Properties

Label 538.2.a.e.1.1
Level $538$
Weight $2$
Character 538.1
Self dual yes
Analytic conductor $4.296$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.26381\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.13760 q^{3} +1.00000 q^{4} +3.00565 q^{5} -3.13760 q^{6} -0.324393 q^{7} +1.00000 q^{8} +6.84453 q^{9} +3.00565 q^{10} -4.08405 q^{11} -3.13760 q^{12} -0.304135 q^{13} -0.324393 q^{14} -9.43051 q^{15} +1.00000 q^{16} +5.91934 q^{17} +6.84453 q^{18} +2.22348 q^{19} +3.00565 q^{20} +1.01781 q^{21} -4.08405 q^{22} +8.27520 q^{23} -3.13760 q^{24} +4.03391 q^{25} -0.304135 q^{26} -12.0626 q^{27} -0.324393 q^{28} -5.84659 q^{29} -9.43051 q^{30} +10.2994 q^{31} +1.00000 q^{32} +12.8141 q^{33} +5.91934 q^{34} -0.975010 q^{35} +6.84453 q^{36} +3.68773 q^{37} +2.22348 q^{38} +0.954253 q^{39} +3.00565 q^{40} +5.70620 q^{41} +1.01781 q^{42} +3.80314 q^{43} -4.08405 q^{44} +20.5722 q^{45} +8.27520 q^{46} -10.2865 q^{47} -3.13760 q^{48} -6.89477 q^{49} +4.03391 q^{50} -18.5725 q^{51} -0.304135 q^{52} +6.39465 q^{53} -12.0626 q^{54} -12.2752 q^{55} -0.324393 q^{56} -6.97638 q^{57} -5.84659 q^{58} -2.31530 q^{59} -9.43051 q^{60} -8.06087 q^{61} +10.2994 q^{62} -2.22032 q^{63} +1.00000 q^{64} -0.914122 q^{65} +12.8141 q^{66} +7.93283 q^{67} +5.91934 q^{68} -25.9643 q^{69} -0.975010 q^{70} +7.43426 q^{71} +6.84453 q^{72} -16.5934 q^{73} +3.68773 q^{74} -12.6568 q^{75} +2.22348 q^{76} +1.32484 q^{77} +0.954253 q^{78} -1.09880 q^{79} +3.00565 q^{80} +17.3140 q^{81} +5.70620 q^{82} -5.59412 q^{83} +1.01781 q^{84} +17.7914 q^{85} +3.80314 q^{86} +18.3442 q^{87} -4.08405 q^{88} -14.9648 q^{89} +20.5722 q^{90} +0.0986592 q^{91} +8.27520 q^{92} -32.3153 q^{93} -10.2865 q^{94} +6.68299 q^{95} -3.13760 q^{96} -2.53547 q^{97} -6.89477 q^{98} -27.9534 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + q^{3} + 7 q^{4} + 7 q^{5} + q^{6} + 6 q^{7} + 7 q^{8} + 12 q^{9} + 7 q^{10} - 3 q^{11} + q^{12} - 9 q^{13} + 6 q^{14} + 8 q^{15} + 7 q^{16} + 8 q^{17} + 12 q^{18} - 11 q^{19} + 7 q^{20}+ \cdots - 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −3.13760 −1.81149 −0.905747 0.423819i \(-0.860689\pi\)
−0.905747 + 0.423819i \(0.860689\pi\)
\(4\) 1.00000 0.500000
\(5\) 3.00565 1.34417 0.672083 0.740476i \(-0.265400\pi\)
0.672083 + 0.740476i \(0.265400\pi\)
\(6\) −3.13760 −1.28092
\(7\) −0.324393 −0.122609 −0.0613045 0.998119i \(-0.519526\pi\)
−0.0613045 + 0.998119i \(0.519526\pi\)
\(8\) 1.00000 0.353553
\(9\) 6.84453 2.28151
\(10\) 3.00565 0.950469
\(11\) −4.08405 −1.23139 −0.615693 0.787986i \(-0.711124\pi\)
−0.615693 + 0.787986i \(0.711124\pi\)
\(12\) −3.13760 −0.905747
\(13\) −0.304135 −0.0843518 −0.0421759 0.999110i \(-0.513429\pi\)
−0.0421759 + 0.999110i \(0.513429\pi\)
\(14\) −0.324393 −0.0866976
\(15\) −9.43051 −2.43495
\(16\) 1.00000 0.250000
\(17\) 5.91934 1.43565 0.717826 0.696223i \(-0.245137\pi\)
0.717826 + 0.696223i \(0.245137\pi\)
\(18\) 6.84453 1.61327
\(19\) 2.22348 0.510101 0.255050 0.966928i \(-0.417908\pi\)
0.255050 + 0.966928i \(0.417908\pi\)
\(20\) 3.00565 0.672083
\(21\) 1.01781 0.222105
\(22\) −4.08405 −0.870722
\(23\) 8.27520 1.72550 0.862749 0.505632i \(-0.168741\pi\)
0.862749 + 0.505632i \(0.168741\pi\)
\(24\) −3.13760 −0.640460
\(25\) 4.03391 0.806781
\(26\) −0.304135 −0.0596458
\(27\) −12.0626 −2.32145
\(28\) −0.324393 −0.0613045
\(29\) −5.84659 −1.08568 −0.542842 0.839835i \(-0.682652\pi\)
−0.542842 + 0.839835i \(0.682652\pi\)
\(30\) −9.43051 −1.72177
\(31\) 10.2994 1.84982 0.924912 0.380181i \(-0.124138\pi\)
0.924912 + 0.380181i \(0.124138\pi\)
\(32\) 1.00000 0.176777
\(33\) 12.8141 2.23065
\(34\) 5.91934 1.01516
\(35\) −0.975010 −0.164807
\(36\) 6.84453 1.14075
\(37\) 3.68773 0.606258 0.303129 0.952949i \(-0.401969\pi\)
0.303129 + 0.952949i \(0.401969\pi\)
\(38\) 2.22348 0.360696
\(39\) 0.954253 0.152803
\(40\) 3.00565 0.475234
\(41\) 5.70620 0.891159 0.445580 0.895242i \(-0.352998\pi\)
0.445580 + 0.895242i \(0.352998\pi\)
\(42\) 1.01781 0.157052
\(43\) 3.80314 0.579974 0.289987 0.957031i \(-0.406349\pi\)
0.289987 + 0.957031i \(0.406349\pi\)
\(44\) −4.08405 −0.615693
\(45\) 20.5722 3.06673
\(46\) 8.27520 1.22011
\(47\) −10.2865 −1.50044 −0.750219 0.661189i \(-0.770052\pi\)
−0.750219 + 0.661189i \(0.770052\pi\)
\(48\) −3.13760 −0.452873
\(49\) −6.89477 −0.984967
\(50\) 4.03391 0.570480
\(51\) −18.5725 −2.60067
\(52\) −0.304135 −0.0421759
\(53\) 6.39465 0.878373 0.439187 0.898396i \(-0.355267\pi\)
0.439187 + 0.898396i \(0.355267\pi\)
\(54\) −12.0626 −1.64151
\(55\) −12.2752 −1.65519
\(56\) −0.324393 −0.0433488
\(57\) −6.97638 −0.924044
\(58\) −5.84659 −0.767694
\(59\) −2.31530 −0.301426 −0.150713 0.988578i \(-0.548157\pi\)
−0.150713 + 0.988578i \(0.548157\pi\)
\(60\) −9.43051 −1.21747
\(61\) −8.06087 −1.03209 −0.516044 0.856562i \(-0.672596\pi\)
−0.516044 + 0.856562i \(0.672596\pi\)
\(62\) 10.2994 1.30802
\(63\) −2.22032 −0.279733
\(64\) 1.00000 0.125000
\(65\) −0.914122 −0.113383
\(66\) 12.8141 1.57731
\(67\) 7.93283 0.969150 0.484575 0.874750i \(-0.338974\pi\)
0.484575 + 0.874750i \(0.338974\pi\)
\(68\) 5.91934 0.717826
\(69\) −25.9643 −3.12573
\(70\) −0.975010 −0.116536
\(71\) 7.43426 0.882284 0.441142 0.897437i \(-0.354574\pi\)
0.441142 + 0.897437i \(0.354574\pi\)
\(72\) 6.84453 0.806635
\(73\) −16.5934 −1.94211 −0.971055 0.238854i \(-0.923228\pi\)
−0.971055 + 0.238854i \(0.923228\pi\)
\(74\) 3.68773 0.428689
\(75\) −12.6568 −1.46148
\(76\) 2.22348 0.255050
\(77\) 1.32484 0.150979
\(78\) 0.954253 0.108048
\(79\) −1.09880 −0.123625 −0.0618123 0.998088i \(-0.519688\pi\)
−0.0618123 + 0.998088i \(0.519688\pi\)
\(80\) 3.00565 0.336041
\(81\) 17.3140 1.92378
\(82\) 5.70620 0.630145
\(83\) −5.59412 −0.614035 −0.307017 0.951704i \(-0.599331\pi\)
−0.307017 + 0.951704i \(0.599331\pi\)
\(84\) 1.01781 0.111053
\(85\) 17.7914 1.92975
\(86\) 3.80314 0.410104
\(87\) 18.3442 1.96671
\(88\) −4.08405 −0.435361
\(89\) −14.9648 −1.58627 −0.793134 0.609047i \(-0.791552\pi\)
−0.793134 + 0.609047i \(0.791552\pi\)
\(90\) 20.5722 2.16850
\(91\) 0.0986592 0.0103423
\(92\) 8.27520 0.862749
\(93\) −32.3153 −3.35094
\(94\) −10.2865 −1.06097
\(95\) 6.68299 0.685660
\(96\) −3.13760 −0.320230
\(97\) −2.53547 −0.257438 −0.128719 0.991681i \(-0.541087\pi\)
−0.128719 + 0.991681i \(0.541087\pi\)
\(98\) −6.89477 −0.696477
\(99\) −27.9534 −2.80942
\(100\) 4.03391 0.403391
\(101\) −13.1899 −1.31244 −0.656221 0.754568i \(-0.727846\pi\)
−0.656221 + 0.754568i \(0.727846\pi\)
\(102\) −18.5725 −1.83895
\(103\) 6.16809 0.607760 0.303880 0.952710i \(-0.401718\pi\)
0.303880 + 0.952710i \(0.401718\pi\)
\(104\) −0.304135 −0.0298229
\(105\) 3.05919 0.298546
\(106\) 6.39465 0.621104
\(107\) −6.39157 −0.617897 −0.308948 0.951079i \(-0.599977\pi\)
−0.308948 + 0.951079i \(0.599977\pi\)
\(108\) −12.0626 −1.16072
\(109\) 1.47459 0.141240 0.0706198 0.997503i \(-0.477502\pi\)
0.0706198 + 0.997503i \(0.477502\pi\)
\(110\) −12.2752 −1.17039
\(111\) −11.5706 −1.09823
\(112\) −0.324393 −0.0306522
\(113\) 14.8028 1.39253 0.696266 0.717784i \(-0.254844\pi\)
0.696266 + 0.717784i \(0.254844\pi\)
\(114\) −6.97638 −0.653398
\(115\) 24.8723 2.31936
\(116\) −5.84659 −0.542842
\(117\) −2.08166 −0.192449
\(118\) −2.31530 −0.213141
\(119\) −1.92019 −0.176024
\(120\) −9.43051 −0.860884
\(121\) 5.67944 0.516313
\(122\) −8.06087 −0.729797
\(123\) −17.9038 −1.61433
\(124\) 10.2994 0.924912
\(125\) −2.90374 −0.259718
\(126\) −2.22032 −0.197801
\(127\) −15.9776 −1.41778 −0.708889 0.705320i \(-0.750803\pi\)
−0.708889 + 0.705320i \(0.750803\pi\)
\(128\) 1.00000 0.0883883
\(129\) −11.9327 −1.05062
\(130\) −0.914122 −0.0801738
\(131\) 0.541102 0.0472763 0.0236381 0.999721i \(-0.492475\pi\)
0.0236381 + 0.999721i \(0.492475\pi\)
\(132\) 12.8141 1.11532
\(133\) −0.721280 −0.0625429
\(134\) 7.93283 0.685292
\(135\) −36.2559 −3.12041
\(136\) 5.91934 0.507579
\(137\) 13.0516 1.11507 0.557535 0.830153i \(-0.311747\pi\)
0.557535 + 0.830153i \(0.311747\pi\)
\(138\) −25.9643 −2.21022
\(139\) −3.83630 −0.325391 −0.162695 0.986676i \(-0.552019\pi\)
−0.162695 + 0.986676i \(0.552019\pi\)
\(140\) −0.975010 −0.0824034
\(141\) 32.2749 2.71804
\(142\) 7.43426 0.623869
\(143\) 1.24210 0.103870
\(144\) 6.84453 0.570377
\(145\) −17.5728 −1.45934
\(146\) −16.5934 −1.37328
\(147\) 21.6330 1.78426
\(148\) 3.68773 0.303129
\(149\) −13.5271 −1.10818 −0.554091 0.832456i \(-0.686934\pi\)
−0.554091 + 0.832456i \(0.686934\pi\)
\(150\) −12.6568 −1.03342
\(151\) 2.86134 0.232853 0.116426 0.993199i \(-0.462856\pi\)
0.116426 + 0.993199i \(0.462856\pi\)
\(152\) 2.22348 0.180348
\(153\) 40.5151 3.27545
\(154\) 1.32484 0.106758
\(155\) 30.9563 2.48647
\(156\) 0.954253 0.0764014
\(157\) 5.27923 0.421328 0.210664 0.977559i \(-0.432437\pi\)
0.210664 + 0.977559i \(0.432437\pi\)
\(158\) −1.09880 −0.0874159
\(159\) −20.0639 −1.59117
\(160\) 3.00565 0.237617
\(161\) −2.68441 −0.211562
\(162\) 17.3140 1.36031
\(163\) 10.3269 0.808867 0.404433 0.914567i \(-0.367469\pi\)
0.404433 + 0.914567i \(0.367469\pi\)
\(164\) 5.70620 0.445580
\(165\) 38.5147 2.99836
\(166\) −5.59412 −0.434188
\(167\) −2.66027 −0.205858 −0.102929 0.994689i \(-0.532821\pi\)
−0.102929 + 0.994689i \(0.532821\pi\)
\(168\) 1.01781 0.0785261
\(169\) −12.9075 −0.992885
\(170\) 17.7914 1.36454
\(171\) 15.2187 1.16380
\(172\) 3.80314 0.289987
\(173\) 19.5720 1.48803 0.744014 0.668164i \(-0.232919\pi\)
0.744014 + 0.668164i \(0.232919\pi\)
\(174\) 18.3442 1.39067
\(175\) −1.30857 −0.0989186
\(176\) −4.08405 −0.307847
\(177\) 7.26448 0.546032
\(178\) −14.9648 −1.12166
\(179\) 12.2712 0.917194 0.458597 0.888644i \(-0.348352\pi\)
0.458597 + 0.888644i \(0.348352\pi\)
\(180\) 20.5722 1.53336
\(181\) −12.9260 −0.960781 −0.480390 0.877055i \(-0.659505\pi\)
−0.480390 + 0.877055i \(0.659505\pi\)
\(182\) 0.0986592 0.00731310
\(183\) 25.2918 1.86962
\(184\) 8.27520 0.610056
\(185\) 11.0840 0.814912
\(186\) −32.3153 −2.36948
\(187\) −24.1749 −1.76784
\(188\) −10.2865 −0.750219
\(189\) 3.91302 0.284630
\(190\) 6.68299 0.484835
\(191\) 1.87883 0.135947 0.0679736 0.997687i \(-0.478347\pi\)
0.0679736 + 0.997687i \(0.478347\pi\)
\(192\) −3.13760 −0.226437
\(193\) 3.16511 0.227829 0.113915 0.993491i \(-0.463661\pi\)
0.113915 + 0.993491i \(0.463661\pi\)
\(194\) −2.53547 −0.182036
\(195\) 2.86815 0.205392
\(196\) −6.89477 −0.492484
\(197\) 14.9516 1.06526 0.532630 0.846348i \(-0.321204\pi\)
0.532630 + 0.846348i \(0.321204\pi\)
\(198\) −27.9534 −1.98656
\(199\) −5.49517 −0.389542 −0.194771 0.980849i \(-0.562396\pi\)
−0.194771 + 0.980849i \(0.562396\pi\)
\(200\) 4.03391 0.285240
\(201\) −24.8900 −1.75561
\(202\) −13.1899 −0.928037
\(203\) 1.89659 0.133115
\(204\) −18.5725 −1.30034
\(205\) 17.1508 1.19787
\(206\) 6.16809 0.429751
\(207\) 56.6398 3.93674
\(208\) −0.304135 −0.0210880
\(209\) −9.08079 −0.628131
\(210\) 3.05919 0.211104
\(211\) −3.88750 −0.267626 −0.133813 0.991007i \(-0.542722\pi\)
−0.133813 + 0.991007i \(0.542722\pi\)
\(212\) 6.39465 0.439187
\(213\) −23.3257 −1.59825
\(214\) −6.39157 −0.436919
\(215\) 11.4309 0.779581
\(216\) −12.0626 −0.820755
\(217\) −3.34105 −0.226805
\(218\) 1.47459 0.0998715
\(219\) 52.0634 3.51812
\(220\) −12.2752 −0.827594
\(221\) −1.80028 −0.121100
\(222\) −11.5706 −0.776568
\(223\) −14.0272 −0.939333 −0.469667 0.882844i \(-0.655626\pi\)
−0.469667 + 0.882844i \(0.655626\pi\)
\(224\) −0.324393 −0.0216744
\(225\) 27.6102 1.84068
\(226\) 14.8028 0.984668
\(227\) −11.3821 −0.755459 −0.377730 0.925916i \(-0.623295\pi\)
−0.377730 + 0.925916i \(0.623295\pi\)
\(228\) −6.97638 −0.462022
\(229\) −20.3763 −1.34650 −0.673251 0.739414i \(-0.735103\pi\)
−0.673251 + 0.739414i \(0.735103\pi\)
\(230\) 24.8723 1.64003
\(231\) −4.15680 −0.273498
\(232\) −5.84659 −0.383847
\(233\) 20.9537 1.37272 0.686360 0.727262i \(-0.259207\pi\)
0.686360 + 0.727262i \(0.259207\pi\)
\(234\) −2.08166 −0.136082
\(235\) −30.9175 −2.01684
\(236\) −2.31530 −0.150713
\(237\) 3.44759 0.223945
\(238\) −1.92019 −0.124468
\(239\) −25.4814 −1.64825 −0.824126 0.566407i \(-0.808333\pi\)
−0.824126 + 0.566407i \(0.808333\pi\)
\(240\) −9.43051 −0.608737
\(241\) 6.56813 0.423090 0.211545 0.977368i \(-0.432150\pi\)
0.211545 + 0.977368i \(0.432150\pi\)
\(242\) 5.67944 0.365088
\(243\) −18.1366 −1.16346
\(244\) −8.06087 −0.516044
\(245\) −20.7232 −1.32396
\(246\) −17.9038 −1.14150
\(247\) −0.676237 −0.0430279
\(248\) 10.2994 0.654012
\(249\) 17.5521 1.11232
\(250\) −2.90374 −0.183648
\(251\) −13.0147 −0.821480 −0.410740 0.911753i \(-0.634730\pi\)
−0.410740 + 0.911753i \(0.634730\pi\)
\(252\) −2.22032 −0.139867
\(253\) −33.7963 −2.12476
\(254\) −15.9776 −1.00252
\(255\) −55.8224 −3.49574
\(256\) 1.00000 0.0625000
\(257\) 27.0712 1.68865 0.844327 0.535828i \(-0.180000\pi\)
0.844327 + 0.535828i \(0.180000\pi\)
\(258\) −11.9327 −0.742900
\(259\) −1.19627 −0.0743327
\(260\) −0.914122 −0.0566914
\(261\) −40.0171 −2.47700
\(262\) 0.541102 0.0334294
\(263\) −14.4165 −0.888959 −0.444479 0.895789i \(-0.646611\pi\)
−0.444479 + 0.895789i \(0.646611\pi\)
\(264\) 12.8141 0.788653
\(265\) 19.2201 1.18068
\(266\) −0.721280 −0.0442245
\(267\) 46.9536 2.87351
\(268\) 7.93283 0.484575
\(269\) −1.00000 −0.0609711
\(270\) −36.2559 −2.20646
\(271\) −9.86488 −0.599249 −0.299624 0.954057i \(-0.596861\pi\)
−0.299624 + 0.954057i \(0.596861\pi\)
\(272\) 5.91934 0.358913
\(273\) −0.309553 −0.0187350
\(274\) 13.0516 0.788474
\(275\) −16.4747 −0.993460
\(276\) −25.9643 −1.56286
\(277\) −27.4029 −1.64648 −0.823240 0.567693i \(-0.807836\pi\)
−0.823240 + 0.567693i \(0.807836\pi\)
\(278\) −3.83630 −0.230086
\(279\) 70.4944 4.22039
\(280\) −0.975010 −0.0582680
\(281\) 9.72279 0.580013 0.290007 0.957025i \(-0.406342\pi\)
0.290007 + 0.957025i \(0.406342\pi\)
\(282\) 32.2749 1.92194
\(283\) −17.5086 −1.04078 −0.520390 0.853929i \(-0.674213\pi\)
−0.520390 + 0.853929i \(0.674213\pi\)
\(284\) 7.43426 0.441142
\(285\) −20.9685 −1.24207
\(286\) 1.24210 0.0734470
\(287\) −1.85105 −0.109264
\(288\) 6.84453 0.403318
\(289\) 18.0386 1.06110
\(290\) −17.5728 −1.03191
\(291\) 7.95530 0.466348
\(292\) −16.5934 −0.971055
\(293\) 5.81945 0.339976 0.169988 0.985446i \(-0.445627\pi\)
0.169988 + 0.985446i \(0.445627\pi\)
\(294\) 21.6330 1.26166
\(295\) −6.95897 −0.405167
\(296\) 3.68773 0.214345
\(297\) 49.2642 2.85860
\(298\) −13.5271 −0.783602
\(299\) −2.51678 −0.145549
\(300\) −12.6568 −0.730740
\(301\) −1.23371 −0.0711100
\(302\) 2.86134 0.164652
\(303\) 41.3846 2.37748
\(304\) 2.22348 0.127525
\(305\) −24.2281 −1.38730
\(306\) 40.5151 2.31609
\(307\) 27.8232 1.58795 0.793977 0.607947i \(-0.208007\pi\)
0.793977 + 0.607947i \(0.208007\pi\)
\(308\) 1.32484 0.0754895
\(309\) −19.3530 −1.10095
\(310\) 30.9563 1.75820
\(311\) 18.2180 1.03305 0.516524 0.856273i \(-0.327226\pi\)
0.516524 + 0.856273i \(0.327226\pi\)
\(312\) 0.954253 0.0540240
\(313\) −11.4600 −0.647756 −0.323878 0.946099i \(-0.604987\pi\)
−0.323878 + 0.946099i \(0.604987\pi\)
\(314\) 5.27923 0.297924
\(315\) −6.67348 −0.376008
\(316\) −1.09880 −0.0618123
\(317\) 13.8558 0.778221 0.389111 0.921191i \(-0.372782\pi\)
0.389111 + 0.921191i \(0.372782\pi\)
\(318\) −20.0639 −1.12513
\(319\) 23.8777 1.33690
\(320\) 3.00565 0.168021
\(321\) 20.0542 1.11932
\(322\) −2.68441 −0.149597
\(323\) 13.1615 0.732327
\(324\) 17.3140 0.961888
\(325\) −1.22685 −0.0680535
\(326\) 10.3269 0.571955
\(327\) −4.62666 −0.255855
\(328\) 5.70620 0.315072
\(329\) 3.33686 0.183967
\(330\) 38.5147 2.12016
\(331\) −34.5901 −1.90125 −0.950623 0.310349i \(-0.899554\pi\)
−0.950623 + 0.310349i \(0.899554\pi\)
\(332\) −5.59412 −0.307017
\(333\) 25.2407 1.38318
\(334\) −2.66027 −0.145564
\(335\) 23.8433 1.30270
\(336\) 1.01781 0.0555263
\(337\) −25.2373 −1.37476 −0.687381 0.726297i \(-0.741240\pi\)
−0.687381 + 0.726297i \(0.741240\pi\)
\(338\) −12.9075 −0.702076
\(339\) −46.4453 −2.52256
\(340\) 17.7914 0.964877
\(341\) −42.0632 −2.27785
\(342\) 15.2187 0.822931
\(343\) 4.50736 0.243375
\(344\) 3.80314 0.205052
\(345\) −78.0393 −4.20150
\(346\) 19.5720 1.05220
\(347\) 16.6544 0.894056 0.447028 0.894520i \(-0.352482\pi\)
0.447028 + 0.894520i \(0.352482\pi\)
\(348\) 18.3442 0.983355
\(349\) −4.22147 −0.225970 −0.112985 0.993597i \(-0.536041\pi\)
−0.112985 + 0.993597i \(0.536041\pi\)
\(350\) −1.30857 −0.0699460
\(351\) 3.66865 0.195818
\(352\) −4.08405 −0.217680
\(353\) 13.4438 0.715544 0.357772 0.933809i \(-0.383537\pi\)
0.357772 + 0.933809i \(0.383537\pi\)
\(354\) 7.26448 0.386103
\(355\) 22.3447 1.18594
\(356\) −14.9648 −0.793134
\(357\) 6.02479 0.318866
\(358\) 12.2712 0.648554
\(359\) −17.9654 −0.948177 −0.474089 0.880477i \(-0.657222\pi\)
−0.474089 + 0.880477i \(0.657222\pi\)
\(360\) 20.5722 1.08425
\(361\) −14.0561 −0.739797
\(362\) −12.9260 −0.679374
\(363\) −17.8198 −0.935297
\(364\) 0.0986592 0.00517115
\(365\) −49.8739 −2.61052
\(366\) 25.2918 1.32202
\(367\) −19.2339 −1.00400 −0.502000 0.864868i \(-0.667402\pi\)
−0.502000 + 0.864868i \(0.667402\pi\)
\(368\) 8.27520 0.431375
\(369\) 39.0563 2.03319
\(370\) 11.0840 0.576230
\(371\) −2.07438 −0.107696
\(372\) −32.3153 −1.67547
\(373\) 6.12369 0.317073 0.158536 0.987353i \(-0.449322\pi\)
0.158536 + 0.987353i \(0.449322\pi\)
\(374\) −24.1749 −1.25005
\(375\) 9.11076 0.470478
\(376\) −10.2865 −0.530485
\(377\) 1.77815 0.0915794
\(378\) 3.91302 0.201264
\(379\) 4.30176 0.220967 0.110483 0.993878i \(-0.464760\pi\)
0.110483 + 0.993878i \(0.464760\pi\)
\(380\) 6.68299 0.342830
\(381\) 50.1312 2.56830
\(382\) 1.87883 0.0961291
\(383\) −30.1561 −1.54090 −0.770452 0.637498i \(-0.779969\pi\)
−0.770452 + 0.637498i \(0.779969\pi\)
\(384\) −3.13760 −0.160115
\(385\) 3.98199 0.202941
\(386\) 3.16511 0.161100
\(387\) 26.0307 1.32322
\(388\) −2.53547 −0.128719
\(389\) 16.5905 0.841172 0.420586 0.907253i \(-0.361825\pi\)
0.420586 + 0.907253i \(0.361825\pi\)
\(390\) 2.86815 0.145234
\(391\) 48.9837 2.47721
\(392\) −6.89477 −0.348238
\(393\) −1.69776 −0.0856406
\(394\) 14.9516 0.753253
\(395\) −3.30260 −0.166172
\(396\) −27.9534 −1.40471
\(397\) −6.67285 −0.334901 −0.167450 0.985881i \(-0.553553\pi\)
−0.167450 + 0.985881i \(0.553553\pi\)
\(398\) −5.49517 −0.275448
\(399\) 2.26309 0.113296
\(400\) 4.03391 0.201695
\(401\) 27.7436 1.38545 0.692725 0.721202i \(-0.256410\pi\)
0.692725 + 0.721202i \(0.256410\pi\)
\(402\) −24.8900 −1.24140
\(403\) −3.13240 −0.156036
\(404\) −13.1899 −0.656221
\(405\) 52.0397 2.58587
\(406\) 1.89659 0.0941262
\(407\) −15.0608 −0.746538
\(408\) −18.5725 −0.919477
\(409\) 30.6637 1.51622 0.758111 0.652125i \(-0.226122\pi\)
0.758111 + 0.652125i \(0.226122\pi\)
\(410\) 17.1508 0.847019
\(411\) −40.9506 −2.01994
\(412\) 6.16809 0.303880
\(413\) 0.751066 0.0369576
\(414\) 56.6398 2.78370
\(415\) −16.8140 −0.825364
\(416\) −0.304135 −0.0149114
\(417\) 12.0368 0.589443
\(418\) −9.08079 −0.444156
\(419\) 7.47427 0.365142 0.182571 0.983193i \(-0.441558\pi\)
0.182571 + 0.983193i \(0.441558\pi\)
\(420\) 3.05919 0.149273
\(421\) −36.8824 −1.79754 −0.898769 0.438422i \(-0.855538\pi\)
−0.898769 + 0.438422i \(0.855538\pi\)
\(422\) −3.88750 −0.189240
\(423\) −70.4062 −3.42326
\(424\) 6.39465 0.310552
\(425\) 23.8781 1.15826
\(426\) −23.3257 −1.13013
\(427\) 2.61489 0.126543
\(428\) −6.39157 −0.308948
\(429\) −3.89722 −0.188159
\(430\) 11.4309 0.551247
\(431\) 37.8309 1.82225 0.911125 0.412130i \(-0.135215\pi\)
0.911125 + 0.412130i \(0.135215\pi\)
\(432\) −12.0626 −0.580362
\(433\) 9.88884 0.475227 0.237614 0.971360i \(-0.423635\pi\)
0.237614 + 0.971360i \(0.423635\pi\)
\(434\) −3.34105 −0.160375
\(435\) 55.1363 2.64358
\(436\) 1.47459 0.0706198
\(437\) 18.3997 0.880178
\(438\) 52.0634 2.48769
\(439\) 16.8597 0.804669 0.402334 0.915493i \(-0.368199\pi\)
0.402334 + 0.915493i \(0.368199\pi\)
\(440\) −12.2752 −0.585197
\(441\) −47.1914 −2.24721
\(442\) −1.80028 −0.0856305
\(443\) −12.7251 −0.604586 −0.302293 0.953215i \(-0.597752\pi\)
−0.302293 + 0.953215i \(0.597752\pi\)
\(444\) −11.5706 −0.549117
\(445\) −44.9790 −2.13221
\(446\) −14.0272 −0.664209
\(447\) 42.4425 2.00746
\(448\) −0.324393 −0.0153261
\(449\) 27.2026 1.28377 0.641885 0.766801i \(-0.278153\pi\)
0.641885 + 0.766801i \(0.278153\pi\)
\(450\) 27.6102 1.30156
\(451\) −23.3044 −1.09736
\(452\) 14.8028 0.696266
\(453\) −8.97774 −0.421811
\(454\) −11.3821 −0.534190
\(455\) 0.296534 0.0139018
\(456\) −6.97638 −0.326699
\(457\) 19.5630 0.915121 0.457560 0.889179i \(-0.348723\pi\)
0.457560 + 0.889179i \(0.348723\pi\)
\(458\) −20.3763 −0.952121
\(459\) −71.4026 −3.33279
\(460\) 24.8723 1.15968
\(461\) 30.5373 1.42226 0.711132 0.703058i \(-0.248183\pi\)
0.711132 + 0.703058i \(0.248183\pi\)
\(462\) −4.15680 −0.193392
\(463\) 1.65808 0.0770576 0.0385288 0.999257i \(-0.487733\pi\)
0.0385288 + 0.999257i \(0.487733\pi\)
\(464\) −5.84659 −0.271421
\(465\) −97.1285 −4.50422
\(466\) 20.9537 0.970660
\(467\) 19.9513 0.923237 0.461618 0.887079i \(-0.347269\pi\)
0.461618 + 0.887079i \(0.347269\pi\)
\(468\) −2.08166 −0.0962247
\(469\) −2.57335 −0.118826
\(470\) −30.9175 −1.42612
\(471\) −16.5641 −0.763233
\(472\) −2.31530 −0.106570
\(473\) −15.5322 −0.714172
\(474\) 3.44759 0.158353
\(475\) 8.96930 0.411540
\(476\) −1.92019 −0.0880119
\(477\) 43.7684 2.00402
\(478\) −25.4814 −1.16549
\(479\) −1.41839 −0.0648078 −0.0324039 0.999475i \(-0.510316\pi\)
−0.0324039 + 0.999475i \(0.510316\pi\)
\(480\) −9.43051 −0.430442
\(481\) −1.12157 −0.0511390
\(482\) 6.56813 0.299170
\(483\) 8.42262 0.383242
\(484\) 5.67944 0.258156
\(485\) −7.62074 −0.346040
\(486\) −18.1366 −0.822691
\(487\) 39.0907 1.77137 0.885685 0.464286i \(-0.153689\pi\)
0.885685 + 0.464286i \(0.153689\pi\)
\(488\) −8.06087 −0.364898
\(489\) −32.4017 −1.46526
\(490\) −20.7232 −0.936180
\(491\) 4.88763 0.220575 0.110288 0.993900i \(-0.464823\pi\)
0.110288 + 0.993900i \(0.464823\pi\)
\(492\) −17.9038 −0.807165
\(493\) −34.6080 −1.55866
\(494\) −0.676237 −0.0304253
\(495\) −84.0179 −3.77633
\(496\) 10.2994 0.462456
\(497\) −2.41162 −0.108176
\(498\) 17.5521 0.786529
\(499\) −25.2729 −1.13137 −0.565685 0.824621i \(-0.691388\pi\)
−0.565685 + 0.824621i \(0.691388\pi\)
\(500\) −2.90374 −0.129859
\(501\) 8.34687 0.372911
\(502\) −13.0147 −0.580874
\(503\) −2.63475 −0.117478 −0.0587388 0.998273i \(-0.518708\pi\)
−0.0587388 + 0.998273i \(0.518708\pi\)
\(504\) −2.22032 −0.0989007
\(505\) −39.6441 −1.76414
\(506\) −33.7963 −1.50243
\(507\) 40.4986 1.79860
\(508\) −15.9776 −0.708889
\(509\) −11.4330 −0.506760 −0.253380 0.967367i \(-0.581542\pi\)
−0.253380 + 0.967367i \(0.581542\pi\)
\(510\) −55.8224 −2.47186
\(511\) 5.38278 0.238120
\(512\) 1.00000 0.0441942
\(513\) −26.8209 −1.18417
\(514\) 27.0712 1.19406
\(515\) 18.5391 0.816931
\(516\) −11.9327 −0.525310
\(517\) 42.0105 1.84762
\(518\) −1.19627 −0.0525612
\(519\) −61.4090 −2.69555
\(520\) −0.914122 −0.0400869
\(521\) 2.05705 0.0901210 0.0450605 0.998984i \(-0.485652\pi\)
0.0450605 + 0.998984i \(0.485652\pi\)
\(522\) −40.0171 −1.75150
\(523\) 7.68774 0.336161 0.168081 0.985773i \(-0.446243\pi\)
0.168081 + 0.985773i \(0.446243\pi\)
\(524\) 0.541102 0.0236381
\(525\) 4.10577 0.179190
\(526\) −14.4165 −0.628589
\(527\) 60.9656 2.65570
\(528\) 12.8141 0.557662
\(529\) 45.4789 1.97734
\(530\) 19.2201 0.834866
\(531\) −15.8471 −0.687707
\(532\) −0.721280 −0.0312715
\(533\) −1.73546 −0.0751709
\(534\) 46.9536 2.03188
\(535\) −19.2108 −0.830555
\(536\) 7.93283 0.342646
\(537\) −38.5022 −1.66149
\(538\) −1.00000 −0.0431131
\(539\) 28.1586 1.21288
\(540\) −36.2559 −1.56020
\(541\) 6.80481 0.292562 0.146281 0.989243i \(-0.453270\pi\)
0.146281 + 0.989243i \(0.453270\pi\)
\(542\) −9.86488 −0.423733
\(543\) 40.5565 1.74045
\(544\) 5.91934 0.253790
\(545\) 4.43208 0.189850
\(546\) −0.309553 −0.0132476
\(547\) −26.6131 −1.13790 −0.568948 0.822374i \(-0.692649\pi\)
−0.568948 + 0.822374i \(0.692649\pi\)
\(548\) 13.0516 0.557535
\(549\) −55.1729 −2.35472
\(550\) −16.4747 −0.702482
\(551\) −12.9998 −0.553808
\(552\) −25.9643 −1.10511
\(553\) 0.356443 0.0151575
\(554\) −27.4029 −1.16424
\(555\) −34.7771 −1.47621
\(556\) −3.83630 −0.162695
\(557\) 36.6320 1.55215 0.776073 0.630643i \(-0.217209\pi\)
0.776073 + 0.630643i \(0.217209\pi\)
\(558\) 70.4944 2.98427
\(559\) −1.15667 −0.0489219
\(560\) −0.975010 −0.0412017
\(561\) 75.8511 3.20243
\(562\) 9.72279 0.410131
\(563\) 3.66713 0.154551 0.0772755 0.997010i \(-0.475378\pi\)
0.0772755 + 0.997010i \(0.475378\pi\)
\(564\) 32.2749 1.35902
\(565\) 44.4920 1.87179
\(566\) −17.5086 −0.735943
\(567\) −5.61653 −0.235872
\(568\) 7.43426 0.311934
\(569\) −18.5648 −0.778277 −0.389138 0.921179i \(-0.627227\pi\)
−0.389138 + 0.921179i \(0.627227\pi\)
\(570\) −20.9685 −0.878275
\(571\) −29.1207 −1.21866 −0.609332 0.792915i \(-0.708562\pi\)
−0.609332 + 0.792915i \(0.708562\pi\)
\(572\) 1.24210 0.0519349
\(573\) −5.89500 −0.246267
\(574\) −1.85105 −0.0772614
\(575\) 33.3814 1.39210
\(576\) 6.84453 0.285189
\(577\) −40.7975 −1.69842 −0.849211 0.528053i \(-0.822922\pi\)
−0.849211 + 0.528053i \(0.822922\pi\)
\(578\) 18.0386 0.750308
\(579\) −9.93084 −0.412711
\(580\) −17.5728 −0.729670
\(581\) 1.81469 0.0752862
\(582\) 7.95530 0.329758
\(583\) −26.1161 −1.08162
\(584\) −16.5934 −0.686640
\(585\) −6.25673 −0.258684
\(586\) 5.81945 0.240399
\(587\) −23.6978 −0.978112 −0.489056 0.872252i \(-0.662659\pi\)
−0.489056 + 0.872252i \(0.662659\pi\)
\(588\) 21.6330 0.892131
\(589\) 22.9004 0.943597
\(590\) −6.95897 −0.286496
\(591\) −46.9123 −1.92971
\(592\) 3.68773 0.151565
\(593\) −44.8423 −1.84145 −0.920726 0.390210i \(-0.872402\pi\)
−0.920726 + 0.390210i \(0.872402\pi\)
\(594\) 49.2642 2.02133
\(595\) −5.77142 −0.236605
\(596\) −13.5271 −0.554091
\(597\) 17.2416 0.705654
\(598\) −2.51678 −0.102919
\(599\) −14.3773 −0.587442 −0.293721 0.955891i \(-0.594894\pi\)
−0.293721 + 0.955891i \(0.594894\pi\)
\(600\) −12.6568 −0.516711
\(601\) 10.7316 0.437753 0.218876 0.975753i \(-0.429761\pi\)
0.218876 + 0.975753i \(0.429761\pi\)
\(602\) −1.23371 −0.0502824
\(603\) 54.2965 2.21112
\(604\) 2.86134 0.116426
\(605\) 17.0704 0.694010
\(606\) 41.3846 1.68113
\(607\) −19.0640 −0.773785 −0.386892 0.922125i \(-0.626452\pi\)
−0.386892 + 0.922125i \(0.626452\pi\)
\(608\) 2.22348 0.0901739
\(609\) −5.95074 −0.241136
\(610\) −24.2281 −0.980968
\(611\) 3.12848 0.126565
\(612\) 40.5151 1.63773
\(613\) −4.32440 −0.174661 −0.0873305 0.996179i \(-0.527834\pi\)
−0.0873305 + 0.996179i \(0.527834\pi\)
\(614\) 27.8232 1.12285
\(615\) −53.8124 −2.16993
\(616\) 1.32484 0.0533791
\(617\) −7.09359 −0.285577 −0.142789 0.989753i \(-0.545607\pi\)
−0.142789 + 0.989753i \(0.545607\pi\)
\(618\) −19.3530 −0.778492
\(619\) 0.121741 0.00489317 0.00244658 0.999997i \(-0.499221\pi\)
0.00244658 + 0.999997i \(0.499221\pi\)
\(620\) 30.9563 1.24323
\(621\) −99.8203 −4.00565
\(622\) 18.2180 0.730475
\(623\) 4.85448 0.194491
\(624\) 0.954253 0.0382007
\(625\) −28.8971 −1.15589
\(626\) −11.4600 −0.458032
\(627\) 28.4919 1.13786
\(628\) 5.27923 0.210664
\(629\) 21.8289 0.870376
\(630\) −6.67348 −0.265878
\(631\) −11.4215 −0.454683 −0.227341 0.973815i \(-0.573003\pi\)
−0.227341 + 0.973815i \(0.573003\pi\)
\(632\) −1.09880 −0.0437079
\(633\) 12.1974 0.484803
\(634\) 13.8558 0.550286
\(635\) −48.0229 −1.90573
\(636\) −20.0639 −0.795584
\(637\) 2.09694 0.0830838
\(638\) 23.8777 0.945329
\(639\) 50.8840 2.01294
\(640\) 3.00565 0.118809
\(641\) −41.7220 −1.64792 −0.823959 0.566649i \(-0.808240\pi\)
−0.823959 + 0.566649i \(0.808240\pi\)
\(642\) 20.0542 0.791476
\(643\) 40.3144 1.58984 0.794922 0.606712i \(-0.207512\pi\)
0.794922 + 0.606712i \(0.207512\pi\)
\(644\) −2.68441 −0.105781
\(645\) −35.8656 −1.41221
\(646\) 13.1615 0.517833
\(647\) 38.3534 1.50783 0.753913 0.656974i \(-0.228164\pi\)
0.753913 + 0.656974i \(0.228164\pi\)
\(648\) 17.3140 0.680157
\(649\) 9.45579 0.371172
\(650\) −1.22685 −0.0481211
\(651\) 10.4829 0.410856
\(652\) 10.3269 0.404433
\(653\) −47.3581 −1.85327 −0.926634 0.375965i \(-0.877311\pi\)
−0.926634 + 0.375965i \(0.877311\pi\)
\(654\) −4.62666 −0.180917
\(655\) 1.62636 0.0635471
\(656\) 5.70620 0.222790
\(657\) −113.574 −4.43094
\(658\) 3.33686 0.130084
\(659\) −37.2534 −1.45119 −0.725594 0.688123i \(-0.758435\pi\)
−0.725594 + 0.688123i \(0.758435\pi\)
\(660\) 38.5147 1.49918
\(661\) 23.8806 0.928848 0.464424 0.885613i \(-0.346261\pi\)
0.464424 + 0.885613i \(0.346261\pi\)
\(662\) −34.5901 −1.34438
\(663\) 5.64855 0.219372
\(664\) −5.59412 −0.217094
\(665\) −2.16791 −0.0840680
\(666\) 25.2407 0.978059
\(667\) −48.3817 −1.87335
\(668\) −2.66027 −0.102929
\(669\) 44.0118 1.70160
\(670\) 23.8433 0.921146
\(671\) 32.9210 1.27090
\(672\) 1.01781 0.0392630
\(673\) −23.1189 −0.891167 −0.445584 0.895240i \(-0.647004\pi\)
−0.445584 + 0.895240i \(0.647004\pi\)
\(674\) −25.2373 −0.972103
\(675\) −48.6593 −1.87290
\(676\) −12.9075 −0.496442
\(677\) −33.7962 −1.29889 −0.649446 0.760408i \(-0.724999\pi\)
−0.649446 + 0.760408i \(0.724999\pi\)
\(678\) −46.4453 −1.78372
\(679\) 0.822489 0.0315642
\(680\) 17.7914 0.682271
\(681\) 35.7126 1.36851
\(682\) −42.0632 −1.61068
\(683\) 22.1931 0.849194 0.424597 0.905382i \(-0.360416\pi\)
0.424597 + 0.905382i \(0.360416\pi\)
\(684\) 15.2187 0.581900
\(685\) 39.2284 1.49884
\(686\) 4.50736 0.172092
\(687\) 63.9326 2.43918
\(688\) 3.80314 0.144994
\(689\) −1.94484 −0.0740924
\(690\) −78.0393 −2.97091
\(691\) 37.3843 1.42217 0.711084 0.703107i \(-0.248205\pi\)
0.711084 + 0.703107i \(0.248205\pi\)
\(692\) 19.5720 0.744014
\(693\) 9.06787 0.344460
\(694\) 16.6544 0.632193
\(695\) −11.5306 −0.437379
\(696\) 18.3442 0.695337
\(697\) 33.7770 1.27939
\(698\) −4.22147 −0.159785
\(699\) −65.7442 −2.48667
\(700\) −1.30857 −0.0494593
\(701\) 9.26870 0.350074 0.175037 0.984562i \(-0.443995\pi\)
0.175037 + 0.984562i \(0.443995\pi\)
\(702\) 3.66865 0.138464
\(703\) 8.19957 0.309253
\(704\) −4.08405 −0.153923
\(705\) 97.0069 3.65349
\(706\) 13.4438 0.505966
\(707\) 4.27870 0.160917
\(708\) 7.26448 0.273016
\(709\) 26.4983 0.995164 0.497582 0.867417i \(-0.334221\pi\)
0.497582 + 0.867417i \(0.334221\pi\)
\(710\) 22.3447 0.838583
\(711\) −7.52077 −0.282051
\(712\) −14.9648 −0.560830
\(713\) 85.2294 3.19187
\(714\) 6.02479 0.225472
\(715\) 3.73332 0.139618
\(716\) 12.2712 0.458597
\(717\) 79.9503 2.98580
\(718\) −17.9654 −0.670462
\(719\) 25.9263 0.966887 0.483443 0.875376i \(-0.339386\pi\)
0.483443 + 0.875376i \(0.339386\pi\)
\(720\) 20.5722 0.766682
\(721\) −2.00089 −0.0745169
\(722\) −14.0561 −0.523116
\(723\) −20.6082 −0.766425
\(724\) −12.9260 −0.480390
\(725\) −23.5846 −0.875909
\(726\) −17.8198 −0.661355
\(727\) −24.6376 −0.913756 −0.456878 0.889529i \(-0.651032\pi\)
−0.456878 + 0.889529i \(0.651032\pi\)
\(728\) 0.0986592 0.00365655
\(729\) 4.96333 0.183827
\(730\) −49.8739 −1.84592
\(731\) 22.5121 0.832641
\(732\) 25.2918 0.934811
\(733\) 26.5503 0.980658 0.490329 0.871537i \(-0.336877\pi\)
0.490329 + 0.871537i \(0.336877\pi\)
\(734\) −19.2339 −0.709935
\(735\) 65.0212 2.39834
\(736\) 8.27520 0.305028
\(737\) −32.3981 −1.19340
\(738\) 39.0563 1.43768
\(739\) −35.5016 −1.30595 −0.652974 0.757380i \(-0.726479\pi\)
−0.652974 + 0.757380i \(0.726479\pi\)
\(740\) 11.0840 0.407456
\(741\) 2.12176 0.0779448
\(742\) −2.07438 −0.0761529
\(743\) −35.0512 −1.28590 −0.642951 0.765907i \(-0.722290\pi\)
−0.642951 + 0.765907i \(0.722290\pi\)
\(744\) −32.3153 −1.18474
\(745\) −40.6576 −1.48958
\(746\) 6.12369 0.224204
\(747\) −38.2891 −1.40093
\(748\) −24.1749 −0.883921
\(749\) 2.07338 0.0757596
\(750\) 9.11076 0.332678
\(751\) 12.9887 0.473965 0.236983 0.971514i \(-0.423842\pi\)
0.236983 + 0.971514i \(0.423842\pi\)
\(752\) −10.2865 −0.375110
\(753\) 40.8349 1.48811
\(754\) 1.77815 0.0647564
\(755\) 8.60018 0.312992
\(756\) 3.91302 0.142315
\(757\) 42.2051 1.53397 0.766985 0.641665i \(-0.221756\pi\)
0.766985 + 0.641665i \(0.221756\pi\)
\(758\) 4.30176 0.156247
\(759\) 106.039 3.84898
\(760\) 6.68299 0.242417
\(761\) 16.8709 0.611568 0.305784 0.952101i \(-0.401081\pi\)
0.305784 + 0.952101i \(0.401081\pi\)
\(762\) 50.1312 1.81606
\(763\) −0.478345 −0.0173172
\(764\) 1.87883 0.0679736
\(765\) 121.774 4.40275
\(766\) −30.1561 −1.08958
\(767\) 0.704163 0.0254259
\(768\) −3.13760 −0.113218
\(769\) −22.6543 −0.816933 −0.408467 0.912773i \(-0.633936\pi\)
−0.408467 + 0.912773i \(0.633936\pi\)
\(770\) 3.98199 0.143501
\(771\) −84.9385 −3.05899
\(772\) 3.16511 0.113915
\(773\) −28.6726 −1.03128 −0.515642 0.856804i \(-0.672446\pi\)
−0.515642 + 0.856804i \(0.672446\pi\)
\(774\) 26.0307 0.935655
\(775\) 41.5468 1.49240
\(776\) −2.53547 −0.0910182
\(777\) 3.75342 0.134653
\(778\) 16.5905 0.594798
\(779\) 12.6876 0.454581
\(780\) 2.86815 0.102696
\(781\) −30.3619 −1.08643
\(782\) 48.9837 1.75165
\(783\) 70.5250 2.52036
\(784\) −6.89477 −0.246242
\(785\) 15.8675 0.566335
\(786\) −1.69776 −0.0605571
\(787\) −53.5435 −1.90862 −0.954310 0.298820i \(-0.903407\pi\)
−0.954310 + 0.298820i \(0.903407\pi\)
\(788\) 14.9516 0.532630
\(789\) 45.2332 1.61034
\(790\) −3.30260 −0.117501
\(791\) −4.80193 −0.170737
\(792\) −27.9534 −0.993280
\(793\) 2.45159 0.0870586
\(794\) −6.67285 −0.236811
\(795\) −60.3049 −2.13879
\(796\) −5.49517 −0.194771
\(797\) −51.8420 −1.83634 −0.918169 0.396188i \(-0.870333\pi\)
−0.918169 + 0.396188i \(0.870333\pi\)
\(798\) 2.26309 0.0801124
\(799\) −60.8893 −2.15411
\(800\) 4.03391 0.142620
\(801\) −102.427 −3.61909
\(802\) 27.7436 0.979661
\(803\) 67.7682 2.39149
\(804\) −24.8900 −0.877804
\(805\) −8.06840 −0.284374
\(806\) −3.13240 −0.110334
\(807\) 3.13760 0.110449
\(808\) −13.1899 −0.464019
\(809\) 29.8709 1.05021 0.525103 0.851039i \(-0.324027\pi\)
0.525103 + 0.851039i \(0.324027\pi\)
\(810\) 52.0397 1.82849
\(811\) 26.0612 0.915132 0.457566 0.889176i \(-0.348721\pi\)
0.457566 + 0.889176i \(0.348721\pi\)
\(812\) 1.89659 0.0665573
\(813\) 30.9520 1.08554
\(814\) −15.0608 −0.527882
\(815\) 31.0391 1.08725
\(816\) −18.5725 −0.650168
\(817\) 8.45621 0.295845
\(818\) 30.6637 1.07213
\(819\) 0.675275 0.0235960
\(820\) 17.1508 0.598933
\(821\) 3.94591 0.137713 0.0688567 0.997627i \(-0.478065\pi\)
0.0688567 + 0.997627i \(0.478065\pi\)
\(822\) −40.9506 −1.42832
\(823\) 18.6762 0.651010 0.325505 0.945540i \(-0.394466\pi\)
0.325505 + 0.945540i \(0.394466\pi\)
\(824\) 6.16809 0.214876
\(825\) 51.6909 1.79965
\(826\) 0.751066 0.0261329
\(827\) 13.4024 0.466046 0.233023 0.972471i \(-0.425138\pi\)
0.233023 + 0.972471i \(0.425138\pi\)
\(828\) 56.6398 1.96837
\(829\) −14.8573 −0.516015 −0.258007 0.966143i \(-0.583066\pi\)
−0.258007 + 0.966143i \(0.583066\pi\)
\(830\) −16.8140 −0.583621
\(831\) 85.9793 2.98259
\(832\) −0.304135 −0.0105440
\(833\) −40.8125 −1.41407
\(834\) 12.0368 0.416799
\(835\) −7.99584 −0.276708
\(836\) −9.08079 −0.314066
\(837\) −124.237 −4.29427
\(838\) 7.47427 0.258194
\(839\) −28.3441 −0.978548 −0.489274 0.872130i \(-0.662738\pi\)
−0.489274 + 0.872130i \(0.662738\pi\)
\(840\) 3.05919 0.105552
\(841\) 5.18258 0.178710
\(842\) −36.8824 −1.27105
\(843\) −30.5062 −1.05069
\(844\) −3.88750 −0.133813
\(845\) −38.7954 −1.33460
\(846\) −70.4062 −2.42061
\(847\) −1.84237 −0.0633046
\(848\) 6.39465 0.219593
\(849\) 54.9351 1.88537
\(850\) 23.8781 0.819011
\(851\) 30.5167 1.04610
\(852\) −23.3257 −0.799126
\(853\) −16.4185 −0.562159 −0.281080 0.959684i \(-0.590693\pi\)
−0.281080 + 0.959684i \(0.590693\pi\)
\(854\) 2.61489 0.0894796
\(855\) 45.7419 1.56434
\(856\) −6.39157 −0.218459
\(857\) 32.4378 1.10806 0.554028 0.832498i \(-0.313090\pi\)
0.554028 + 0.832498i \(0.313090\pi\)
\(858\) −3.89722 −0.133049
\(859\) −50.8594 −1.73530 −0.867651 0.497174i \(-0.834371\pi\)
−0.867651 + 0.497174i \(0.834371\pi\)
\(860\) 11.4309 0.389791
\(861\) 5.80786 0.197931
\(862\) 37.8309 1.28853
\(863\) 6.34534 0.215998 0.107999 0.994151i \(-0.465556\pi\)
0.107999 + 0.994151i \(0.465556\pi\)
\(864\) −12.0626 −0.410378
\(865\) 58.8264 2.00016
\(866\) 9.88884 0.336036
\(867\) −56.5979 −1.92217
\(868\) −3.34105 −0.113403
\(869\) 4.48755 0.152230
\(870\) 55.1363 1.86930
\(871\) −2.41265 −0.0817496
\(872\) 1.47459 0.0499358
\(873\) −17.3541 −0.587348
\(874\) 18.3997 0.622380
\(875\) 0.941951 0.0318438
\(876\) 52.0634 1.75906
\(877\) 12.6512 0.427199 0.213600 0.976921i \(-0.431481\pi\)
0.213600 + 0.976921i \(0.431481\pi\)
\(878\) 16.8597 0.568987
\(879\) −18.2591 −0.615864
\(880\) −12.2752 −0.413797
\(881\) 17.4300 0.587233 0.293616 0.955923i \(-0.405141\pi\)
0.293616 + 0.955923i \(0.405141\pi\)
\(882\) −47.1914 −1.58902
\(883\) 29.6353 0.997307 0.498654 0.866801i \(-0.333828\pi\)
0.498654 + 0.866801i \(0.333828\pi\)
\(884\) −1.80028 −0.0605499
\(885\) 21.8345 0.733957
\(886\) −12.7251 −0.427507
\(887\) −53.5405 −1.79772 −0.898858 0.438241i \(-0.855602\pi\)
−0.898858 + 0.438241i \(0.855602\pi\)
\(888\) −11.5706 −0.388284
\(889\) 5.18300 0.173832
\(890\) −44.9790 −1.50770
\(891\) −70.7111 −2.36891
\(892\) −14.0272 −0.469667
\(893\) −22.8718 −0.765375
\(894\) 42.4425 1.41949
\(895\) 36.8829 1.23286
\(896\) −0.324393 −0.0108372
\(897\) 7.89663 0.263661
\(898\) 27.2026 0.907762
\(899\) −60.2162 −2.00832
\(900\) 27.6102 0.920339
\(901\) 37.8522 1.26104
\(902\) −23.3044 −0.775952
\(903\) 3.87090 0.128815
\(904\) 14.8028 0.492334
\(905\) −38.8509 −1.29145
\(906\) −8.97774 −0.298265
\(907\) −22.9439 −0.761841 −0.380921 0.924608i \(-0.624393\pi\)
−0.380921 + 0.924608i \(0.624393\pi\)
\(908\) −11.3821 −0.377730
\(909\) −90.2786 −2.99435
\(910\) 0.296534 0.00983002
\(911\) 25.6304 0.849173 0.424586 0.905387i \(-0.360419\pi\)
0.424586 + 0.905387i \(0.360419\pi\)
\(912\) −6.97638 −0.231011
\(913\) 22.8467 0.756114
\(914\) 19.5630 0.647088
\(915\) 76.0181 2.51308
\(916\) −20.3763 −0.673251
\(917\) −0.175529 −0.00579649
\(918\) −71.4026 −2.35664
\(919\) 37.3824 1.23313 0.616567 0.787303i \(-0.288523\pi\)
0.616567 + 0.787303i \(0.288523\pi\)
\(920\) 24.8723 0.820016
\(921\) −87.2981 −2.87657
\(922\) 30.5373 1.00569
\(923\) −2.26102 −0.0744223
\(924\) −4.15680 −0.136749
\(925\) 14.8759 0.489118
\(926\) 1.65808 0.0544879
\(927\) 42.2177 1.38661
\(928\) −5.84659 −0.191924
\(929\) −3.64426 −0.119564 −0.0597822 0.998211i \(-0.519041\pi\)
−0.0597822 + 0.998211i \(0.519041\pi\)
\(930\) −97.1285 −3.18497
\(931\) −15.3304 −0.502432
\(932\) 20.9537 0.686360
\(933\) −57.1608 −1.87136
\(934\) 19.9513 0.652827
\(935\) −72.6611 −2.37627
\(936\) −2.08166 −0.0680412
\(937\) −46.0310 −1.50377 −0.751884 0.659296i \(-0.770854\pi\)
−0.751884 + 0.659296i \(0.770854\pi\)
\(938\) −2.57335 −0.0840230
\(939\) 35.9568 1.17341
\(940\) −30.9175 −1.00842
\(941\) −31.8933 −1.03969 −0.519846 0.854260i \(-0.674011\pi\)
−0.519846 + 0.854260i \(0.674011\pi\)
\(942\) −16.5641 −0.539688
\(943\) 47.2200 1.53769
\(944\) −2.31530 −0.0753566
\(945\) 11.7611 0.382590
\(946\) −15.5322 −0.504996
\(947\) 19.5834 0.636375 0.318188 0.948028i \(-0.396926\pi\)
0.318188 + 0.948028i \(0.396926\pi\)
\(948\) 3.44759 0.111973
\(949\) 5.04663 0.163821
\(950\) 8.96930 0.291002
\(951\) −43.4741 −1.40974
\(952\) −1.92019 −0.0622338
\(953\) −51.3328 −1.66283 −0.831416 0.555650i \(-0.812470\pi\)
−0.831416 + 0.555650i \(0.812470\pi\)
\(954\) 43.7684 1.41705
\(955\) 5.64709 0.182735
\(956\) −25.4814 −0.824126
\(957\) −74.9188 −2.42178
\(958\) −1.41839 −0.0458261
\(959\) −4.23383 −0.136718
\(960\) −9.43051 −0.304368
\(961\) 75.0773 2.42185
\(962\) −1.12157 −0.0361607
\(963\) −43.7473 −1.40974
\(964\) 6.56813 0.211545
\(965\) 9.51319 0.306240
\(966\) 8.42262 0.270993
\(967\) −29.5177 −0.949227 −0.474613 0.880194i \(-0.657412\pi\)
−0.474613 + 0.880194i \(0.657412\pi\)
\(968\) 5.67944 0.182544
\(969\) −41.2956 −1.32661
\(970\) −7.62074 −0.244687
\(971\) 12.1128 0.388717 0.194359 0.980931i \(-0.437737\pi\)
0.194359 + 0.980931i \(0.437737\pi\)
\(972\) −18.1366 −0.581731
\(973\) 1.24447 0.0398958
\(974\) 39.0907 1.25255
\(975\) 3.84937 0.123278
\(976\) −8.06087 −0.258022
\(977\) −2.25355 −0.0720975 −0.0360487 0.999350i \(-0.511477\pi\)
−0.0360487 + 0.999350i \(0.511477\pi\)
\(978\) −32.4017 −1.03609
\(979\) 61.1170 1.95331
\(980\) −20.7232 −0.661979
\(981\) 10.0928 0.322240
\(982\) 4.88763 0.155970
\(983\) −29.7683 −0.949462 −0.474731 0.880131i \(-0.657455\pi\)
−0.474731 + 0.880131i \(0.657455\pi\)
\(984\) −17.9038 −0.570752
\(985\) 44.9393 1.43189
\(986\) −34.6080 −1.10214
\(987\) −10.4697 −0.333255
\(988\) −0.676237 −0.0215140
\(989\) 31.4718 1.00074
\(990\) −84.0179 −2.67027
\(991\) 29.6081 0.940532 0.470266 0.882525i \(-0.344158\pi\)
0.470266 + 0.882525i \(0.344158\pi\)
\(992\) 10.2994 0.327006
\(993\) 108.530 3.44409
\(994\) −2.41162 −0.0764919
\(995\) −16.5165 −0.523609
\(996\) 17.5521 0.556160
\(997\) 41.7985 1.32377 0.661885 0.749605i \(-0.269757\pi\)
0.661885 + 0.749605i \(0.269757\pi\)
\(998\) −25.2729 −0.800000
\(999\) −44.4835 −1.40740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.2.a.e.1.1 7
3.2 odd 2 4842.2.a.n.1.3 7
4.3 odd 2 4304.2.a.h.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.1 7 1.1 even 1 trivial
4304.2.a.h.1.7 7 4.3 odd 2
4842.2.a.n.1.3 7 3.2 odd 2