Properties

Label 538.2.a.e.1.4
Level $538$
Weight $2$
Character 538.1
Self dual yes
Analytic conductor $4.296$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.33118\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.366193 q^{3} +1.00000 q^{4} -0.953965 q^{5} +0.366193 q^{6} +3.52894 q^{7} +1.00000 q^{8} -2.86590 q^{9} -0.953965 q^{10} +5.52181 q^{11} +0.366193 q^{12} -3.59708 q^{13} +3.52894 q^{14} -0.349336 q^{15} +1.00000 q^{16} +3.46821 q^{17} -2.86590 q^{18} +3.06529 q^{19} -0.953965 q^{20} +1.29227 q^{21} +5.52181 q^{22} +1.26761 q^{23} +0.366193 q^{24} -4.08995 q^{25} -3.59708 q^{26} -2.14806 q^{27} +3.52894 q^{28} -5.08210 q^{29} -0.349336 q^{30} +6.41035 q^{31} +1.00000 q^{32} +2.02205 q^{33} +3.46821 q^{34} -3.36648 q^{35} -2.86590 q^{36} +5.26979 q^{37} +3.06529 q^{38} -1.31723 q^{39} -0.953965 q^{40} -7.30413 q^{41} +1.29227 q^{42} -7.77528 q^{43} +5.52181 q^{44} +2.73397 q^{45} +1.26761 q^{46} +4.64032 q^{47} +0.366193 q^{48} +5.45340 q^{49} -4.08995 q^{50} +1.27004 q^{51} -3.59708 q^{52} +1.77008 q^{53} -2.14806 q^{54} -5.26761 q^{55} +3.52894 q^{56} +1.12249 q^{57} -5.08210 q^{58} -1.53880 q^{59} -0.349336 q^{60} -12.3708 q^{61} +6.41035 q^{62} -10.1136 q^{63} +1.00000 q^{64} +3.43148 q^{65} +2.02205 q^{66} -7.27990 q^{67} +3.46821 q^{68} +0.464192 q^{69} -3.36648 q^{70} -2.76845 q^{71} -2.86590 q^{72} -14.2747 q^{73} +5.26979 q^{74} -1.49771 q^{75} +3.06529 q^{76} +19.4861 q^{77} -1.31723 q^{78} +2.33688 q^{79} -0.953965 q^{80} +7.81110 q^{81} -7.30413 q^{82} -1.34837 q^{83} +1.29227 q^{84} -3.30855 q^{85} -7.77528 q^{86} -1.86103 q^{87} +5.52181 q^{88} -6.70123 q^{89} +2.73397 q^{90} -12.6939 q^{91} +1.26761 q^{92} +2.34743 q^{93} +4.64032 q^{94} -2.92418 q^{95} +0.366193 q^{96} -0.295411 q^{97} +5.45340 q^{98} -15.8250 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 7 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 12 q^{9} + 7 q^{10} - 3 q^{11} + q^{12} - 9 q^{13} + 6 q^{14} + 8 q^{15} + 7 q^{16} + 8 q^{17} + 12 q^{18} - 11 q^{19} + 7 q^{20}+ \cdots - 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.366193 0.211422 0.105711 0.994397i \(-0.466288\pi\)
0.105711 + 0.994397i \(0.466288\pi\)
\(4\) 1.00000 0.500000
\(5\) −0.953965 −0.426626 −0.213313 0.976984i \(-0.568425\pi\)
−0.213313 + 0.976984i \(0.568425\pi\)
\(6\) 0.366193 0.149498
\(7\) 3.52894 1.33381 0.666907 0.745141i \(-0.267618\pi\)
0.666907 + 0.745141i \(0.267618\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.86590 −0.955301
\(10\) −0.953965 −0.301670
\(11\) 5.52181 1.66489 0.832445 0.554108i \(-0.186941\pi\)
0.832445 + 0.554108i \(0.186941\pi\)
\(12\) 0.366193 0.105711
\(13\) −3.59708 −0.997650 −0.498825 0.866703i \(-0.666235\pi\)
−0.498825 + 0.866703i \(0.666235\pi\)
\(14\) 3.52894 0.943148
\(15\) −0.349336 −0.0901981
\(16\) 1.00000 0.250000
\(17\) 3.46821 0.841165 0.420583 0.907254i \(-0.361826\pi\)
0.420583 + 0.907254i \(0.361826\pi\)
\(18\) −2.86590 −0.675500
\(19\) 3.06529 0.703226 0.351613 0.936145i \(-0.385633\pi\)
0.351613 + 0.936145i \(0.385633\pi\)
\(20\) −0.953965 −0.213313
\(21\) 1.29227 0.281997
\(22\) 5.52181 1.17725
\(23\) 1.26761 0.264316 0.132158 0.991229i \(-0.457809\pi\)
0.132158 + 0.991229i \(0.457809\pi\)
\(24\) 0.366193 0.0747489
\(25\) −4.08995 −0.817990
\(26\) −3.59708 −0.705445
\(27\) −2.14806 −0.413393
\(28\) 3.52894 0.666907
\(29\) −5.08210 −0.943722 −0.471861 0.881673i \(-0.656418\pi\)
−0.471861 + 0.881673i \(0.656418\pi\)
\(30\) −0.349336 −0.0637797
\(31\) 6.41035 1.15133 0.575666 0.817685i \(-0.304743\pi\)
0.575666 + 0.817685i \(0.304743\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.02205 0.351994
\(34\) 3.46821 0.594794
\(35\) −3.36648 −0.569039
\(36\) −2.86590 −0.477650
\(37\) 5.26979 0.866349 0.433174 0.901310i \(-0.357393\pi\)
0.433174 + 0.901310i \(0.357393\pi\)
\(38\) 3.06529 0.497256
\(39\) −1.31723 −0.210925
\(40\) −0.953965 −0.150835
\(41\) −7.30413 −1.14071 −0.570357 0.821397i \(-0.693195\pi\)
−0.570357 + 0.821397i \(0.693195\pi\)
\(42\) 1.29227 0.199402
\(43\) −7.77528 −1.18572 −0.592860 0.805306i \(-0.702001\pi\)
−0.592860 + 0.805306i \(0.702001\pi\)
\(44\) 5.52181 0.832445
\(45\) 2.73397 0.407556
\(46\) 1.26761 0.186899
\(47\) 4.64032 0.676860 0.338430 0.940992i \(-0.390104\pi\)
0.338430 + 0.940992i \(0.390104\pi\)
\(48\) 0.366193 0.0528555
\(49\) 5.45340 0.779058
\(50\) −4.08995 −0.578407
\(51\) 1.27004 0.177841
\(52\) −3.59708 −0.498825
\(53\) 1.77008 0.243140 0.121570 0.992583i \(-0.461207\pi\)
0.121570 + 0.992583i \(0.461207\pi\)
\(54\) −2.14806 −0.292313
\(55\) −5.26761 −0.710285
\(56\) 3.52894 0.471574
\(57\) 1.12249 0.148677
\(58\) −5.08210 −0.667312
\(59\) −1.53880 −0.200335 −0.100168 0.994971i \(-0.531938\pi\)
−0.100168 + 0.994971i \(0.531938\pi\)
\(60\) −0.349336 −0.0450990
\(61\) −12.3708 −1.58391 −0.791957 0.610576i \(-0.790938\pi\)
−0.791957 + 0.610576i \(0.790938\pi\)
\(62\) 6.41035 0.814115
\(63\) −10.1136 −1.27419
\(64\) 1.00000 0.125000
\(65\) 3.43148 0.425623
\(66\) 2.02205 0.248897
\(67\) −7.27990 −0.889382 −0.444691 0.895684i \(-0.646686\pi\)
−0.444691 + 0.895684i \(0.646686\pi\)
\(68\) 3.46821 0.420583
\(69\) 0.464192 0.0558821
\(70\) −3.36648 −0.402372
\(71\) −2.76845 −0.328554 −0.164277 0.986414i \(-0.552529\pi\)
−0.164277 + 0.986414i \(0.552529\pi\)
\(72\) −2.86590 −0.337750
\(73\) −14.2747 −1.67073 −0.835366 0.549693i \(-0.814745\pi\)
−0.835366 + 0.549693i \(0.814745\pi\)
\(74\) 5.26979 0.612601
\(75\) −1.49771 −0.172941
\(76\) 3.06529 0.351613
\(77\) 19.4861 2.22065
\(78\) −1.31723 −0.149147
\(79\) 2.33688 0.262919 0.131460 0.991322i \(-0.458034\pi\)
0.131460 + 0.991322i \(0.458034\pi\)
\(80\) −0.953965 −0.106656
\(81\) 7.81110 0.867900
\(82\) −7.30413 −0.806607
\(83\) −1.34837 −0.148003 −0.0740013 0.997258i \(-0.523577\pi\)
−0.0740013 + 0.997258i \(0.523577\pi\)
\(84\) 1.29227 0.140999
\(85\) −3.30855 −0.358863
\(86\) −7.77528 −0.838430
\(87\) −1.86103 −0.199523
\(88\) 5.52181 0.588627
\(89\) −6.70123 −0.710328 −0.355164 0.934804i \(-0.615575\pi\)
−0.355164 + 0.934804i \(0.615575\pi\)
\(90\) 2.73397 0.288186
\(91\) −12.6939 −1.33068
\(92\) 1.26761 0.132158
\(93\) 2.34743 0.243417
\(94\) 4.64032 0.478612
\(95\) −2.92418 −0.300014
\(96\) 0.366193 0.0373745
\(97\) −0.295411 −0.0299944 −0.0149972 0.999888i \(-0.504774\pi\)
−0.0149972 + 0.999888i \(0.504774\pi\)
\(98\) 5.45340 0.550877
\(99\) −15.8250 −1.59047
\(100\) −4.08995 −0.408995
\(101\) 3.14362 0.312802 0.156401 0.987694i \(-0.450011\pi\)
0.156401 + 0.987694i \(0.450011\pi\)
\(102\) 1.27004 0.125752
\(103\) −13.0436 −1.28523 −0.642613 0.766191i \(-0.722150\pi\)
−0.642613 + 0.766191i \(0.722150\pi\)
\(104\) −3.59708 −0.352722
\(105\) −1.23278 −0.120307
\(106\) 1.77008 0.171926
\(107\) 11.9783 1.15799 0.578995 0.815331i \(-0.303445\pi\)
0.578995 + 0.815331i \(0.303445\pi\)
\(108\) −2.14806 −0.206697
\(109\) −7.50255 −0.718614 −0.359307 0.933219i \(-0.616987\pi\)
−0.359307 + 0.933219i \(0.616987\pi\)
\(110\) −5.26761 −0.502247
\(111\) 1.92976 0.183165
\(112\) 3.52894 0.333453
\(113\) 11.9300 1.12228 0.561139 0.827722i \(-0.310363\pi\)
0.561139 + 0.827722i \(0.310363\pi\)
\(114\) 1.12249 0.105131
\(115\) −1.20926 −0.112764
\(116\) −5.08210 −0.471861
\(117\) 10.3089 0.953056
\(118\) −1.53880 −0.141658
\(119\) 12.2391 1.12196
\(120\) −0.349336 −0.0318898
\(121\) 19.4904 1.77186
\(122\) −12.3708 −1.12000
\(123\) −2.67473 −0.241172
\(124\) 6.41035 0.575666
\(125\) 8.67149 0.775602
\(126\) −10.1136 −0.900990
\(127\) 1.76310 0.156449 0.0782247 0.996936i \(-0.475075\pi\)
0.0782247 + 0.996936i \(0.475075\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.84726 −0.250687
\(130\) 3.43148 0.300961
\(131\) −8.08575 −0.706455 −0.353228 0.935537i \(-0.614916\pi\)
−0.353228 + 0.935537i \(0.614916\pi\)
\(132\) 2.02205 0.175997
\(133\) 10.8172 0.937972
\(134\) −7.27990 −0.628888
\(135\) 2.04917 0.176364
\(136\) 3.46821 0.297397
\(137\) −6.58186 −0.562326 −0.281163 0.959660i \(-0.590720\pi\)
−0.281163 + 0.959660i \(0.590720\pi\)
\(138\) 0.464192 0.0395146
\(139\) −13.3633 −1.13346 −0.566728 0.823905i \(-0.691791\pi\)
−0.566728 + 0.823905i \(0.691791\pi\)
\(140\) −3.36648 −0.284520
\(141\) 1.69925 0.143103
\(142\) −2.76845 −0.232323
\(143\) −19.8624 −1.66098
\(144\) −2.86590 −0.238825
\(145\) 4.84814 0.402616
\(146\) −14.2747 −1.18139
\(147\) 1.99700 0.164710
\(148\) 5.26979 0.433174
\(149\) 10.5913 0.867671 0.433835 0.900992i \(-0.357160\pi\)
0.433835 + 0.900992i \(0.357160\pi\)
\(150\) −1.49771 −0.122288
\(151\) 8.26703 0.672761 0.336381 0.941726i \(-0.390797\pi\)
0.336381 + 0.941726i \(0.390797\pi\)
\(152\) 3.06529 0.248628
\(153\) −9.93956 −0.803566
\(154\) 19.4861 1.57024
\(155\) −6.11525 −0.491188
\(156\) −1.31723 −0.105463
\(157\) −18.0608 −1.44141 −0.720705 0.693242i \(-0.756182\pi\)
−0.720705 + 0.693242i \(0.756182\pi\)
\(158\) 2.33688 0.185912
\(159\) 0.648193 0.0514051
\(160\) −0.953965 −0.0754175
\(161\) 4.47333 0.352548
\(162\) 7.81110 0.613698
\(163\) −4.53006 −0.354822 −0.177411 0.984137i \(-0.556772\pi\)
−0.177411 + 0.984137i \(0.556772\pi\)
\(164\) −7.30413 −0.570357
\(165\) −1.92897 −0.150170
\(166\) −1.34837 −0.104654
\(167\) −11.6274 −0.899753 −0.449876 0.893091i \(-0.648532\pi\)
−0.449876 + 0.893091i \(0.648532\pi\)
\(168\) 1.29227 0.0997011
\(169\) −0.0610353 −0.00469502
\(170\) −3.30855 −0.253754
\(171\) −8.78482 −0.671792
\(172\) −7.77528 −0.592860
\(173\) 19.3718 1.47281 0.736406 0.676540i \(-0.236521\pi\)
0.736406 + 0.676540i \(0.236521\pi\)
\(174\) −1.86103 −0.141084
\(175\) −14.4332 −1.09105
\(176\) 5.52181 0.416222
\(177\) −0.563500 −0.0423552
\(178\) −6.70123 −0.502278
\(179\) 15.3979 1.15090 0.575448 0.817838i \(-0.304828\pi\)
0.575448 + 0.817838i \(0.304828\pi\)
\(180\) 2.73397 0.203778
\(181\) 4.31917 0.321041 0.160521 0.987032i \(-0.448683\pi\)
0.160521 + 0.987032i \(0.448683\pi\)
\(182\) −12.6939 −0.940932
\(183\) −4.53010 −0.334874
\(184\) 1.26761 0.0934497
\(185\) −5.02720 −0.369607
\(186\) 2.34743 0.172122
\(187\) 19.1508 1.40045
\(188\) 4.64032 0.338430
\(189\) −7.58035 −0.551390
\(190\) −2.92418 −0.212142
\(191\) 13.7202 0.992762 0.496381 0.868105i \(-0.334662\pi\)
0.496381 + 0.868105i \(0.334662\pi\)
\(192\) 0.366193 0.0264277
\(193\) 7.51242 0.540756 0.270378 0.962754i \(-0.412851\pi\)
0.270378 + 0.962754i \(0.412851\pi\)
\(194\) −0.295411 −0.0212093
\(195\) 1.25659 0.0899861
\(196\) 5.45340 0.389529
\(197\) −23.5591 −1.67852 −0.839258 0.543733i \(-0.817010\pi\)
−0.839258 + 0.543733i \(0.817010\pi\)
\(198\) −15.8250 −1.12463
\(199\) 16.7895 1.19018 0.595088 0.803660i \(-0.297117\pi\)
0.595088 + 0.803660i \(0.297117\pi\)
\(200\) −4.08995 −0.289203
\(201\) −2.66585 −0.188035
\(202\) 3.14362 0.221185
\(203\) −17.9344 −1.25875
\(204\) 1.27004 0.0889204
\(205\) 6.96789 0.486658
\(206\) −13.0436 −0.908792
\(207\) −3.63286 −0.252501
\(208\) −3.59708 −0.249412
\(209\) 16.9260 1.17079
\(210\) −1.23278 −0.0850702
\(211\) 12.8667 0.885778 0.442889 0.896577i \(-0.353954\pi\)
0.442889 + 0.896577i \(0.353954\pi\)
\(212\) 1.77008 0.121570
\(213\) −1.01379 −0.0694636
\(214\) 11.9783 0.818822
\(215\) 7.41734 0.505859
\(216\) −2.14806 −0.146157
\(217\) 22.6217 1.53566
\(218\) −7.50255 −0.508137
\(219\) −5.22732 −0.353230
\(220\) −5.26761 −0.355142
\(221\) −12.4754 −0.839188
\(222\) 1.92976 0.129517
\(223\) 18.0816 1.21083 0.605416 0.795909i \(-0.293007\pi\)
0.605416 + 0.795909i \(0.293007\pi\)
\(224\) 3.52894 0.235787
\(225\) 11.7214 0.781427
\(226\) 11.9300 0.793571
\(227\) −4.79467 −0.318233 −0.159117 0.987260i \(-0.550865\pi\)
−0.159117 + 0.987260i \(0.550865\pi\)
\(228\) 1.12249 0.0743387
\(229\) −20.1770 −1.33334 −0.666668 0.745354i \(-0.732280\pi\)
−0.666668 + 0.745354i \(0.732280\pi\)
\(230\) −1.20926 −0.0797361
\(231\) 7.13570 0.469494
\(232\) −5.08210 −0.333656
\(233\) 16.7595 1.09795 0.548976 0.835838i \(-0.315018\pi\)
0.548976 + 0.835838i \(0.315018\pi\)
\(234\) 10.3089 0.673912
\(235\) −4.42670 −0.288766
\(236\) −1.53880 −0.100168
\(237\) 0.855750 0.0555869
\(238\) 12.2391 0.793344
\(239\) 26.7477 1.73016 0.865082 0.501631i \(-0.167266\pi\)
0.865082 + 0.501631i \(0.167266\pi\)
\(240\) −0.349336 −0.0225495
\(241\) −3.58966 −0.231231 −0.115615 0.993294i \(-0.536884\pi\)
−0.115615 + 0.993294i \(0.536884\pi\)
\(242\) 19.4904 1.25289
\(243\) 9.30454 0.596887
\(244\) −12.3708 −0.791957
\(245\) −5.20235 −0.332366
\(246\) −2.67473 −0.170534
\(247\) −11.0261 −0.701573
\(248\) 6.41035 0.407058
\(249\) −0.493763 −0.0312910
\(250\) 8.67149 0.548433
\(251\) 10.9688 0.692343 0.346171 0.938171i \(-0.387482\pi\)
0.346171 + 0.938171i \(0.387482\pi\)
\(252\) −10.1136 −0.637096
\(253\) 6.99952 0.440056
\(254\) 1.76310 0.110627
\(255\) −1.21157 −0.0758715
\(256\) 1.00000 0.0625000
\(257\) 2.02263 0.126168 0.0630842 0.998008i \(-0.479906\pi\)
0.0630842 + 0.998008i \(0.479906\pi\)
\(258\) −2.84726 −0.177263
\(259\) 18.5968 1.15555
\(260\) 3.43148 0.212812
\(261\) 14.5648 0.901538
\(262\) −8.08575 −0.499539
\(263\) 26.8669 1.65669 0.828343 0.560222i \(-0.189284\pi\)
0.828343 + 0.560222i \(0.189284\pi\)
\(264\) 2.02205 0.124449
\(265\) −1.68860 −0.103730
\(266\) 10.8172 0.663246
\(267\) −2.45395 −0.150179
\(268\) −7.27990 −0.444691
\(269\) −1.00000 −0.0609711
\(270\) 2.04917 0.124708
\(271\) −10.0261 −0.609042 −0.304521 0.952506i \(-0.598496\pi\)
−0.304521 + 0.952506i \(0.598496\pi\)
\(272\) 3.46821 0.210291
\(273\) −4.64841 −0.281335
\(274\) −6.58186 −0.397625
\(275\) −22.5839 −1.36186
\(276\) 0.464192 0.0279411
\(277\) 12.9817 0.779996 0.389998 0.920816i \(-0.372476\pi\)
0.389998 + 0.920816i \(0.372476\pi\)
\(278\) −13.3633 −0.801475
\(279\) −18.3714 −1.09987
\(280\) −3.36648 −0.201186
\(281\) 0.123363 0.00735920 0.00367960 0.999993i \(-0.498829\pi\)
0.00367960 + 0.999993i \(0.498829\pi\)
\(282\) 1.69925 0.101189
\(283\) −17.9921 −1.06952 −0.534761 0.845004i \(-0.679598\pi\)
−0.534761 + 0.845004i \(0.679598\pi\)
\(284\) −2.76845 −0.164277
\(285\) −1.07082 −0.0634296
\(286\) −19.8624 −1.17449
\(287\) −25.7758 −1.52150
\(288\) −2.86590 −0.168875
\(289\) −4.97150 −0.292441
\(290\) 4.84814 0.284693
\(291\) −0.108178 −0.00634148
\(292\) −14.2747 −0.835366
\(293\) −24.1343 −1.40994 −0.704971 0.709236i \(-0.749040\pi\)
−0.704971 + 0.709236i \(0.749040\pi\)
\(294\) 1.99700 0.116467
\(295\) 1.46796 0.0854682
\(296\) 5.26979 0.306301
\(297\) −11.8612 −0.688254
\(298\) 10.5913 0.613536
\(299\) −4.55970 −0.263694
\(300\) −1.49771 −0.0864705
\(301\) −27.4385 −1.58153
\(302\) 8.26703 0.475714
\(303\) 1.15117 0.0661333
\(304\) 3.06529 0.175806
\(305\) 11.8013 0.675739
\(306\) −9.93956 −0.568207
\(307\) 34.4288 1.96496 0.982479 0.186374i \(-0.0596738\pi\)
0.982479 + 0.186374i \(0.0596738\pi\)
\(308\) 19.4861 1.11033
\(309\) −4.77649 −0.271725
\(310\) −6.11525 −0.347323
\(311\) 9.08138 0.514958 0.257479 0.966284i \(-0.417108\pi\)
0.257479 + 0.966284i \(0.417108\pi\)
\(312\) −1.31723 −0.0745733
\(313\) −8.21382 −0.464273 −0.232136 0.972683i \(-0.574572\pi\)
−0.232136 + 0.972683i \(0.574572\pi\)
\(314\) −18.0608 −1.01923
\(315\) 9.64801 0.543604
\(316\) 2.33688 0.131460
\(317\) 24.0949 1.35330 0.676652 0.736303i \(-0.263430\pi\)
0.676652 + 0.736303i \(0.263430\pi\)
\(318\) 0.648193 0.0363489
\(319\) −28.0624 −1.57119
\(320\) −0.953965 −0.0533282
\(321\) 4.38639 0.244824
\(322\) 4.47333 0.249289
\(323\) 10.6311 0.591529
\(324\) 7.81110 0.433950
\(325\) 14.7119 0.816068
\(326\) −4.53006 −0.250897
\(327\) −2.74739 −0.151931
\(328\) −7.30413 −0.403303
\(329\) 16.3754 0.902804
\(330\) −1.92897 −0.106186
\(331\) −19.8778 −1.09259 −0.546293 0.837594i \(-0.683961\pi\)
−0.546293 + 0.837594i \(0.683961\pi\)
\(332\) −1.34837 −0.0740013
\(333\) −15.1027 −0.827624
\(334\) −11.6274 −0.636221
\(335\) 6.94477 0.379433
\(336\) 1.29227 0.0704993
\(337\) 35.6300 1.94089 0.970445 0.241321i \(-0.0775808\pi\)
0.970445 + 0.241321i \(0.0775808\pi\)
\(338\) −0.0610353 −0.00331988
\(339\) 4.36868 0.237274
\(340\) −3.30855 −0.179431
\(341\) 35.3967 1.91684
\(342\) −8.78482 −0.475029
\(343\) −5.45784 −0.294696
\(344\) −7.77528 −0.419215
\(345\) −0.442822 −0.0238408
\(346\) 19.3718 1.04143
\(347\) −24.3435 −1.30683 −0.653414 0.757001i \(-0.726664\pi\)
−0.653414 + 0.757001i \(0.726664\pi\)
\(348\) −1.86103 −0.0997617
\(349\) 11.5437 0.617922 0.308961 0.951075i \(-0.400019\pi\)
0.308961 + 0.951075i \(0.400019\pi\)
\(350\) −14.4332 −0.771486
\(351\) 7.72672 0.412422
\(352\) 5.52181 0.294314
\(353\) 22.7530 1.21102 0.605509 0.795838i \(-0.292969\pi\)
0.605509 + 0.795838i \(0.292969\pi\)
\(354\) −0.563500 −0.0299497
\(355\) 2.64100 0.140170
\(356\) −6.70123 −0.355164
\(357\) 4.48188 0.237206
\(358\) 15.3979 0.813806
\(359\) 11.4035 0.601856 0.300928 0.953647i \(-0.402704\pi\)
0.300928 + 0.953647i \(0.402704\pi\)
\(360\) 2.73397 0.144093
\(361\) −9.60399 −0.505473
\(362\) 4.31917 0.227010
\(363\) 7.13726 0.374609
\(364\) −12.6939 −0.665339
\(365\) 13.6176 0.712778
\(366\) −4.53010 −0.236792
\(367\) 20.4480 1.06738 0.533688 0.845682i \(-0.320806\pi\)
0.533688 + 0.845682i \(0.320806\pi\)
\(368\) 1.26761 0.0660789
\(369\) 20.9329 1.08973
\(370\) −5.02720 −0.261351
\(371\) 6.24652 0.324303
\(372\) 2.34743 0.121708
\(373\) 1.94797 0.100862 0.0504310 0.998728i \(-0.483941\pi\)
0.0504310 + 0.998728i \(0.483941\pi\)
\(374\) 19.1508 0.990265
\(375\) 3.17544 0.163979
\(376\) 4.64032 0.239306
\(377\) 18.2807 0.941504
\(378\) −7.58035 −0.389891
\(379\) −28.6786 −1.47312 −0.736560 0.676373i \(-0.763551\pi\)
−0.736560 + 0.676373i \(0.763551\pi\)
\(380\) −2.92418 −0.150007
\(381\) 0.645634 0.0330769
\(382\) 13.7202 0.701989
\(383\) 30.8761 1.57769 0.788847 0.614590i \(-0.210679\pi\)
0.788847 + 0.614590i \(0.210679\pi\)
\(384\) 0.366193 0.0186872
\(385\) −18.5891 −0.947387
\(386\) 7.51242 0.382372
\(387\) 22.2832 1.13272
\(388\) −0.295411 −0.0149972
\(389\) 8.80642 0.446503 0.223252 0.974761i \(-0.428333\pi\)
0.223252 + 0.974761i \(0.428333\pi\)
\(390\) 1.25659 0.0636298
\(391\) 4.39635 0.222333
\(392\) 5.45340 0.275439
\(393\) −2.96095 −0.149360
\(394\) −23.5591 −1.18689
\(395\) −2.22930 −0.112168
\(396\) −15.8250 −0.795235
\(397\) −23.1484 −1.16178 −0.580892 0.813980i \(-0.697296\pi\)
−0.580892 + 0.813980i \(0.697296\pi\)
\(398\) 16.7895 0.841582
\(399\) 3.96120 0.198308
\(400\) −4.08995 −0.204498
\(401\) −34.8697 −1.74131 −0.870655 0.491894i \(-0.836305\pi\)
−0.870655 + 0.491894i \(0.836305\pi\)
\(402\) −2.66585 −0.132961
\(403\) −23.0585 −1.14863
\(404\) 3.14362 0.156401
\(405\) −7.45152 −0.370269
\(406\) −17.9344 −0.890070
\(407\) 29.0988 1.44237
\(408\) 1.27004 0.0628762
\(409\) 38.0864 1.88325 0.941626 0.336662i \(-0.109298\pi\)
0.941626 + 0.336662i \(0.109298\pi\)
\(410\) 6.96789 0.344119
\(411\) −2.41023 −0.118888
\(412\) −13.0436 −0.642613
\(413\) −5.43034 −0.267210
\(414\) −3.63286 −0.178545
\(415\) 1.28629 0.0631417
\(416\) −3.59708 −0.176361
\(417\) −4.89354 −0.239637
\(418\) 16.9260 0.827876
\(419\) −25.0709 −1.22479 −0.612397 0.790550i \(-0.709795\pi\)
−0.612397 + 0.790550i \(0.709795\pi\)
\(420\) −1.23278 −0.0601537
\(421\) 35.9462 1.75191 0.875954 0.482394i \(-0.160233\pi\)
0.875954 + 0.482394i \(0.160233\pi\)
\(422\) 12.8667 0.626339
\(423\) −13.2987 −0.646605
\(424\) 1.77008 0.0859629
\(425\) −14.1848 −0.688065
\(426\) −1.01379 −0.0491182
\(427\) −43.6557 −2.11265
\(428\) 11.9783 0.578995
\(429\) −7.27348 −0.351167
\(430\) 7.41734 0.357696
\(431\) 4.34025 0.209063 0.104531 0.994522i \(-0.466666\pi\)
0.104531 + 0.994522i \(0.466666\pi\)
\(432\) −2.14806 −0.103348
\(433\) −34.4524 −1.65568 −0.827838 0.560967i \(-0.810429\pi\)
−0.827838 + 0.560967i \(0.810429\pi\)
\(434\) 22.6217 1.08588
\(435\) 1.77536 0.0851219
\(436\) −7.50255 −0.359307
\(437\) 3.88560 0.185874
\(438\) −5.22732 −0.249771
\(439\) −35.3209 −1.68577 −0.842887 0.538091i \(-0.819146\pi\)
−0.842887 + 0.538091i \(0.819146\pi\)
\(440\) −5.26761 −0.251124
\(441\) −15.6289 −0.744235
\(442\) −12.4754 −0.593396
\(443\) 13.5348 0.643057 0.321528 0.946900i \(-0.395803\pi\)
0.321528 + 0.946900i \(0.395803\pi\)
\(444\) 1.92976 0.0915825
\(445\) 6.39273 0.303045
\(446\) 18.0816 0.856188
\(447\) 3.87845 0.183445
\(448\) 3.52894 0.166727
\(449\) −41.1462 −1.94181 −0.970906 0.239463i \(-0.923029\pi\)
−0.970906 + 0.239463i \(0.923029\pi\)
\(450\) 11.7214 0.552552
\(451\) −40.3321 −1.89916
\(452\) 11.9300 0.561139
\(453\) 3.02733 0.142237
\(454\) −4.79467 −0.225025
\(455\) 12.1095 0.567702
\(456\) 1.12249 0.0525654
\(457\) 19.1640 0.896454 0.448227 0.893920i \(-0.352056\pi\)
0.448227 + 0.893920i \(0.352056\pi\)
\(458\) −20.1770 −0.942812
\(459\) −7.44991 −0.347732
\(460\) −1.20926 −0.0563819
\(461\) 16.5267 0.769723 0.384861 0.922974i \(-0.374249\pi\)
0.384861 + 0.922974i \(0.374249\pi\)
\(462\) 7.13570 0.331983
\(463\) −1.24318 −0.0577753 −0.0288876 0.999583i \(-0.509197\pi\)
−0.0288876 + 0.999583i \(0.509197\pi\)
\(464\) −5.08210 −0.235930
\(465\) −2.23936 −0.103848
\(466\) 16.7595 0.776369
\(467\) −1.12302 −0.0519674 −0.0259837 0.999662i \(-0.508272\pi\)
−0.0259837 + 0.999662i \(0.508272\pi\)
\(468\) 10.3089 0.476528
\(469\) −25.6903 −1.18627
\(470\) −4.42670 −0.204188
\(471\) −6.61375 −0.304746
\(472\) −1.53880 −0.0708292
\(473\) −42.9337 −1.97409
\(474\) 0.855750 0.0393059
\(475\) −12.5369 −0.575232
\(476\) 12.2391 0.560979
\(477\) −5.07289 −0.232272
\(478\) 26.7477 1.22341
\(479\) 3.92860 0.179502 0.0897512 0.995964i \(-0.471393\pi\)
0.0897512 + 0.995964i \(0.471393\pi\)
\(480\) −0.349336 −0.0159449
\(481\) −18.9559 −0.864313
\(482\) −3.58966 −0.163505
\(483\) 1.63810 0.0745363
\(484\) 19.4904 0.885928
\(485\) 0.281812 0.0127964
\(486\) 9.30454 0.422063
\(487\) 22.0296 0.998258 0.499129 0.866528i \(-0.333653\pi\)
0.499129 + 0.866528i \(0.333653\pi\)
\(488\) −12.3708 −0.559998
\(489\) −1.65888 −0.0750172
\(490\) −5.20235 −0.235018
\(491\) −40.3244 −1.81982 −0.909908 0.414811i \(-0.863848\pi\)
−0.909908 + 0.414811i \(0.863848\pi\)
\(492\) −2.67473 −0.120586
\(493\) −17.6258 −0.793826
\(494\) −11.0261 −0.496087
\(495\) 15.0965 0.678536
\(496\) 6.41035 0.287833
\(497\) −9.76968 −0.438230
\(498\) −0.493763 −0.0221261
\(499\) −11.2449 −0.503390 −0.251695 0.967807i \(-0.580988\pi\)
−0.251695 + 0.967807i \(0.580988\pi\)
\(500\) 8.67149 0.387801
\(501\) −4.25787 −0.190227
\(502\) 10.9688 0.489560
\(503\) 10.6249 0.473739 0.236870 0.971541i \(-0.423879\pi\)
0.236870 + 0.971541i \(0.423879\pi\)
\(504\) −10.1136 −0.450495
\(505\) −2.99891 −0.133450
\(506\) 6.99952 0.311167
\(507\) −0.0223507 −0.000992630 0
\(508\) 1.76310 0.0782247
\(509\) −30.7681 −1.36377 −0.681886 0.731459i \(-0.738840\pi\)
−0.681886 + 0.731459i \(0.738840\pi\)
\(510\) −1.21157 −0.0536492
\(511\) −50.3747 −2.22845
\(512\) 1.00000 0.0441942
\(513\) −6.58441 −0.290709
\(514\) 2.02263 0.0892146
\(515\) 12.4432 0.548311
\(516\) −2.84726 −0.125344
\(517\) 25.6230 1.12690
\(518\) 18.5968 0.817095
\(519\) 7.09383 0.311385
\(520\) 3.43148 0.150481
\(521\) −29.6851 −1.30053 −0.650264 0.759709i \(-0.725342\pi\)
−0.650264 + 0.759709i \(0.725342\pi\)
\(522\) 14.5648 0.637484
\(523\) 2.68567 0.117436 0.0587180 0.998275i \(-0.481299\pi\)
0.0587180 + 0.998275i \(0.481299\pi\)
\(524\) −8.08575 −0.353228
\(525\) −5.28534 −0.230671
\(526\) 26.8669 1.17145
\(527\) 22.2325 0.968461
\(528\) 2.02205 0.0879985
\(529\) −21.3932 −0.930137
\(530\) −1.68860 −0.0733480
\(531\) 4.41006 0.191380
\(532\) 10.8172 0.468986
\(533\) 26.2735 1.13803
\(534\) −2.45395 −0.106193
\(535\) −11.4269 −0.494028
\(536\) −7.27990 −0.314444
\(537\) 5.63862 0.243325
\(538\) −1.00000 −0.0431131
\(539\) 30.1127 1.29704
\(540\) 2.04917 0.0881822
\(541\) 1.40108 0.0602370 0.0301185 0.999546i \(-0.490412\pi\)
0.0301185 + 0.999546i \(0.490412\pi\)
\(542\) −10.0261 −0.430658
\(543\) 1.58165 0.0678751
\(544\) 3.46821 0.148698
\(545\) 7.15717 0.306580
\(546\) −4.64841 −0.198934
\(547\) −5.48870 −0.234680 −0.117340 0.993092i \(-0.537437\pi\)
−0.117340 + 0.993092i \(0.537437\pi\)
\(548\) −6.58186 −0.281163
\(549\) 35.4534 1.51312
\(550\) −22.5839 −0.962983
\(551\) −15.5781 −0.663649
\(552\) 0.464192 0.0197573
\(553\) 8.24670 0.350685
\(554\) 12.9817 0.551541
\(555\) −1.84093 −0.0781430
\(556\) −13.3633 −0.566728
\(557\) −41.2445 −1.74759 −0.873793 0.486298i \(-0.838347\pi\)
−0.873793 + 0.486298i \(0.838347\pi\)
\(558\) −18.3714 −0.777725
\(559\) 27.9683 1.18293
\(560\) −3.36648 −0.142260
\(561\) 7.01291 0.296085
\(562\) 0.123363 0.00520374
\(563\) −12.2378 −0.515763 −0.257881 0.966177i \(-0.583024\pi\)
−0.257881 + 0.966177i \(0.583024\pi\)
\(564\) 1.69925 0.0715515
\(565\) −11.3808 −0.478793
\(566\) −17.9921 −0.756266
\(567\) 27.5649 1.15762
\(568\) −2.76845 −0.116162
\(569\) −21.5337 −0.902740 −0.451370 0.892337i \(-0.649065\pi\)
−0.451370 + 0.892337i \(0.649065\pi\)
\(570\) −1.07082 −0.0448515
\(571\) −39.3756 −1.64782 −0.823908 0.566724i \(-0.808211\pi\)
−0.823908 + 0.566724i \(0.808211\pi\)
\(572\) −19.8624 −0.830488
\(573\) 5.02426 0.209892
\(574\) −25.7758 −1.07586
\(575\) −5.18448 −0.216208
\(576\) −2.86590 −0.119413
\(577\) 37.6215 1.56620 0.783101 0.621894i \(-0.213637\pi\)
0.783101 + 0.621894i \(0.213637\pi\)
\(578\) −4.97150 −0.206787
\(579\) 2.75100 0.114328
\(580\) 4.84814 0.201308
\(581\) −4.75830 −0.197408
\(582\) −0.108178 −0.00448411
\(583\) 9.77408 0.404801
\(584\) −14.2747 −0.590693
\(585\) −9.83430 −0.406598
\(586\) −24.1343 −0.996980
\(587\) −10.1725 −0.419865 −0.209933 0.977716i \(-0.567325\pi\)
−0.209933 + 0.977716i \(0.567325\pi\)
\(588\) 1.99700 0.0823549
\(589\) 19.6496 0.809647
\(590\) 1.46796 0.0604351
\(591\) −8.62719 −0.354875
\(592\) 5.26979 0.216587
\(593\) −20.4503 −0.839795 −0.419897 0.907572i \(-0.637934\pi\)
−0.419897 + 0.907572i \(0.637934\pi\)
\(594\) −11.8612 −0.486669
\(595\) −11.6757 −0.478656
\(596\) 10.5913 0.433835
\(597\) 6.14821 0.251629
\(598\) −4.55970 −0.186460
\(599\) −13.3902 −0.547108 −0.273554 0.961857i \(-0.588199\pi\)
−0.273554 + 0.961857i \(0.588199\pi\)
\(600\) −1.49771 −0.0611439
\(601\) −21.4300 −0.874150 −0.437075 0.899425i \(-0.643986\pi\)
−0.437075 + 0.899425i \(0.643986\pi\)
\(602\) −27.4385 −1.11831
\(603\) 20.8635 0.849627
\(604\) 8.26703 0.336381
\(605\) −18.5932 −0.755919
\(606\) 1.15117 0.0467633
\(607\) −18.8668 −0.765780 −0.382890 0.923794i \(-0.625071\pi\)
−0.382890 + 0.923794i \(0.625071\pi\)
\(608\) 3.06529 0.124314
\(609\) −6.56746 −0.266127
\(610\) 11.8013 0.477820
\(611\) −16.6916 −0.675269
\(612\) −9.93956 −0.401783
\(613\) −46.5134 −1.87866 −0.939330 0.343014i \(-0.888552\pi\)
−0.939330 + 0.343014i \(0.888552\pi\)
\(614\) 34.4288 1.38943
\(615\) 2.55159 0.102890
\(616\) 19.4861 0.785119
\(617\) 13.3038 0.535590 0.267795 0.963476i \(-0.413705\pi\)
0.267795 + 0.963476i \(0.413705\pi\)
\(618\) −4.77649 −0.192139
\(619\) 8.74154 0.351352 0.175676 0.984448i \(-0.443789\pi\)
0.175676 + 0.984448i \(0.443789\pi\)
\(620\) −6.11525 −0.245594
\(621\) −2.72290 −0.109266
\(622\) 9.08138 0.364130
\(623\) −23.6482 −0.947446
\(624\) −1.31723 −0.0527313
\(625\) 12.1775 0.487099
\(626\) −8.21382 −0.328290
\(627\) 6.19818 0.247531
\(628\) −18.0608 −0.720705
\(629\) 18.2768 0.728742
\(630\) 9.64801 0.384386
\(631\) 44.8284 1.78459 0.892296 0.451451i \(-0.149094\pi\)
0.892296 + 0.451451i \(0.149094\pi\)
\(632\) 2.33688 0.0929560
\(633\) 4.71169 0.187273
\(634\) 24.0949 0.956931
\(635\) −1.68193 −0.0667454
\(636\) 0.648193 0.0257025
\(637\) −19.6163 −0.777227
\(638\) −28.0624 −1.11100
\(639\) 7.93410 0.313868
\(640\) −0.953965 −0.0377088
\(641\) −24.7311 −0.976821 −0.488411 0.872614i \(-0.662423\pi\)
−0.488411 + 0.872614i \(0.662423\pi\)
\(642\) 4.38639 0.173117
\(643\) 26.6842 1.05232 0.526161 0.850385i \(-0.323631\pi\)
0.526161 + 0.850385i \(0.323631\pi\)
\(644\) 4.47333 0.176274
\(645\) 2.71618 0.106950
\(646\) 10.6311 0.418274
\(647\) 24.7663 0.973664 0.486832 0.873496i \(-0.338152\pi\)
0.486832 + 0.873496i \(0.338152\pi\)
\(648\) 7.81110 0.306849
\(649\) −8.49699 −0.333536
\(650\) 14.7119 0.577047
\(651\) 8.28393 0.324673
\(652\) −4.53006 −0.177411
\(653\) 3.58804 0.140411 0.0702055 0.997533i \(-0.477634\pi\)
0.0702055 + 0.997533i \(0.477634\pi\)
\(654\) −2.74739 −0.107431
\(655\) 7.71352 0.301392
\(656\) −7.30413 −0.285179
\(657\) 40.9100 1.59605
\(658\) 16.3754 0.638379
\(659\) 46.3745 1.80649 0.903247 0.429120i \(-0.141176\pi\)
0.903247 + 0.429120i \(0.141176\pi\)
\(660\) −1.92897 −0.0750849
\(661\) 13.4389 0.522711 0.261356 0.965243i \(-0.415831\pi\)
0.261356 + 0.965243i \(0.415831\pi\)
\(662\) −19.8778 −0.772574
\(663\) −4.56842 −0.177423
\(664\) −1.34837 −0.0523268
\(665\) −10.3192 −0.400163
\(666\) −15.1027 −0.585218
\(667\) −6.44213 −0.249440
\(668\) −11.6274 −0.449876
\(669\) 6.62136 0.255996
\(670\) 6.94477 0.268300
\(671\) −68.3091 −2.63704
\(672\) 1.29227 0.0498506
\(673\) 42.0333 1.62027 0.810133 0.586246i \(-0.199395\pi\)
0.810133 + 0.586246i \(0.199395\pi\)
\(674\) 35.6300 1.37242
\(675\) 8.78544 0.338152
\(676\) −0.0610353 −0.00234751
\(677\) 29.0946 1.11819 0.559097 0.829102i \(-0.311148\pi\)
0.559097 + 0.829102i \(0.311148\pi\)
\(678\) 4.36868 0.167778
\(679\) −1.04249 −0.0400070
\(680\) −3.30855 −0.126877
\(681\) −1.75578 −0.0672815
\(682\) 35.3967 1.35541
\(683\) 22.4564 0.859270 0.429635 0.903003i \(-0.358642\pi\)
0.429635 + 0.903003i \(0.358642\pi\)
\(684\) −8.78482 −0.335896
\(685\) 6.27886 0.239903
\(686\) −5.45784 −0.208381
\(687\) −7.38870 −0.281897
\(688\) −7.77528 −0.296430
\(689\) −6.36713 −0.242568
\(690\) −0.442822 −0.0168580
\(691\) −43.8859 −1.66950 −0.834749 0.550630i \(-0.814388\pi\)
−0.834749 + 0.550630i \(0.814388\pi\)
\(692\) 19.3718 0.736406
\(693\) −55.8454 −2.12139
\(694\) −24.3435 −0.924066
\(695\) 12.7481 0.483562
\(696\) −1.86103 −0.0705422
\(697\) −25.3323 −0.959529
\(698\) 11.5437 0.436937
\(699\) 6.13722 0.232131
\(700\) −14.4332 −0.545523
\(701\) 11.9976 0.453144 0.226572 0.973994i \(-0.427248\pi\)
0.226572 + 0.973994i \(0.427248\pi\)
\(702\) 7.72672 0.291626
\(703\) 16.1534 0.609239
\(704\) 5.52181 0.208111
\(705\) −1.62103 −0.0610514
\(706\) 22.7530 0.856320
\(707\) 11.0937 0.417220
\(708\) −0.563500 −0.0211776
\(709\) 30.2648 1.13662 0.568308 0.822816i \(-0.307598\pi\)
0.568308 + 0.822816i \(0.307598\pi\)
\(710\) 2.64100 0.0991150
\(711\) −6.69727 −0.251167
\(712\) −6.70123 −0.251139
\(713\) 8.12584 0.304315
\(714\) 4.48188 0.167730
\(715\) 18.9480 0.708615
\(716\) 15.3979 0.575448
\(717\) 9.79483 0.365795
\(718\) 11.4035 0.425576
\(719\) 40.3460 1.50465 0.752326 0.658791i \(-0.228932\pi\)
0.752326 + 0.658791i \(0.228932\pi\)
\(720\) 2.73397 0.101889
\(721\) −46.0301 −1.71425
\(722\) −9.60399 −0.357424
\(723\) −1.31451 −0.0488872
\(724\) 4.31917 0.160521
\(725\) 20.7855 0.771955
\(726\) 7.13726 0.264889
\(727\) −4.67361 −0.173335 −0.0866673 0.996237i \(-0.527622\pi\)
−0.0866673 + 0.996237i \(0.527622\pi\)
\(728\) −12.6939 −0.470466
\(729\) −20.0260 −0.741705
\(730\) 13.6176 0.504010
\(731\) −26.9663 −0.997386
\(732\) −4.53010 −0.167437
\(733\) −27.6280 −1.02046 −0.510231 0.860037i \(-0.670440\pi\)
−0.510231 + 0.860037i \(0.670440\pi\)
\(734\) 20.4480 0.754748
\(735\) −1.90507 −0.0702695
\(736\) 1.26761 0.0467248
\(737\) −40.1983 −1.48072
\(738\) 20.9329 0.770552
\(739\) 43.1959 1.58899 0.794493 0.607273i \(-0.207737\pi\)
0.794493 + 0.607273i \(0.207737\pi\)
\(740\) −5.02720 −0.184803
\(741\) −4.03768 −0.148328
\(742\) 6.24652 0.229317
\(743\) 29.1755 1.07034 0.535172 0.844743i \(-0.320247\pi\)
0.535172 + 0.844743i \(0.320247\pi\)
\(744\) 2.34743 0.0860609
\(745\) −10.1037 −0.370171
\(746\) 1.94797 0.0713201
\(747\) 3.86429 0.141387
\(748\) 19.1508 0.700223
\(749\) 42.2708 1.54454
\(750\) 3.17544 0.115951
\(751\) 15.7867 0.576066 0.288033 0.957621i \(-0.406999\pi\)
0.288033 + 0.957621i \(0.406999\pi\)
\(752\) 4.64032 0.169215
\(753\) 4.01669 0.146376
\(754\) 18.2807 0.665744
\(755\) −7.88645 −0.287017
\(756\) −7.58035 −0.275695
\(757\) −45.5058 −1.65394 −0.826969 0.562247i \(-0.809937\pi\)
−0.826969 + 0.562247i \(0.809937\pi\)
\(758\) −28.6786 −1.04165
\(759\) 2.56318 0.0930375
\(760\) −2.92418 −0.106071
\(761\) −22.8181 −0.827156 −0.413578 0.910469i \(-0.635721\pi\)
−0.413578 + 0.910469i \(0.635721\pi\)
\(762\) 0.645634 0.0233889
\(763\) −26.4761 −0.958497
\(764\) 13.7202 0.496381
\(765\) 9.48199 0.342822
\(766\) 30.8761 1.11560
\(767\) 5.53520 0.199864
\(768\) 0.366193 0.0132139
\(769\) −8.05192 −0.290360 −0.145180 0.989405i \(-0.546376\pi\)
−0.145180 + 0.989405i \(0.546376\pi\)
\(770\) −18.5891 −0.669904
\(771\) 0.740676 0.0266748
\(772\) 7.51242 0.270378
\(773\) 9.05695 0.325756 0.162878 0.986646i \(-0.447922\pi\)
0.162878 + 0.986646i \(0.447922\pi\)
\(774\) 22.2832 0.800953
\(775\) −26.2180 −0.941779
\(776\) −0.295411 −0.0106046
\(777\) 6.81002 0.244308
\(778\) 8.80642 0.315725
\(779\) −22.3893 −0.802180
\(780\) 1.25659 0.0449930
\(781\) −15.2869 −0.547007
\(782\) 4.39635 0.157213
\(783\) 10.9166 0.390128
\(784\) 5.45340 0.194764
\(785\) 17.2294 0.614943
\(786\) −2.96095 −0.105614
\(787\) −12.6861 −0.452211 −0.226105 0.974103i \(-0.572599\pi\)
−0.226105 + 0.974103i \(0.572599\pi\)
\(788\) −23.5591 −0.839258
\(789\) 9.83849 0.350260
\(790\) −2.22930 −0.0793149
\(791\) 42.1002 1.49691
\(792\) −15.8250 −0.562316
\(793\) 44.4986 1.58019
\(794\) −23.1484 −0.821506
\(795\) −0.618354 −0.0219307
\(796\) 16.7895 0.595088
\(797\) 44.7835 1.58631 0.793156 0.609018i \(-0.208436\pi\)
0.793156 + 0.609018i \(0.208436\pi\)
\(798\) 3.96120 0.140225
\(799\) 16.0936 0.569351
\(800\) −4.08995 −0.144602
\(801\) 19.2051 0.678577
\(802\) −34.8697 −1.23129
\(803\) −78.8225 −2.78158
\(804\) −2.66585 −0.0940174
\(805\) −4.26740 −0.150406
\(806\) −23.0585 −0.812202
\(807\) −0.366193 −0.0128906
\(808\) 3.14362 0.110592
\(809\) 33.7900 1.18799 0.593996 0.804468i \(-0.297549\pi\)
0.593996 + 0.804468i \(0.297549\pi\)
\(810\) −7.45152 −0.261820
\(811\) −34.8186 −1.22265 −0.611323 0.791382i \(-0.709362\pi\)
−0.611323 + 0.791382i \(0.709362\pi\)
\(812\) −17.9344 −0.629374
\(813\) −3.67149 −0.128765
\(814\) 29.0988 1.01991
\(815\) 4.32152 0.151376
\(816\) 1.27004 0.0444602
\(817\) −23.8335 −0.833829
\(818\) 38.0864 1.33166
\(819\) 36.3794 1.27120
\(820\) 6.96789 0.243329
\(821\) −10.1228 −0.353288 −0.176644 0.984275i \(-0.556524\pi\)
−0.176644 + 0.984275i \(0.556524\pi\)
\(822\) −2.41023 −0.0840665
\(823\) 46.4948 1.62071 0.810354 0.585941i \(-0.199275\pi\)
0.810354 + 0.585941i \(0.199275\pi\)
\(824\) −13.0436 −0.454396
\(825\) −8.27009 −0.287928
\(826\) −5.43034 −0.188946
\(827\) 11.2198 0.390151 0.195075 0.980788i \(-0.437505\pi\)
0.195075 + 0.980788i \(0.437505\pi\)
\(828\) −3.63286 −0.126250
\(829\) 30.1694 1.04783 0.523913 0.851772i \(-0.324472\pi\)
0.523913 + 0.851772i \(0.324472\pi\)
\(830\) 1.28629 0.0446479
\(831\) 4.75382 0.164908
\(832\) −3.59708 −0.124706
\(833\) 18.9136 0.655316
\(834\) −4.89354 −0.169449
\(835\) 11.0921 0.383858
\(836\) 16.9260 0.585397
\(837\) −13.7698 −0.475953
\(838\) −25.0709 −0.866060
\(839\) −37.7762 −1.30418 −0.652089 0.758142i \(-0.726107\pi\)
−0.652089 + 0.758142i \(0.726107\pi\)
\(840\) −1.23278 −0.0425351
\(841\) −3.17229 −0.109389
\(842\) 35.9462 1.23879
\(843\) 0.0451746 0.00155590
\(844\) 12.8667 0.442889
\(845\) 0.0582255 0.00200302
\(846\) −13.2987 −0.457218
\(847\) 68.7805 2.36332
\(848\) 1.77008 0.0607850
\(849\) −6.58860 −0.226120
\(850\) −14.1848 −0.486535
\(851\) 6.68006 0.228989
\(852\) −1.01379 −0.0347318
\(853\) 0.179928 0.00616062 0.00308031 0.999995i \(-0.499020\pi\)
0.00308031 + 0.999995i \(0.499020\pi\)
\(854\) −43.6557 −1.49387
\(855\) 8.38041 0.286604
\(856\) 11.9783 0.409411
\(857\) 18.0604 0.616931 0.308466 0.951235i \(-0.400185\pi\)
0.308466 + 0.951235i \(0.400185\pi\)
\(858\) −7.27348 −0.248312
\(859\) 13.8764 0.473457 0.236729 0.971576i \(-0.423925\pi\)
0.236729 + 0.971576i \(0.423925\pi\)
\(860\) 7.41734 0.252929
\(861\) −9.43895 −0.321678
\(862\) 4.34025 0.147830
\(863\) 23.2651 0.791953 0.395976 0.918261i \(-0.370406\pi\)
0.395976 + 0.918261i \(0.370406\pi\)
\(864\) −2.14806 −0.0730783
\(865\) −18.4800 −0.628340
\(866\) −34.4524 −1.17074
\(867\) −1.82053 −0.0618284
\(868\) 22.6217 0.767831
\(869\) 12.9038 0.437732
\(870\) 1.77536 0.0601902
\(871\) 26.1864 0.887291
\(872\) −7.50255 −0.254069
\(873\) 0.846619 0.0286537
\(874\) 3.88560 0.131432
\(875\) 30.6012 1.03451
\(876\) −5.22732 −0.176615
\(877\) 39.2517 1.32544 0.662718 0.748869i \(-0.269403\pi\)
0.662718 + 0.748869i \(0.269403\pi\)
\(878\) −35.3209 −1.19202
\(879\) −8.83783 −0.298093
\(880\) −5.26761 −0.177571
\(881\) 33.1392 1.11649 0.558243 0.829677i \(-0.311476\pi\)
0.558243 + 0.829677i \(0.311476\pi\)
\(882\) −15.6289 −0.526253
\(883\) 16.2361 0.546387 0.273194 0.961959i \(-0.411920\pi\)
0.273194 + 0.961959i \(0.411920\pi\)
\(884\) −12.4754 −0.419594
\(885\) 0.537559 0.0180698
\(886\) 13.5348 0.454710
\(887\) 49.0229 1.64603 0.823013 0.568022i \(-0.192291\pi\)
0.823013 + 0.568022i \(0.192291\pi\)
\(888\) 1.92976 0.0647586
\(889\) 6.22186 0.208674
\(890\) 6.39273 0.214285
\(891\) 43.1314 1.44496
\(892\) 18.0816 0.605416
\(893\) 14.2239 0.475985
\(894\) 3.87845 0.129715
\(895\) −14.6891 −0.491002
\(896\) 3.52894 0.117894
\(897\) −1.66973 −0.0557508
\(898\) −41.1462 −1.37307
\(899\) −32.5780 −1.08654
\(900\) 11.7214 0.390713
\(901\) 6.13903 0.204521
\(902\) −40.3321 −1.34291
\(903\) −10.0478 −0.334370
\(904\) 11.9300 0.396785
\(905\) −4.12033 −0.136964
\(906\) 3.02733 0.100576
\(907\) 28.2851 0.939191 0.469596 0.882882i \(-0.344400\pi\)
0.469596 + 0.882882i \(0.344400\pi\)
\(908\) −4.79467 −0.159117
\(909\) −9.00932 −0.298820
\(910\) 12.1095 0.401426
\(911\) −9.52689 −0.315640 −0.157820 0.987468i \(-0.550447\pi\)
−0.157820 + 0.987468i \(0.550447\pi\)
\(912\) 1.12249 0.0371693
\(913\) −7.44543 −0.246408
\(914\) 19.1640 0.633889
\(915\) 4.32155 0.142866
\(916\) −20.1770 −0.666668
\(917\) −28.5341 −0.942279
\(918\) −7.44991 −0.245884
\(919\) −45.8904 −1.51379 −0.756893 0.653539i \(-0.773283\pi\)
−0.756893 + 0.653539i \(0.773283\pi\)
\(920\) −1.20926 −0.0398680
\(921\) 12.6076 0.415435
\(922\) 16.5267 0.544276
\(923\) 9.95832 0.327782
\(924\) 7.13570 0.234747
\(925\) −21.5532 −0.708665
\(926\) −1.24318 −0.0408533
\(927\) 37.3818 1.22778
\(928\) −5.08210 −0.166828
\(929\) −34.0802 −1.11814 −0.559068 0.829122i \(-0.688841\pi\)
−0.559068 + 0.829122i \(0.688841\pi\)
\(930\) −2.23936 −0.0734316
\(931\) 16.7163 0.547854
\(932\) 16.7595 0.548976
\(933\) 3.32554 0.108873
\(934\) −1.12302 −0.0367465
\(935\) −18.2692 −0.597467
\(936\) 10.3089 0.336956
\(937\) 23.8272 0.778400 0.389200 0.921153i \(-0.372751\pi\)
0.389200 + 0.921153i \(0.372751\pi\)
\(938\) −25.6903 −0.838819
\(939\) −3.00785 −0.0981574
\(940\) −4.42670 −0.144383
\(941\) −26.0700 −0.849858 −0.424929 0.905227i \(-0.639701\pi\)
−0.424929 + 0.905227i \(0.639701\pi\)
\(942\) −6.61375 −0.215488
\(943\) −9.25882 −0.301509
\(944\) −1.53880 −0.0500838
\(945\) 7.23139 0.235237
\(946\) −42.9337 −1.39589
\(947\) −16.8556 −0.547733 −0.273866 0.961768i \(-0.588303\pi\)
−0.273866 + 0.961768i \(0.588303\pi\)
\(948\) 0.855750 0.0277935
\(949\) 51.3474 1.66681
\(950\) −12.5369 −0.406750
\(951\) 8.82340 0.286118
\(952\) 12.2391 0.396672
\(953\) −26.3030 −0.852036 −0.426018 0.904715i \(-0.640084\pi\)
−0.426018 + 0.904715i \(0.640084\pi\)
\(954\) −5.07289 −0.164241
\(955\) −13.0886 −0.423538
\(956\) 26.7477 0.865082
\(957\) −10.2763 −0.332184
\(958\) 3.92860 0.126927
\(959\) −23.2270 −0.750038
\(960\) −0.349336 −0.0112748
\(961\) 10.0926 0.325567
\(962\) −18.9559 −0.611161
\(963\) −34.3287 −1.10623
\(964\) −3.58966 −0.115615
\(965\) −7.16658 −0.230700
\(966\) 1.63810 0.0527051
\(967\) −26.4603 −0.850906 −0.425453 0.904980i \(-0.639885\pi\)
−0.425453 + 0.904980i \(0.639885\pi\)
\(968\) 19.4904 0.626446
\(969\) 3.89303 0.125062
\(970\) 0.281812 0.00904843
\(971\) 46.7631 1.50070 0.750349 0.661041i \(-0.229885\pi\)
0.750349 + 0.661041i \(0.229885\pi\)
\(972\) 9.30454 0.298443
\(973\) −47.1581 −1.51182
\(974\) 22.0296 0.705875
\(975\) 5.38739 0.172535
\(976\) −12.3708 −0.395979
\(977\) 32.4480 1.03810 0.519051 0.854743i \(-0.326285\pi\)
0.519051 + 0.854743i \(0.326285\pi\)
\(978\) −1.65888 −0.0530451
\(979\) −37.0029 −1.18262
\(980\) −5.20235 −0.166183
\(981\) 21.5016 0.686493
\(982\) −40.3244 −1.28680
\(983\) 20.9853 0.669327 0.334664 0.942338i \(-0.391377\pi\)
0.334664 + 0.942338i \(0.391377\pi\)
\(984\) −2.67473 −0.0852672
\(985\) 22.4745 0.716098
\(986\) −17.6258 −0.561320
\(987\) 5.99656 0.190873
\(988\) −11.0261 −0.350787
\(989\) −9.85605 −0.313404
\(990\) 15.0965 0.479797
\(991\) 27.7877 0.882707 0.441353 0.897333i \(-0.354499\pi\)
0.441353 + 0.897333i \(0.354499\pi\)
\(992\) 6.41035 0.203529
\(993\) −7.27914 −0.230996
\(994\) −9.76968 −0.309876
\(995\) −16.0166 −0.507760
\(996\) −0.493763 −0.0156455
\(997\) −7.07698 −0.224130 −0.112065 0.993701i \(-0.535747\pi\)
−0.112065 + 0.993701i \(0.535747\pi\)
\(998\) −11.2449 −0.355950
\(999\) −11.3198 −0.358143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.2.a.e.1.4 7
3.2 odd 2 4842.2.a.n.1.6 7
4.3 odd 2 4304.2.a.h.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.4 7 1.1 even 1 trivial
4304.2.a.h.1.4 7 4.3 odd 2
4842.2.a.n.1.6 7 3.2 odd 2