35825 −0.679126 0.734022i \(-0.737641\pi\)
−0.679126 + 0.734022i \(0.737641\pi\)
\(720\) 5.88003 0.219136
\(721\) 5.41461 0.201650
\(722\) −12.7903 −0.476008
\(723\) 24.0953 0.896114
\(724\) −17.9797 −0.668209
\(725\) −65.0162 −2.41464
\(726\) −22.9732 −0.852617
\(727\) 1.23081 0.0456481 0.0228241 0.999739i \(-0.492734\pi\)
0.0228241 + 0.999739i \(0.492734\pi\)
\(728\) 0.468616 0.0173681
\(729\) 2.77568 0.102803
\(730\) 49.3088 1.82500
\(731\) −17.3527 −0.641814
\(732\) 2.02253 0.0747549
\(733\) 27.5812 1.01873 0.509367 0.860550i \(-0.329880\pi\)
0.509367 + 0.860550i \(0.329880\pi\)
\(734\) −4.79576 −0.177015
\(735\) 143.528 5.29410
\(736\) −2.25654 −0.0831772
\(737\) 3.65658 0.134692
\(738\) −16.3129 −0.600485
\(739\) 19.3896 0.713257 0.356629 0.934246i \(-0.383926\pi\)
0.356629 + 0.934246i \(0.383926\pi\)
\(740\) 28.1065 1.03322
\(741\) 0.501672 0.0184294
\(742\) −49.3865 −1.81304
\(743\) −3.02696 −0.111048 −0.0555242 0.998457i \(-0.517683\pi\)
−0.0555242 + 0.998457i \(0.517683\pi\)
\(744\) 11.4232 0.418794
\(745\) 61.8858 2.26732
\(746\) 32.9108 1.20495
\(747\) 15.4744 0.566178
\(748\) −0.641038 −0.0234387
\(749\) −27.6677 −1.01096
\(750\) 39.0997 1.42772
\(751\) 5.10910 0.186434 0.0932168 0.995646i \(-0.470285\pi\)
0.0932168 + 0.995646i \(0.470285\pi\)
\(752\) −1.43212 −0.0522241
\(753\) 18.3202 0.667625
\(754\) 0.628915 0.0229037
\(755\) −29.1098 −1.05942
\(756\) 15.5039 0.563871
\(757\) −27.3805 −0.995161 −0.497580 0.867418i \(-0.665778\pi\)
−0.497580 + 0.867418i \(0.665778\pi\)
\(758\) −8.98570 −0.326375
\(759\) 2.17802 0.0790570
\(760\) −9.57975 −0.347494
\(761\) −49.3210 −1.78789 −0.893943 0.448181i \(-0.852072\pi\)
−0.893943 + 0.448181i \(0.852072\pi\)
\(762\) 17.6565 0.639629
\(763\) 33.5268 1.21375
\(764\) −12.3054 −0.445193
\(765\) 8.31136 0.300498
\(766\) 0.787688 0.0284603
\(767\) −0.747243 −0.0269814
\(768\) 2.12827 0.0767973
\(769\) 11.8488 0.427277 0.213639 0.976913i \(-0.431468\pi\)
0.213639 + 0.976913i \(0.431468\pi\)
\(770\) 8.63715 0.311261
\(771\) −30.6419 −1.10354
\(772\) 5.82207 0.209541
\(773\) 14.0516 0.505401 0.252700 0.967545i \(-0.418681\pi\)
0.252700 + 0.967545i \(0.418681\pi\)
\(774\) −18.7773 −0.674937
\(775\) 52.4867 1.88538
\(776\) −12.9137 −0.463574
\(777\) −77.0853 −2.76542
\(778\) −4.15609 −0.149003
\(779\) 26.5770 0.952218
\(780\) −0.773939 −0.0277115
\(781\) 1.38814 0.0496715
\(782\) −3.18960 −0.114060
\(783\) 20.8073 0.743591
\(784\) 17.5424 0.626513
\(785\) 84.1707 3.00418
\(786\) −33.7833 −1.20501
\(787\) −22.7651 −0.811489 −0.405744 0.913987i \(-0.632988\pi\)
−0.405744 + 0.913987i \(0.632988\pi\)
\(788\) −21.6619 −0.771671
\(789\) −47.5477 −1.69274
\(790\) 52.9259 1.88302
\(791\) 3.23926 0.115175
\(792\) −0.693665 −0.0246483
\(793\) −0.0898934 −0.00319221
\(794\) 1.90587 0.0676367
\(795\) 81.5638 2.89277
\(796\) 5.71843 0.202684
\(797\) 32.9141 1.16588 0.582938 0.812517i \(-0.301903\pi\)
0.582938 + 0.812517i \(0.301903\pi\)
\(798\) 26.2735 0.930073
\(799\) −2.02429 −0.0716143
\(800\) 9.77888 0.345736
\(801\) −2.71955 −0.0960907
\(802\) −11.0163 −0.388999
\(803\) −5.81695 −0.205276
\(804\) −17.1597 −0.605177
\(805\) 42.9756 1.51469
\(806\) −0.507715 −0.0178835
\(807\) −2.12827 −0.0749186
\(808\) −6.03448 −0.212292
\(809\) −35.8700 −1.26112 −0.630560 0.776140i \(-0.717175\pi\)
−0.630560 + 0.776140i \(0.717175\pi\)
\(810\) −43.2454 −1.51949
\(811\) −16.6343 −0.584109 −0.292055 0.956402i \(-0.594339\pi\)
−0.292055 + 0.956402i \(0.594339\pi\)
\(812\) 32.9375 1.15588
\(813\) 35.6558 1.25050
\(814\) −3.31572 −0.116216
\(815\) −23.1473 −0.810816
\(816\) 3.00829 0.105311
\(817\) 30.5921 1.07028
\(818\) −5.30078 −0.185337
\(819\) 0.716764 0.0250458
\(820\) −41.0008 −1.43181
\(821\) 32.4924 1.13399 0.566997 0.823720i \(-0.308105\pi\)
0.566997 + 0.823720i \(0.308105\pi\)
\(822\) −10.9826 −0.383061
\(823\) −29.9885 −1.04533 −0.522666 0.852537i \(-0.675063\pi\)
−0.522666 + 0.852537i \(0.675063\pi\)
\(824\) −1.09297 −0.0380754
\(825\) −9.43859 −0.328610
\(826\) −39.1346 −1.36167
\(827\) 31.1200 1.08215 0.541075 0.840975i \(-0.318018\pi\)
0.541075 + 0.840975i \(0.318018\pi\)
\(828\) −3.45145 −0.119946
\(829\) −15.8365 −0.550025 −0.275013 0.961441i \(-0.588682\pi\)
−0.275013 + 0.961441i \(0.588682\pi\)
\(830\) 38.8934 1.35001
\(831\) 31.4665 1.09156
\(832\) −0.0945931 −0.00327942
\(833\) 24.7960 0.859129
\(834\) 32.4281 1.12289
\(835\) 75.6504 2.61799
\(836\) 1.13012 0.0390860
\(837\) −16.7974 −0.580604
\(838\) −25.5590 −0.882921
\(839\) −12.2519 −0.422981 −0.211491 0.977380i \(-0.567832\pi\)
−0.211491 + 0.977380i \(0.567832\pi\)
\(840\) −40.5327 −1.39851
\(841\) 15.2044 0.524289
\(842\) −24.8795 −0.857403
\(843\) 53.3002 1.83576
\(844\) −20.0839 −0.691318
\(845\) −49.9419 −1.71805
\(846\) −2.19048 −0.0753102
\(847\) 53.4754 1.83744
\(848\) 9.96897 0.342336
\(849\) 52.3617 1.79705
\(850\) 13.8224 0.474103
\(851\) −16.4979 −0.565542
\(852\) −6.51431 −0.223176
\(853\) −9.41699 −0.322431 −0.161216 0.986919i \(-0.551541\pi\)
−0.161216 + 0.986919i \(0.551541\pi\)
\(854\) −4.70789 −0.161101
\(855\) −14.6525 −0.501107
\(856\) 5.58489 0.190888
\(857\) 19.2781 0.658529 0.329264 0.944238i \(-0.393199\pi\)
0.329264 + 0.944238i \(0.393199\pi\)
\(858\) 0.0913014 0.00311698
\(859\) −48.7953 −1.66487 −0.832437 0.554120i \(-0.813055\pi\)
−0.832437 + 0.554120i \(0.813055\pi\)
\(860\) −47.1950 −1.60934
\(861\) 112.449 3.83226
\(862\) 19.4524 0.662551
\(863\) 27.3052 0.929481 0.464741 0.885447i \(-0.346148\pi\)
0.464741 + 0.885447i \(0.346148\pi\)
\(864\) −3.12955 −0.106469
\(865\) 47.9820 1.63144
\(866\) −16.7217 −0.568226
\(867\) −31.9284 −1.08435
\(868\) −26.5900 −0.902524
\(869\) −6.24366 −0.211802
\(870\) −54.3977 −1.84425
\(871\) 0.762681 0.0258425
\(872\) −6.76759 −0.229180
\(873\) −19.7519 −0.668500
\(874\) 5.62311 0.190205
\(875\) −91.0134 −3.07681
\(876\) 27.2980 0.922314
\(877\) −14.3551 −0.484737 −0.242368 0.970184i \(-0.577924\pi\)
−0.242368 + 0.970184i \(0.577924\pi\)
\(878\) −14.8215 −0.500201
\(879\) −24.3939 −0.822785
\(880\) −1.74346 −0.0587720
\(881\) −20.4566 −0.689201 −0.344600 0.938749i \(-0.611986\pi\)
−0.344600 + 0.938749i \(0.611986\pi\)
\(882\) 26.8316 0.903468
\(883\) 13.2088 0.444510 0.222255 0.974989i \(-0.428658\pi\)
0.222255 + 0.974989i \(0.428658\pi\)
\(884\) −0.133706 −0.00449703
\(885\) 64.6323 2.17259
\(886\) −24.8635 −0.835307
\(887\) −21.4469 −0.720115 −0.360058 0.932930i \(-0.617243\pi\)
−0.360058 + 0.932930i \(0.617243\pi\)
\(888\) 15.5601 0.522164
\(889\) −41.0996 −1.37844
\(890\) −6.83533 −0.229121
\(891\) 5.10164 0.170911
\(892\) −5.45166 −0.182535
\(893\) 3.56873 0.119423
\(894\) 34.2607 1.14585
\(895\) 30.1778 1.00873
\(896\) −4.95403 −0.165502
\(897\) 0.454286 0.0151682
\(898\) 22.0294 0.735132
\(899\) −35.6856 −1.19018
\(900\) 14.9571 0.498571
\(901\) 14.0910 0.469441
\(902\) 4.83685 0.161050
\(903\) 129.438 4.30741
\(904\) −0.653864 −0.0217472
\(905\) −69.1198 −2.29762
\(906\) −16.1156 −0.535404
\(907\) −53.7295 −1.78406 −0.892029 0.451977i \(-0.850719\pi\)
−0.892029 + 0.451977i \(0.850719\pi\)
\(908\) 14.8158 0.491680
\(909\) −9.22993 −0.306137
\(910\) 1.80152 0.0597197
\(911\) −17.7091 −0.586728 −0.293364 0.956001i \(-0.594775\pi\)
−0.293364 + 0.956001i \(0.594775\pi\)
\(912\) −5.30347 −0.175615
\(913\) −4.58824 −0.151848
\(914\) −27.1457 −0.897900
\(915\) 7.77528 0.257043
\(916\) 21.9863 0.726447
\(917\) 78.6381 2.59686
\(918\) −4.42359 −0.146000
\(919\) 59.7641 1.97144 0.985718 0.168406i \(-0.0538619\pi\)
0.985718 + 0.168406i \(0.0538619\pi\)
\(920\) −8.67489 −0.286003
\(921\) −37.8148 −1.24604
\(922\) 27.6585 0.910885
\(923\) 0.289535 0.00953015
\(924\) 4.78163 0.157304
\(925\) 71.4950 2.35074
\(926\) 31.2336 1.02640
\(927\) −1.67173 −0.0549070
\(928\) −6.64864 −0.218252
\(929\) −53.9545 −1.77019 −0.885095 0.465410i \(-0.845907\pi\)
−0.885095 + 0.465410i \(0.845907\pi\)
\(930\) 43.9145 1.44001
\(931\) −43.7141 −1.43267
\(932\) 17.7722 0.582147
\(933\) 16.2205 0.531036
\(934\) −13.4254 −0.439294
\(935\) −2.46436 −0.0805933
\(936\) −0.144683 −0.00472912
\(937\) −23.7929 −0.777280 −0.388640 0.921390i \(-0.627055\pi\)
−0.388640 + 0.921390i \(0.627055\pi\)
\(938\) 39.9431 1.30419
\(939\) 16.9630 0.553566
\(940\) −5.50555 −0.179571
\(941\) −30.7434 −1.00221 −0.501103 0.865388i \(-0.667072\pi\)
−0.501103 + 0.865388i \(0.667072\pi\)
\(942\) 46.5980 1.51824
\(943\) 24.0666 0.783716
\(944\) 7.89955 0.257108
\(945\) 59.6020 1.93885
\(946\) 5.56758 0.181018
\(947\) 44.2821 1.43897 0.719487 0.694506i \(-0.244377\pi\)
0.719487 + 0.694506i \(0.244377\pi\)
\(948\) 29.3005 0.951635
\(949\) −1.21329 −0.0393849
\(950\) −24.3682 −0.790608
\(951\) 3.65297 0.118456
\(952\) −7.00247 −0.226951
\(953\) −9.40636 −0.304702 −0.152351 0.988326i \(-0.548684\pi\)
−0.152351 + 0.988326i \(0.548684\pi\)
\(954\) 15.2479 0.493668
\(955\) −47.3059 −1.53078
\(956\) −12.0820 −0.390759
\(957\) 6.41727 0.207441
\(958\) 2.09566 0.0677078
\(959\) 25.5644 0.825517
\(960\) 8.18177 0.264066
\(961\) −2.19148 −0.0706930
\(962\) −0.691586 −0.0222976
\(963\) 8.54227 0.275271
\(964\) 11.3215 0.364642
\(965\) 22.3819 0.720500
\(966\) 23.7918 0.765490
\(967\) −56.8679 −1.82875 −0.914373 0.404872i \(-0.867316\pi\)
−0.914373 + 0.404872i \(0.867316\pi\)
\(968\) −10.7943 −0.346943
\(969\) −7.49640 −0.240819
\(970\) −49.6445 −1.59399
\(971\) −21.1723 −0.679452 −0.339726 0.940524i \(-0.610334\pi\)
−0.339726 + 0.940524i \(0.610334\pi\)
\(972\) −14.5525 −0.466773
\(973\) −75.4838 −2.41990
\(974\) −38.1661 −1.22292
\(975\) −1.96868 −0.0630482
\(976\) 0.950317 0.0304189
\(977\) 6.11162 0.195528 0.0977641 0.995210i \(-0.468831\pi\)
0.0977641 + 0.995210i \(0.468831\pi\)
\(978\) −12.8147 −0.409768
\(979\) 0.806362 0.0257714
\(980\) 67.4387 2.15425
\(981\) −10.3513 −0.330490
\(982\) 6.36732 0.203189
\(983\) 42.4508 1.35397 0.676985 0.735997i \(-0.263286\pi\)
0.676985 + 0.735997i \(0.263286\pi\)
\(984\) −22.6986 −0.723604
\(985\) −83.2753 −2.65337
\(986\) −9.39778 −0.299286
\(987\) 15.0996 0.480625
\(988\) 0.235718 0.00749919
\(989\) 27.7025 0.880887
\(990\) −2.66668 −0.0847526
\(991\) −52.9269 −1.68128 −0.840640 0.541594i \(-0.817821\pi\)
−0.840640 + 0.541594i \(0.817821\pi\)
\(992\) 5.36736 0.170414
\(993\) −29.2715 −0.928904
\(994\) 15.1635 0.480957
\(995\) 21.9835 0.696925
\(996\) 21.5318 0.682263
\(997\) −43.4208 −1.37515 −0.687575 0.726113i \(-0.741325\pi\)
−0.687575 + 0.726113i \(0.741325\pi\)
\(998\) 33.6939 1.06656
\(999\) −22.8807 −0.723912
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.2.a.e.1.6 7
3.2 odd 2 4842.2.a.n.1.2 7
4.3 odd 2 4304.2.a.h.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.6 7 1.1 even 1 trivial
4304.2.a.h.1.2 7 4.3 odd 2
4842.2.a.n.1.2 7 3.2 odd 2