Properties

Label 538.2.a.c.1.1
Level $538$
Weight $2$
Character 538.1
Self dual yes
Analytic conductor $4.296$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4913.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.90570\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.90570 q^{3} +1.00000 q^{4} +0.655849 q^{5} +1.90570 q^{6} +2.04948 q^{7} -1.00000 q^{8} +0.631706 q^{9} -0.655849 q^{10} +1.51207 q^{11} -1.90570 q^{12} -1.53741 q^{13} -2.04948 q^{14} -1.24985 q^{15} +1.00000 q^{16} +0.126749 q^{17} -0.631706 q^{18} -4.09896 q^{19} +0.655849 q^{20} -3.90570 q^{21} -1.51207 q^{22} +7.24985 q^{23} +1.90570 q^{24} -4.56986 q^{25} +1.53741 q^{26} +4.51327 q^{27} +2.04948 q^{28} +8.20504 q^{29} +1.24985 q^{30} +1.17623 q^{31} -1.00000 q^{32} -2.88156 q^{33} -0.126749 q^{34} +1.34415 q^{35} +0.631706 q^{36} +7.34882 q^{37} +4.09896 q^{38} +2.92985 q^{39} -0.655849 q^{40} -4.61103 q^{41} +3.90570 q^{42} +8.19673 q^{43} +1.51207 q^{44} +0.414304 q^{45} -7.24985 q^{46} +7.49140 q^{47} -1.90570 q^{48} -2.79963 q^{49} +4.56986 q^{50} -0.241545 q^{51} -1.53741 q^{52} +11.1231 q^{53} -4.51327 q^{54} +0.991691 q^{55} -2.04948 q^{56} +7.81141 q^{57} -8.20504 q^{58} +10.4190 q^{59} -1.24985 q^{60} -2.46259 q^{61} -1.17623 q^{62} +1.29467 q^{63} +1.00000 q^{64} -1.00831 q^{65} +2.88156 q^{66} +6.04948 q^{67} +0.126749 q^{68} -13.8161 q^{69} -1.34415 q^{70} +3.67288 q^{71} -0.631706 q^{72} -12.2957 q^{73} -7.34882 q^{74} +8.70880 q^{75} -4.09896 q^{76} +3.09896 q^{77} -2.92985 q^{78} -4.60756 q^{79} +0.655849 q^{80} -10.4961 q^{81} +4.61103 q^{82} -0.483091 q^{83} -3.90570 q^{84} +0.0831280 q^{85} -8.19673 q^{86} -15.6364 q^{87} -1.51207 q^{88} +4.00711 q^{89} -0.414304 q^{90} -3.15089 q^{91} +7.24985 q^{92} -2.24155 q^{93} -7.49140 q^{94} -2.68830 q^{95} +1.90570 q^{96} +13.1991 q^{97} +2.79963 q^{98} +0.955185 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} + 4 q^{4} + 5 q^{5} - 3 q^{6} - q^{7} - 4 q^{8} + 3 q^{9} - 5 q^{10} + 7 q^{11} + 3 q^{12} + 4 q^{13} + q^{14} + 8 q^{15} + 4 q^{16} + 4 q^{17} - 3 q^{18} + 2 q^{19} + 5 q^{20}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.90570 −1.10026 −0.550129 0.835080i \(-0.685422\pi\)
−0.550129 + 0.835080i \(0.685422\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.655849 0.293305 0.146652 0.989188i \(-0.453150\pi\)
0.146652 + 0.989188i \(0.453150\pi\)
\(6\) 1.90570 0.778000
\(7\) 2.04948 0.774631 0.387316 0.921947i \(-0.373402\pi\)
0.387316 + 0.921947i \(0.373402\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.631706 0.210569
\(10\) −0.655849 −0.207398
\(11\) 1.51207 0.455907 0.227953 0.973672i \(-0.426797\pi\)
0.227953 + 0.973672i \(0.426797\pi\)
\(12\) −1.90570 −0.550129
\(13\) −1.53741 −0.426401 −0.213200 0.977009i \(-0.568389\pi\)
−0.213200 + 0.977009i \(0.568389\pi\)
\(14\) −2.04948 −0.547747
\(15\) −1.24985 −0.322711
\(16\) 1.00000 0.250000
\(17\) 0.126749 0.0307411 0.0153705 0.999882i \(-0.495107\pi\)
0.0153705 + 0.999882i \(0.495107\pi\)
\(18\) −0.631706 −0.148895
\(19\) −4.09896 −0.940366 −0.470183 0.882569i \(-0.655812\pi\)
−0.470183 + 0.882569i \(0.655812\pi\)
\(20\) 0.655849 0.146652
\(21\) −3.90570 −0.852294
\(22\) −1.51207 −0.322375
\(23\) 7.24985 1.51170 0.755850 0.654745i \(-0.227224\pi\)
0.755850 + 0.654745i \(0.227224\pi\)
\(24\) 1.90570 0.389000
\(25\) −4.56986 −0.913972
\(26\) 1.53741 0.301511
\(27\) 4.51327 0.868578
\(28\) 2.04948 0.387316
\(29\) 8.20504 1.52364 0.761819 0.647790i \(-0.224307\pi\)
0.761819 + 0.647790i \(0.224307\pi\)
\(30\) 1.24985 0.228191
\(31\) 1.17623 0.211257 0.105629 0.994406i \(-0.466315\pi\)
0.105629 + 0.994406i \(0.466315\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.88156 −0.501615
\(34\) −0.126749 −0.0217372
\(35\) 1.34415 0.227203
\(36\) 0.631706 0.105284
\(37\) 7.34882 1.20814 0.604069 0.796932i \(-0.293545\pi\)
0.604069 + 0.796932i \(0.293545\pi\)
\(38\) 4.09896 0.664939
\(39\) 2.92985 0.469151
\(40\) −0.655849 −0.103699
\(41\) −4.61103 −0.720123 −0.360061 0.932929i \(-0.617244\pi\)
−0.360061 + 0.932929i \(0.617244\pi\)
\(42\) 3.90570 0.602663
\(43\) 8.19673 1.24999 0.624995 0.780629i \(-0.285101\pi\)
0.624995 + 0.780629i \(0.285101\pi\)
\(44\) 1.51207 0.227953
\(45\) 0.414304 0.0617608
\(46\) −7.24985 −1.06893
\(47\) 7.49140 1.09273 0.546366 0.837546i \(-0.316011\pi\)
0.546366 + 0.837546i \(0.316011\pi\)
\(48\) −1.90570 −0.275065
\(49\) −2.79963 −0.399947
\(50\) 4.56986 0.646276
\(51\) −0.241545 −0.0338231
\(52\) −1.53741 −0.213200
\(53\) 11.1231 1.52788 0.763938 0.645290i \(-0.223263\pi\)
0.763938 + 0.645290i \(0.223263\pi\)
\(54\) −4.51327 −0.614178
\(55\) 0.991691 0.133720
\(56\) −2.04948 −0.273873
\(57\) 7.81141 1.03465
\(58\) −8.20504 −1.07737
\(59\) 10.4190 1.35643 0.678217 0.734862i \(-0.262753\pi\)
0.678217 + 0.734862i \(0.262753\pi\)
\(60\) −1.24985 −0.161355
\(61\) −2.46259 −0.315302 −0.157651 0.987495i \(-0.550392\pi\)
−0.157651 + 0.987495i \(0.550392\pi\)
\(62\) −1.17623 −0.149381
\(63\) 1.29467 0.163113
\(64\) 1.00000 0.125000
\(65\) −1.00831 −0.125065
\(66\) 2.88156 0.354696
\(67\) 6.04948 0.739062 0.369531 0.929218i \(-0.379518\pi\)
0.369531 + 0.929218i \(0.379518\pi\)
\(68\) 0.126749 0.0153705
\(69\) −13.8161 −1.66326
\(70\) −1.34415 −0.160657
\(71\) 3.67288 0.435890 0.217945 0.975961i \(-0.430065\pi\)
0.217945 + 0.975961i \(0.430065\pi\)
\(72\) −0.631706 −0.0744473
\(73\) −12.2957 −1.43910 −0.719551 0.694440i \(-0.755652\pi\)
−0.719551 + 0.694440i \(0.755652\pi\)
\(74\) −7.34882 −0.854283
\(75\) 8.70880 1.00561
\(76\) −4.09896 −0.470183
\(77\) 3.09896 0.353160
\(78\) −2.92985 −0.331740
\(79\) −4.60756 −0.518391 −0.259196 0.965825i \(-0.583457\pi\)
−0.259196 + 0.965825i \(0.583457\pi\)
\(80\) 0.655849 0.0733262
\(81\) −10.4961 −1.16623
\(82\) 4.61103 0.509204
\(83\) −0.483091 −0.0530261 −0.0265130 0.999648i \(-0.508440\pi\)
−0.0265130 + 0.999648i \(0.508440\pi\)
\(84\) −3.90570 −0.426147
\(85\) 0.0831280 0.00901650
\(86\) −8.19673 −0.883876
\(87\) −15.6364 −1.67640
\(88\) −1.51207 −0.161187
\(89\) 4.00711 0.424753 0.212377 0.977188i \(-0.431880\pi\)
0.212377 + 0.977188i \(0.431880\pi\)
\(90\) −0.414304 −0.0436715
\(91\) −3.15089 −0.330303
\(92\) 7.24985 0.755850
\(93\) −2.24155 −0.232437
\(94\) −7.49140 −0.772679
\(95\) −2.68830 −0.275814
\(96\) 1.90570 0.194500
\(97\) 13.1991 1.34017 0.670084 0.742285i \(-0.266258\pi\)
0.670084 + 0.742285i \(0.266258\pi\)
\(98\) 2.79963 0.282805
\(99\) 0.955185 0.0959997
\(100\) −4.56986 −0.456986
\(101\) −7.79438 −0.775570 −0.387785 0.921750i \(-0.626760\pi\)
−0.387785 + 0.921750i \(0.626760\pi\)
\(102\) 0.241545 0.0239166
\(103\) 0.0807387 0.00795542 0.00397771 0.999992i \(-0.498734\pi\)
0.00397771 + 0.999992i \(0.498734\pi\)
\(104\) 1.53741 0.150755
\(105\) −2.56155 −0.249982
\(106\) −11.1231 −1.08037
\(107\) 0.175035 0.0169213 0.00846065 0.999964i \(-0.497307\pi\)
0.00846065 + 0.999964i \(0.497307\pi\)
\(108\) 4.51327 0.434289
\(109\) 3.52505 0.337638 0.168819 0.985647i \(-0.446005\pi\)
0.168819 + 0.985647i \(0.446005\pi\)
\(110\) −0.991691 −0.0945540
\(111\) −14.0047 −1.32926
\(112\) 2.04948 0.193658
\(113\) −21.0041 −1.97590 −0.987949 0.154780i \(-0.950533\pi\)
−0.987949 + 0.154780i \(0.950533\pi\)
\(114\) −7.81141 −0.731605
\(115\) 4.75481 0.443388
\(116\) 8.20504 0.761819
\(117\) −0.971191 −0.0897866
\(118\) −10.4190 −0.959144
\(119\) 0.259769 0.0238130
\(120\) 1.24985 0.114096
\(121\) −8.71364 −0.792149
\(122\) 2.46259 0.222952
\(123\) 8.78726 0.792321
\(124\) 1.17623 0.105629
\(125\) −6.27639 −0.561377
\(126\) −1.29467 −0.115338
\(127\) 7.86436 0.697849 0.348925 0.937151i \(-0.386547\pi\)
0.348925 + 0.937151i \(0.386547\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −15.6205 −1.37531
\(130\) 1.00831 0.0884345
\(131\) −6.21029 −0.542595 −0.271298 0.962495i \(-0.587453\pi\)
−0.271298 + 0.962495i \(0.587453\pi\)
\(132\) −2.88156 −0.250808
\(133\) −8.40075 −0.728437
\(134\) −6.04948 −0.522596
\(135\) 2.96002 0.254758
\(136\) −0.126749 −0.0108686
\(137\) −1.23096 −0.105168 −0.0525840 0.998617i \(-0.516746\pi\)
−0.0525840 + 0.998617i \(0.516746\pi\)
\(138\) 13.8161 1.17610
\(139\) 14.6311 1.24100 0.620498 0.784208i \(-0.286931\pi\)
0.620498 + 0.784208i \(0.286931\pi\)
\(140\) 1.34415 0.113601
\(141\) −14.2764 −1.20229
\(142\) −3.67288 −0.308221
\(143\) −2.32467 −0.194399
\(144\) 0.631706 0.0526422
\(145\) 5.38127 0.446890
\(146\) 12.2957 1.01760
\(147\) 5.33526 0.440045
\(148\) 7.34882 0.604069
\(149\) 2.96390 0.242813 0.121406 0.992603i \(-0.461260\pi\)
0.121406 + 0.992603i \(0.461260\pi\)
\(150\) −8.70880 −0.711071
\(151\) 6.51327 0.530042 0.265021 0.964243i \(-0.414621\pi\)
0.265021 + 0.964243i \(0.414621\pi\)
\(152\) 4.09896 0.332470
\(153\) 0.0800679 0.00647310
\(154\) −3.09896 −0.249722
\(155\) 0.771429 0.0619627
\(156\) 2.92985 0.234575
\(157\) −4.54977 −0.363111 −0.181556 0.983381i \(-0.558113\pi\)
−0.181556 + 0.983381i \(0.558113\pi\)
\(158\) 4.60756 0.366558
\(159\) −21.1973 −1.68106
\(160\) −0.655849 −0.0518494
\(161\) 14.8584 1.17101
\(162\) 10.4961 0.824649
\(163\) −14.5249 −1.13768 −0.568838 0.822450i \(-0.692607\pi\)
−0.568838 + 0.822450i \(0.692607\pi\)
\(164\) −4.61103 −0.360061
\(165\) −1.88987 −0.147126
\(166\) 0.483091 0.0374951
\(167\) 4.69542 0.363342 0.181671 0.983359i \(-0.441849\pi\)
0.181671 + 0.983359i \(0.441849\pi\)
\(168\) 3.90570 0.301332
\(169\) −10.6364 −0.818182
\(170\) −0.0831280 −0.00637563
\(171\) −2.58934 −0.198012
\(172\) 8.19673 0.624995
\(173\) 14.9376 1.13568 0.567841 0.823138i \(-0.307779\pi\)
0.567841 + 0.823138i \(0.307779\pi\)
\(174\) 15.6364 1.18539
\(175\) −9.36585 −0.707991
\(176\) 1.51207 0.113977
\(177\) −19.8555 −1.49243
\(178\) −4.00711 −0.300346
\(179\) −5.17445 −0.386757 −0.193378 0.981124i \(-0.561944\pi\)
−0.193378 + 0.981124i \(0.561944\pi\)
\(180\) 0.414304 0.0308804
\(181\) 3.97341 0.295341 0.147671 0.989037i \(-0.452822\pi\)
0.147671 + 0.989037i \(0.452822\pi\)
\(182\) 3.15089 0.233560
\(183\) 4.69297 0.346914
\(184\) −7.24985 −0.534466
\(185\) 4.81972 0.354353
\(186\) 2.24155 0.164358
\(187\) 0.191653 0.0140151
\(188\) 7.49140 0.546366
\(189\) 9.24985 0.672828
\(190\) 2.68830 0.195030
\(191\) 21.6735 1.56824 0.784119 0.620610i \(-0.213115\pi\)
0.784119 + 0.620610i \(0.213115\pi\)
\(192\) −1.90570 −0.137532
\(193\) −4.17742 −0.300698 −0.150349 0.988633i \(-0.548040\pi\)
−0.150349 + 0.988633i \(0.548040\pi\)
\(194\) −13.1991 −0.947642
\(195\) 1.92154 0.137604
\(196\) −2.79963 −0.199973
\(197\) −1.51799 −0.108152 −0.0540762 0.998537i \(-0.517221\pi\)
−0.0540762 + 0.998537i \(0.517221\pi\)
\(198\) −0.955185 −0.0678820
\(199\) −12.1661 −0.862435 −0.431218 0.902248i \(-0.641916\pi\)
−0.431218 + 0.902248i \(0.641916\pi\)
\(200\) 4.56986 0.323138
\(201\) −11.5285 −0.813159
\(202\) 7.79438 0.548411
\(203\) 16.8161 1.18026
\(204\) −0.241545 −0.0169116
\(205\) −3.02414 −0.211215
\(206\) −0.0807387 −0.00562533
\(207\) 4.57978 0.318316
\(208\) −1.53741 −0.106600
\(209\) −6.19792 −0.428719
\(210\) 2.56155 0.176764
\(211\) −24.7554 −1.70423 −0.852117 0.523352i \(-0.824681\pi\)
−0.852117 + 0.523352i \(0.824681\pi\)
\(212\) 11.1231 0.763938
\(213\) −6.99942 −0.479592
\(214\) −0.175035 −0.0119652
\(215\) 5.37582 0.366628
\(216\) −4.51327 −0.307089
\(217\) 2.41066 0.163646
\(218\) −3.52505 −0.238746
\(219\) 23.4319 1.58338
\(220\) 0.991691 0.0668598
\(221\) −0.194865 −0.0131080
\(222\) 14.0047 0.939932
\(223\) 5.36710 0.359408 0.179704 0.983721i \(-0.442486\pi\)
0.179704 + 0.983721i \(0.442486\pi\)
\(224\) −2.04948 −0.136937
\(225\) −2.88681 −0.192454
\(226\) 21.0041 1.39717
\(227\) −25.4413 −1.68860 −0.844298 0.535873i \(-0.819982\pi\)
−0.844298 + 0.535873i \(0.819982\pi\)
\(228\) 7.81141 0.517323
\(229\) −2.13547 −0.141116 −0.0705579 0.997508i \(-0.522478\pi\)
−0.0705579 + 0.997508i \(0.522478\pi\)
\(230\) −4.75481 −0.313523
\(231\) −5.90570 −0.388567
\(232\) −8.20504 −0.538687
\(233\) 13.8645 0.908296 0.454148 0.890926i \(-0.349944\pi\)
0.454148 + 0.890926i \(0.349944\pi\)
\(234\) 0.971191 0.0634887
\(235\) 4.91323 0.320504
\(236\) 10.4190 0.678217
\(237\) 8.78065 0.570364
\(238\) −0.259769 −0.0168383
\(239\) 17.5309 1.13398 0.566990 0.823725i \(-0.308108\pi\)
0.566990 + 0.823725i \(0.308108\pi\)
\(240\) −1.24985 −0.0806777
\(241\) −6.65118 −0.428440 −0.214220 0.976785i \(-0.568721\pi\)
−0.214220 + 0.976785i \(0.568721\pi\)
\(242\) 8.71364 0.560134
\(243\) 6.46259 0.414575
\(244\) −2.46259 −0.157651
\(245\) −1.83613 −0.117306
\(246\) −8.78726 −0.560255
\(247\) 6.30178 0.400973
\(248\) −1.17623 −0.0746907
\(249\) 0.920628 0.0583424
\(250\) 6.27639 0.396954
\(251\) −4.46726 −0.281971 −0.140985 0.990012i \(-0.545027\pi\)
−0.140985 + 0.990012i \(0.545027\pi\)
\(252\) 1.29467 0.0815565
\(253\) 10.9623 0.689194
\(254\) −7.86436 −0.493454
\(255\) −0.158417 −0.00992048
\(256\) 1.00000 0.0625000
\(257\) 23.0811 1.43976 0.719879 0.694099i \(-0.244197\pi\)
0.719879 + 0.694099i \(0.244197\pi\)
\(258\) 15.6205 0.972492
\(259\) 15.0613 0.935861
\(260\) −1.00831 −0.0625327
\(261\) 5.18317 0.320830
\(262\) 6.21029 0.383673
\(263\) −10.4537 −0.644603 −0.322301 0.946637i \(-0.604456\pi\)
−0.322301 + 0.946637i \(0.604456\pi\)
\(264\) 2.88156 0.177348
\(265\) 7.29508 0.448133
\(266\) 8.40075 0.515083
\(267\) −7.63637 −0.467338
\(268\) 6.04948 0.369531
\(269\) 1.00000 0.0609711
\(270\) −2.96002 −0.180141
\(271\) −3.04464 −0.184949 −0.0924745 0.995715i \(-0.529478\pi\)
−0.0924745 + 0.995715i \(0.529478\pi\)
\(272\) 0.126749 0.00768527
\(273\) 6.00467 0.363419
\(274\) 1.23096 0.0743650
\(275\) −6.90996 −0.416686
\(276\) −13.8161 −0.831630
\(277\) 16.3641 0.983222 0.491611 0.870815i \(-0.336408\pi\)
0.491611 + 0.870815i \(0.336408\pi\)
\(278\) −14.6311 −0.877516
\(279\) 0.743031 0.0444841
\(280\) −1.34415 −0.0803284
\(281\) −21.7013 −1.29459 −0.647295 0.762240i \(-0.724100\pi\)
−0.647295 + 0.762240i \(0.724100\pi\)
\(282\) 14.2764 0.850146
\(283\) −17.9315 −1.06592 −0.532958 0.846142i \(-0.678920\pi\)
−0.532958 + 0.846142i \(0.678920\pi\)
\(284\) 3.67288 0.217945
\(285\) 5.12311 0.303467
\(286\) 2.32467 0.137461
\(287\) −9.45023 −0.557829
\(288\) −0.631706 −0.0372236
\(289\) −16.9839 −0.999055
\(290\) −5.38127 −0.315999
\(291\) −25.1536 −1.47453
\(292\) −12.2957 −0.719551
\(293\) 14.9994 0.876275 0.438138 0.898908i \(-0.355638\pi\)
0.438138 + 0.898908i \(0.355638\pi\)
\(294\) −5.33526 −0.311159
\(295\) 6.83327 0.397849
\(296\) −7.34882 −0.427141
\(297\) 6.82438 0.395991
\(298\) −2.96390 −0.171694
\(299\) −11.1460 −0.644590
\(300\) 8.70880 0.502803
\(301\) 16.7990 0.968281
\(302\) −6.51327 −0.374796
\(303\) 14.8538 0.853327
\(304\) −4.09896 −0.235092
\(305\) −1.61509 −0.0924797
\(306\) −0.0800679 −0.00457718
\(307\) −8.26528 −0.471724 −0.235862 0.971787i \(-0.575791\pi\)
−0.235862 + 0.971787i \(0.575791\pi\)
\(308\) 3.09896 0.176580
\(309\) −0.153864 −0.00875302
\(310\) −0.771429 −0.0438142
\(311\) −24.5863 −1.39416 −0.697081 0.716993i \(-0.745518\pi\)
−0.697081 + 0.716993i \(0.745518\pi\)
\(312\) −2.92985 −0.165870
\(313\) 7.63678 0.431656 0.215828 0.976431i \(-0.430755\pi\)
0.215828 + 0.976431i \(0.430755\pi\)
\(314\) 4.54977 0.256759
\(315\) 0.849108 0.0478418
\(316\) −4.60756 −0.259196
\(317\) 2.77674 0.155957 0.0779786 0.996955i \(-0.475153\pi\)
0.0779786 + 0.996955i \(0.475153\pi\)
\(318\) 21.1973 1.18869
\(319\) 12.4066 0.694637
\(320\) 0.655849 0.0366631
\(321\) −0.333565 −0.0186178
\(322\) −14.8584 −0.828028
\(323\) −0.519538 −0.0289079
\(324\) −10.4961 −0.583115
\(325\) 7.02575 0.389718
\(326\) 14.5249 0.804458
\(327\) −6.71769 −0.371489
\(328\) 4.61103 0.254602
\(329\) 15.3535 0.846465
\(330\) 1.88987 0.104034
\(331\) 17.3778 0.955170 0.477585 0.878586i \(-0.341512\pi\)
0.477585 + 0.878586i \(0.341512\pi\)
\(332\) −0.483091 −0.0265130
\(333\) 4.64229 0.254396
\(334\) −4.69542 −0.256922
\(335\) 3.96755 0.216770
\(336\) −3.90570 −0.213074
\(337\) 25.8896 1.41030 0.705149 0.709059i \(-0.250880\pi\)
0.705149 + 0.709059i \(0.250880\pi\)
\(338\) 10.6364 0.578542
\(339\) 40.0276 2.17400
\(340\) 0.0831280 0.00450825
\(341\) 1.77854 0.0963135
\(342\) 2.58934 0.140015
\(343\) −20.0842 −1.08444
\(344\) −8.19673 −0.441938
\(345\) −9.06126 −0.487842
\(346\) −14.9376 −0.803049
\(347\) 15.1101 0.811151 0.405576 0.914062i \(-0.367071\pi\)
0.405576 + 0.914062i \(0.367071\pi\)
\(348\) −15.6364 −0.838198
\(349\) −28.2744 −1.51350 −0.756748 0.653707i \(-0.773213\pi\)
−0.756748 + 0.653707i \(0.773213\pi\)
\(350\) 9.36585 0.500626
\(351\) −6.93874 −0.370362
\(352\) −1.51207 −0.0805937
\(353\) −28.8928 −1.53781 −0.768903 0.639365i \(-0.779197\pi\)
−0.768903 + 0.639365i \(0.779197\pi\)
\(354\) 19.8555 1.05531
\(355\) 2.40885 0.127849
\(356\) 4.00711 0.212377
\(357\) −0.495043 −0.0262004
\(358\) 5.17445 0.273478
\(359\) 15.5962 0.823137 0.411569 0.911379i \(-0.364981\pi\)
0.411569 + 0.911379i \(0.364981\pi\)
\(360\) −0.414304 −0.0218357
\(361\) −2.19851 −0.115711
\(362\) −3.97341 −0.208838
\(363\) 16.6056 0.871569
\(364\) −3.15089 −0.165152
\(365\) −8.06412 −0.422095
\(366\) −4.69297 −0.245305
\(367\) −20.3158 −1.06048 −0.530238 0.847849i \(-0.677897\pi\)
−0.530238 + 0.847849i \(0.677897\pi\)
\(368\) 7.24985 0.377925
\(369\) −2.91282 −0.151635
\(370\) −4.81972 −0.250565
\(371\) 22.7966 1.18354
\(372\) −2.24155 −0.116219
\(373\) −12.5876 −0.651759 −0.325880 0.945411i \(-0.605660\pi\)
−0.325880 + 0.945411i \(0.605660\pi\)
\(374\) −0.191653 −0.00991014
\(375\) 11.9609 0.617660
\(376\) −7.49140 −0.386339
\(377\) −12.6145 −0.649680
\(378\) −9.24985 −0.475761
\(379\) 5.09132 0.261524 0.130762 0.991414i \(-0.458258\pi\)
0.130762 + 0.991414i \(0.458258\pi\)
\(380\) −2.68830 −0.137907
\(381\) −14.9871 −0.767814
\(382\) −21.6735 −1.10891
\(383\) −0.881036 −0.0450189 −0.0225094 0.999747i \(-0.507166\pi\)
−0.0225094 + 0.999747i \(0.507166\pi\)
\(384\) 1.90570 0.0972500
\(385\) 2.03245 0.103583
\(386\) 4.17742 0.212625
\(387\) 5.17792 0.263209
\(388\) 13.1991 0.670084
\(389\) 0.0718469 0.00364278 0.00182139 0.999998i \(-0.499420\pi\)
0.00182139 + 0.999998i \(0.499420\pi\)
\(390\) −1.92154 −0.0973009
\(391\) 0.918909 0.0464712
\(392\) 2.79963 0.141403
\(393\) 11.8350 0.596995
\(394\) 1.51799 0.0764753
\(395\) −3.02187 −0.152047
\(396\) 0.955185 0.0479998
\(397\) 28.8218 1.44652 0.723261 0.690574i \(-0.242642\pi\)
0.723261 + 0.690574i \(0.242642\pi\)
\(398\) 12.1661 0.609834
\(399\) 16.0093 0.801469
\(400\) −4.56986 −0.228493
\(401\) −16.9670 −0.847290 −0.423645 0.905828i \(-0.639250\pi\)
−0.423645 + 0.905828i \(0.639250\pi\)
\(402\) 11.5285 0.574990
\(403\) −1.80835 −0.0900802
\(404\) −7.79438 −0.387785
\(405\) −6.88384 −0.342061
\(406\) −16.8161 −0.834568
\(407\) 11.1119 0.550798
\(408\) 0.241545 0.0119583
\(409\) −15.4405 −0.763483 −0.381742 0.924269i \(-0.624676\pi\)
−0.381742 + 0.924269i \(0.624676\pi\)
\(410\) 3.02414 0.149352
\(411\) 2.34584 0.115712
\(412\) 0.0807387 0.00397771
\(413\) 21.3535 1.05074
\(414\) −4.57978 −0.225084
\(415\) −0.316835 −0.0155528
\(416\) 1.53741 0.0753777
\(417\) −27.8826 −1.36542
\(418\) 6.19792 0.303150
\(419\) 33.4401 1.63365 0.816827 0.576882i \(-0.195731\pi\)
0.816827 + 0.576882i \(0.195731\pi\)
\(420\) −2.56155 −0.124991
\(421\) 28.3340 1.38091 0.690457 0.723373i \(-0.257409\pi\)
0.690457 + 0.723373i \(0.257409\pi\)
\(422\) 24.7554 1.20508
\(423\) 4.73236 0.230095
\(424\) −11.1231 −0.540186
\(425\) −0.579224 −0.0280965
\(426\) 6.99942 0.339123
\(427\) −5.04703 −0.244243
\(428\) 0.175035 0.00846065
\(429\) 4.43014 0.213889
\(430\) −5.37582 −0.259245
\(431\) −40.9834 −1.97410 −0.987049 0.160417i \(-0.948716\pi\)
−0.987049 + 0.160417i \(0.948716\pi\)
\(432\) 4.51327 0.217145
\(433\) 17.0843 0.821020 0.410510 0.911856i \(-0.365351\pi\)
0.410510 + 0.911856i \(0.365351\pi\)
\(434\) −2.41066 −0.115715
\(435\) −10.2551 −0.491695
\(436\) 3.52505 0.168819
\(437\) −29.7169 −1.42155
\(438\) −23.4319 −1.11962
\(439\) 0.240874 0.0114963 0.00574816 0.999983i \(-0.498170\pi\)
0.00574816 + 0.999983i \(0.498170\pi\)
\(440\) −0.991691 −0.0472770
\(441\) −1.76854 −0.0842162
\(442\) 0.194865 0.00926876
\(443\) −22.3711 −1.06288 −0.531442 0.847095i \(-0.678350\pi\)
−0.531442 + 0.847095i \(0.678350\pi\)
\(444\) −14.0047 −0.664632
\(445\) 2.62806 0.124582
\(446\) −5.36710 −0.254140
\(447\) −5.64832 −0.267157
\(448\) 2.04948 0.0968289
\(449\) 18.9102 0.892427 0.446214 0.894926i \(-0.352772\pi\)
0.446214 + 0.894926i \(0.352772\pi\)
\(450\) 2.88681 0.136085
\(451\) −6.97221 −0.328309
\(452\) −21.0041 −0.987949
\(453\) −12.4124 −0.583183
\(454\) 25.4413 1.19402
\(455\) −2.06651 −0.0968795
\(456\) −7.81141 −0.365803
\(457\) −34.3164 −1.60525 −0.802627 0.596482i \(-0.796565\pi\)
−0.802627 + 0.596482i \(0.796565\pi\)
\(458\) 2.13547 0.0997839
\(459\) 0.572050 0.0267010
\(460\) 4.75481 0.221694
\(461\) 3.84608 0.179130 0.0895648 0.995981i \(-0.471452\pi\)
0.0895648 + 0.995981i \(0.471452\pi\)
\(462\) 5.90570 0.274758
\(463\) −6.87308 −0.319419 −0.159710 0.987164i \(-0.551056\pi\)
−0.159710 + 0.987164i \(0.551056\pi\)
\(464\) 8.20504 0.380909
\(465\) −1.47012 −0.0681750
\(466\) −13.8645 −0.642262
\(467\) −22.8376 −1.05680 −0.528399 0.848996i \(-0.677207\pi\)
−0.528399 + 0.848996i \(0.677207\pi\)
\(468\) −0.971191 −0.0448933
\(469\) 12.3983 0.572500
\(470\) −4.91323 −0.226630
\(471\) 8.67052 0.399516
\(472\) −10.4190 −0.479572
\(473\) 12.3940 0.569879
\(474\) −8.78065 −0.403309
\(475\) 18.7317 0.859469
\(476\) 0.259769 0.0119065
\(477\) 7.02653 0.321723
\(478\) −17.5309 −0.801845
\(479\) −27.1928 −1.24247 −0.621236 0.783623i \(-0.713369\pi\)
−0.621236 + 0.783623i \(0.713369\pi\)
\(480\) 1.24985 0.0570478
\(481\) −11.2981 −0.515151
\(482\) 6.65118 0.302953
\(483\) −28.3158 −1.28841
\(484\) −8.71364 −0.396075
\(485\) 8.65663 0.393077
\(486\) −6.46259 −0.293149
\(487\) −24.5938 −1.11445 −0.557225 0.830361i \(-0.688134\pi\)
−0.557225 + 0.830361i \(0.688134\pi\)
\(488\) 2.46259 0.111476
\(489\) 27.6801 1.25174
\(490\) 1.83613 0.0829480
\(491\) 13.8920 0.626936 0.313468 0.949599i \(-0.398509\pi\)
0.313468 + 0.949599i \(0.398509\pi\)
\(492\) 8.78726 0.396160
\(493\) 1.03998 0.0468382
\(494\) −6.30178 −0.283531
\(495\) 0.626457 0.0281572
\(496\) 1.17623 0.0528143
\(497\) 7.52749 0.337654
\(498\) −0.920628 −0.0412543
\(499\) 6.88806 0.308352 0.154176 0.988043i \(-0.450728\pi\)
0.154176 + 0.988043i \(0.450728\pi\)
\(500\) −6.27639 −0.280689
\(501\) −8.94807 −0.399770
\(502\) 4.46726 0.199383
\(503\) −5.92646 −0.264248 −0.132124 0.991233i \(-0.542180\pi\)
−0.132124 + 0.991233i \(0.542180\pi\)
\(504\) −1.29467 −0.0576692
\(505\) −5.11194 −0.227478
\(506\) −10.9623 −0.487334
\(507\) 20.2698 0.900212
\(508\) 7.86436 0.348925
\(509\) −20.5149 −0.909307 −0.454653 0.890668i \(-0.650237\pi\)
−0.454653 + 0.890668i \(0.650237\pi\)
\(510\) 0.158417 0.00701484
\(511\) −25.1998 −1.11477
\(512\) −1.00000 −0.0441942
\(513\) −18.4997 −0.816782
\(514\) −23.0811 −1.01806
\(515\) 0.0529524 0.00233336
\(516\) −15.6205 −0.687656
\(517\) 11.3275 0.498184
\(518\) −15.0613 −0.661754
\(519\) −28.4666 −1.24954
\(520\) 1.00831 0.0442173
\(521\) −29.2417 −1.28110 −0.640552 0.767915i \(-0.721294\pi\)
−0.640552 + 0.767915i \(0.721294\pi\)
\(522\) −5.18317 −0.226861
\(523\) 22.0758 0.965309 0.482655 0.875811i \(-0.339673\pi\)
0.482655 + 0.875811i \(0.339673\pi\)
\(524\) −6.21029 −0.271298
\(525\) 17.8485 0.778974
\(526\) 10.4537 0.455803
\(527\) 0.149086 0.00649427
\(528\) −2.88156 −0.125404
\(529\) 29.5604 1.28523
\(530\) −7.29508 −0.316878
\(531\) 6.58173 0.285623
\(532\) −8.40075 −0.364219
\(533\) 7.08905 0.307061
\(534\) 7.63637 0.330458
\(535\) 0.114797 0.00496309
\(536\) −6.04948 −0.261298
\(537\) 9.86097 0.425532
\(538\) −1.00000 −0.0431131
\(539\) −4.23324 −0.182338
\(540\) 2.96002 0.127379
\(541\) −31.1201 −1.33796 −0.668978 0.743282i \(-0.733268\pi\)
−0.668978 + 0.743282i \(0.733268\pi\)
\(542\) 3.04464 0.130779
\(543\) −7.57214 −0.324952
\(544\) −0.126749 −0.00543430
\(545\) 2.31190 0.0990309
\(546\) −6.00467 −0.256976
\(547\) 31.5507 1.34901 0.674506 0.738269i \(-0.264357\pi\)
0.674506 + 0.738269i \(0.264357\pi\)
\(548\) −1.23096 −0.0525840
\(549\) −1.55563 −0.0663928
\(550\) 6.90996 0.294642
\(551\) −33.6321 −1.43278
\(552\) 13.8161 0.588051
\(553\) −9.44311 −0.401562
\(554\) −16.3641 −0.695243
\(555\) −9.18495 −0.389879
\(556\) 14.6311 0.620498
\(557\) 9.73717 0.412577 0.206289 0.978491i \(-0.433861\pi\)
0.206289 + 0.978491i \(0.433861\pi\)
\(558\) −0.743031 −0.0314550
\(559\) −12.6017 −0.532996
\(560\) 1.34415 0.0568007
\(561\) −0.365234 −0.0154202
\(562\) 21.7013 0.915413
\(563\) 7.10499 0.299440 0.149720 0.988728i \(-0.452163\pi\)
0.149720 + 0.988728i \(0.452163\pi\)
\(564\) −14.2764 −0.601144
\(565\) −13.7755 −0.579540
\(566\) 17.9315 0.753716
\(567\) −21.5115 −0.903398
\(568\) −3.67288 −0.154111
\(569\) 46.0004 1.92844 0.964219 0.265106i \(-0.0854068\pi\)
0.964219 + 0.265106i \(0.0854068\pi\)
\(570\) −5.12311 −0.214583
\(571\) 1.07721 0.0450798 0.0225399 0.999746i \(-0.492825\pi\)
0.0225399 + 0.999746i \(0.492825\pi\)
\(572\) −2.32467 −0.0971995
\(573\) −41.3032 −1.72547
\(574\) 9.45023 0.394445
\(575\) −33.1308 −1.38165
\(576\) 0.631706 0.0263211
\(577\) −25.0292 −1.04198 −0.520991 0.853562i \(-0.674437\pi\)
−0.520991 + 0.853562i \(0.674437\pi\)
\(578\) 16.9839 0.706439
\(579\) 7.96093 0.330845
\(580\) 5.38127 0.223445
\(581\) −0.990085 −0.0410757
\(582\) 25.1536 1.04265
\(583\) 16.8189 0.696569
\(584\) 12.2957 0.508799
\(585\) −0.636955 −0.0263348
\(586\) −14.9994 −0.619620
\(587\) −7.94399 −0.327883 −0.163942 0.986470i \(-0.552421\pi\)
−0.163942 + 0.986470i \(0.552421\pi\)
\(588\) 5.33526 0.220022
\(589\) −4.82132 −0.198659
\(590\) −6.83327 −0.281321
\(591\) 2.89284 0.118996
\(592\) 7.34882 0.302035
\(593\) −13.1071 −0.538244 −0.269122 0.963106i \(-0.586733\pi\)
−0.269122 + 0.963106i \(0.586733\pi\)
\(594\) −6.82438 −0.280008
\(595\) 0.170369 0.00698446
\(596\) 2.96390 0.121406
\(597\) 23.1851 0.948901
\(598\) 11.1460 0.455794
\(599\) 11.3859 0.465217 0.232608 0.972570i \(-0.425274\pi\)
0.232608 + 0.972570i \(0.425274\pi\)
\(600\) −8.70880 −0.355535
\(601\) −30.2421 −1.23360 −0.616800 0.787120i \(-0.711571\pi\)
−0.616800 + 0.787120i \(0.711571\pi\)
\(602\) −16.7990 −0.684678
\(603\) 3.82149 0.155623
\(604\) 6.51327 0.265021
\(605\) −5.71483 −0.232341
\(606\) −14.8538 −0.603393
\(607\) 18.0109 0.731041 0.365521 0.930803i \(-0.380891\pi\)
0.365521 + 0.930803i \(0.380891\pi\)
\(608\) 4.09896 0.166235
\(609\) −32.0464 −1.29859
\(610\) 1.61509 0.0653930
\(611\) −11.5173 −0.465942
\(612\) 0.0800679 0.00323655
\(613\) 14.5045 0.585833 0.292917 0.956138i \(-0.405374\pi\)
0.292917 + 0.956138i \(0.405374\pi\)
\(614\) 8.26528 0.333559
\(615\) 5.76312 0.232391
\(616\) −3.09896 −0.124861
\(617\) 24.0246 0.967196 0.483598 0.875290i \(-0.339330\pi\)
0.483598 + 0.875290i \(0.339330\pi\)
\(618\) 0.153864 0.00618932
\(619\) 0.432758 0.0173940 0.00869701 0.999962i \(-0.497232\pi\)
0.00869701 + 0.999962i \(0.497232\pi\)
\(620\) 0.771429 0.0309814
\(621\) 32.7205 1.31303
\(622\) 24.5863 0.985821
\(623\) 8.21251 0.329027
\(624\) 2.92985 0.117288
\(625\) 18.7329 0.749318
\(626\) −7.63678 −0.305227
\(627\) 11.8114 0.471702
\(628\) −4.54977 −0.181556
\(629\) 0.931453 0.0371394
\(630\) −0.849108 −0.0338293
\(631\) 17.5719 0.699527 0.349763 0.936838i \(-0.386262\pi\)
0.349763 + 0.936838i \(0.386262\pi\)
\(632\) 4.60756 0.183279
\(633\) 47.1765 1.87510
\(634\) −2.77674 −0.110278
\(635\) 5.15783 0.204682
\(636\) −21.1973 −0.840529
\(637\) 4.30417 0.170538
\(638\) −12.4066 −0.491182
\(639\) 2.32018 0.0917849
\(640\) −0.655849 −0.0259247
\(641\) −5.93265 −0.234325 −0.117163 0.993113i \(-0.537380\pi\)
−0.117163 + 0.993113i \(0.537380\pi\)
\(642\) 0.333565 0.0131648
\(643\) 37.8427 1.49237 0.746185 0.665739i \(-0.231884\pi\)
0.746185 + 0.665739i \(0.231884\pi\)
\(644\) 14.8584 0.585505
\(645\) −10.2447 −0.403385
\(646\) 0.519538 0.0204409
\(647\) 32.2568 1.26815 0.634073 0.773273i \(-0.281382\pi\)
0.634073 + 0.773273i \(0.281382\pi\)
\(648\) 10.4961 0.412324
\(649\) 15.7542 0.618408
\(650\) −7.02575 −0.275573
\(651\) −4.59401 −0.180053
\(652\) −14.5249 −0.568838
\(653\) −23.0126 −0.900554 −0.450277 0.892889i \(-0.648675\pi\)
−0.450277 + 0.892889i \(0.648675\pi\)
\(654\) 6.71769 0.262683
\(655\) −4.07301 −0.159146
\(656\) −4.61103 −0.180031
\(657\) −7.76726 −0.303030
\(658\) −15.3535 −0.598541
\(659\) −13.0493 −0.508329 −0.254164 0.967161i \(-0.581800\pi\)
−0.254164 + 0.967161i \(0.581800\pi\)
\(660\) −1.88987 −0.0735631
\(661\) 15.4042 0.599152 0.299576 0.954072i \(-0.403155\pi\)
0.299576 + 0.954072i \(0.403155\pi\)
\(662\) −17.3778 −0.675407
\(663\) 0.371354 0.0144222
\(664\) 0.483091 0.0187476
\(665\) −5.50962 −0.213654
\(666\) −4.64229 −0.179885
\(667\) 59.4853 2.30328
\(668\) 4.69542 0.181671
\(669\) −10.2281 −0.395441
\(670\) −3.96755 −0.153280
\(671\) −3.72361 −0.143748
\(672\) 3.90570 0.150666
\(673\) 49.7199 1.91656 0.958281 0.285826i \(-0.0922681\pi\)
0.958281 + 0.285826i \(0.0922681\pi\)
\(674\) −25.8896 −0.997232
\(675\) −20.6250 −0.793857
\(676\) −10.6364 −0.409091
\(677\) −6.97568 −0.268097 −0.134049 0.990975i \(-0.542798\pi\)
−0.134049 + 0.990975i \(0.542798\pi\)
\(678\) −40.0276 −1.53725
\(679\) 27.0513 1.03814
\(680\) −0.0831280 −0.00318781
\(681\) 48.4835 1.85789
\(682\) −1.77854 −0.0681040
\(683\) 18.6007 0.711737 0.355868 0.934536i \(-0.384185\pi\)
0.355868 + 0.934536i \(0.384185\pi\)
\(684\) −2.58934 −0.0990059
\(685\) −0.807324 −0.0308463
\(686\) 20.0842 0.766816
\(687\) 4.06957 0.155264
\(688\) 8.19673 0.312497
\(689\) −17.1008 −0.651487
\(690\) 9.06126 0.344956
\(691\) 5.18428 0.197219 0.0986096 0.995126i \(-0.468560\pi\)
0.0986096 + 0.995126i \(0.468560\pi\)
\(692\) 14.9376 0.567841
\(693\) 1.95763 0.0743643
\(694\) −15.1101 −0.573570
\(695\) 9.59581 0.363990
\(696\) 15.6364 0.592695
\(697\) −0.584442 −0.0221373
\(698\) 28.2744 1.07020
\(699\) −26.4217 −0.999360
\(700\) −9.36585 −0.353996
\(701\) −41.5972 −1.57111 −0.785553 0.618794i \(-0.787621\pi\)
−0.785553 + 0.618794i \(0.787621\pi\)
\(702\) 6.93874 0.261886
\(703\) −30.1225 −1.13609
\(704\) 1.51207 0.0569883
\(705\) −9.36316 −0.352637
\(706\) 28.8928 1.08739
\(707\) −15.9744 −0.600780
\(708\) −19.8555 −0.746214
\(709\) 23.0558 0.865880 0.432940 0.901423i \(-0.357476\pi\)
0.432940 + 0.901423i \(0.357476\pi\)
\(710\) −2.40885 −0.0904027
\(711\) −2.91063 −0.109157
\(712\) −4.00711 −0.150173
\(713\) 8.52749 0.319357
\(714\) 0.495043 0.0185265
\(715\) −1.52464 −0.0570181
\(716\) −5.17445 −0.193378
\(717\) −33.4087 −1.24767
\(718\) −15.5962 −0.582046
\(719\) 17.5791 0.655589 0.327795 0.944749i \(-0.393695\pi\)
0.327795 + 0.944749i \(0.393695\pi\)
\(720\) 0.414304 0.0154402
\(721\) 0.165473 0.00616252
\(722\) 2.19851 0.0818200
\(723\) 12.6752 0.471395
\(724\) 3.97341 0.147671
\(725\) −37.4959 −1.39256
\(726\) −16.6056 −0.616292
\(727\) 10.2445 0.379947 0.189974 0.981789i \(-0.439160\pi\)
0.189974 + 0.981789i \(0.439160\pi\)
\(728\) 3.15089 0.116780
\(729\) 19.1724 0.710089
\(730\) 8.06412 0.298467
\(731\) 1.03892 0.0384260
\(732\) 4.69297 0.173457
\(733\) 48.1234 1.77748 0.888739 0.458414i \(-0.151582\pi\)
0.888739 + 0.458414i \(0.151582\pi\)
\(734\) 20.3158 0.749869
\(735\) 3.49913 0.129067
\(736\) −7.24985 −0.267233
\(737\) 9.14725 0.336943
\(738\) 2.91282 0.107222
\(739\) 39.7903 1.46371 0.731856 0.681460i \(-0.238655\pi\)
0.731856 + 0.681460i \(0.238655\pi\)
\(740\) 4.81972 0.177176
\(741\) −12.0093 −0.441174
\(742\) −22.7966 −0.836889
\(743\) 17.2101 0.631378 0.315689 0.948863i \(-0.397764\pi\)
0.315689 + 0.948863i \(0.397764\pi\)
\(744\) 2.24155 0.0821790
\(745\) 1.94387 0.0712181
\(746\) 12.5876 0.460863
\(747\) −0.305171 −0.0111656
\(748\) 0.191653 0.00700753
\(749\) 0.358731 0.0131078
\(750\) −11.9609 −0.436752
\(751\) 39.8722 1.45496 0.727479 0.686130i \(-0.240692\pi\)
0.727479 + 0.686130i \(0.240692\pi\)
\(752\) 7.49140 0.273183
\(753\) 8.51327 0.310241
\(754\) 12.6145 0.459393
\(755\) 4.27172 0.155464
\(756\) 9.24985 0.336414
\(757\) −22.4779 −0.816973 −0.408487 0.912764i \(-0.633943\pi\)
−0.408487 + 0.912764i \(0.633943\pi\)
\(758\) −5.09132 −0.184925
\(759\) −20.8909 −0.758291
\(760\) 2.68830 0.0975149
\(761\) 32.3862 1.17400 0.586999 0.809588i \(-0.300309\pi\)
0.586999 + 0.809588i \(0.300309\pi\)
\(762\) 14.9871 0.542927
\(763\) 7.22452 0.261545
\(764\) 21.6735 0.784119
\(765\) 0.0525125 0.00189859
\(766\) 0.881036 0.0318331
\(767\) −16.0182 −0.578385
\(768\) −1.90570 −0.0687662
\(769\) −8.93195 −0.322094 −0.161047 0.986947i \(-0.551487\pi\)
−0.161047 + 0.986947i \(0.551487\pi\)
\(770\) −2.03245 −0.0732445
\(771\) −43.9857 −1.58411
\(772\) −4.17742 −0.150349
\(773\) 16.4396 0.591291 0.295645 0.955298i \(-0.404465\pi\)
0.295645 + 0.955298i \(0.404465\pi\)
\(774\) −5.17792 −0.186117
\(775\) −5.37521 −0.193083
\(776\) −13.1991 −0.473821
\(777\) −28.7023 −1.02969
\(778\) −0.0718469 −0.00257584
\(779\) 18.9005 0.677179
\(780\) 1.92154 0.0688021
\(781\) 5.55366 0.198725
\(782\) −0.918909 −0.0328601
\(783\) 37.0315 1.32340
\(784\) −2.79963 −0.0999867
\(785\) −2.98397 −0.106502
\(786\) −11.8350 −0.422139
\(787\) 5.86692 0.209133 0.104567 0.994518i \(-0.466654\pi\)
0.104567 + 0.994518i \(0.466654\pi\)
\(788\) −1.51799 −0.0540762
\(789\) 19.9217 0.709230
\(790\) 3.02187 0.107513
\(791\) −43.0475 −1.53059
\(792\) −0.955185 −0.0339410
\(793\) 3.78601 0.134445
\(794\) −28.8218 −1.02285
\(795\) −13.9023 −0.493062
\(796\) −12.1661 −0.431218
\(797\) −25.0566 −0.887551 −0.443776 0.896138i \(-0.646361\pi\)
−0.443776 + 0.896138i \(0.646361\pi\)
\(798\) −16.0093 −0.566724
\(799\) 0.949525 0.0335918
\(800\) 4.56986 0.161569
\(801\) 2.53132 0.0894397
\(802\) 16.9670 0.599124
\(803\) −18.5920 −0.656096
\(804\) −11.5285 −0.406579
\(805\) 9.74490 0.343462
\(806\) 1.80835 0.0636963
\(807\) −1.90570 −0.0670839
\(808\) 7.79438 0.274205
\(809\) 30.2413 1.06323 0.531614 0.846987i \(-0.321586\pi\)
0.531614 + 0.846987i \(0.321586\pi\)
\(810\) 6.88384 0.241873
\(811\) 9.86022 0.346239 0.173120 0.984901i \(-0.444615\pi\)
0.173120 + 0.984901i \(0.444615\pi\)
\(812\) 16.8161 0.590128
\(813\) 5.80219 0.203492
\(814\) −11.1119 −0.389473
\(815\) −9.52613 −0.333686
\(816\) −0.241545 −0.00845578
\(817\) −33.5981 −1.17545
\(818\) 15.4405 0.539864
\(819\) −1.99044 −0.0695515
\(820\) −3.02414 −0.105608
\(821\) 18.4713 0.644651 0.322326 0.946629i \(-0.395535\pi\)
0.322326 + 0.946629i \(0.395535\pi\)
\(822\) −2.34584 −0.0818207
\(823\) −43.0467 −1.50051 −0.750257 0.661147i \(-0.770070\pi\)
−0.750257 + 0.661147i \(0.770070\pi\)
\(824\) −0.0807387 −0.00281267
\(825\) 13.1683 0.458462
\(826\) −21.3535 −0.742983
\(827\) 9.32820 0.324373 0.162187 0.986760i \(-0.448145\pi\)
0.162187 + 0.986760i \(0.448145\pi\)
\(828\) 4.57978 0.159158
\(829\) −37.7005 −1.30939 −0.654697 0.755892i \(-0.727204\pi\)
−0.654697 + 0.755892i \(0.727204\pi\)
\(830\) 0.316835 0.0109975
\(831\) −31.1851 −1.08180
\(832\) −1.53741 −0.0533001
\(833\) −0.354849 −0.0122948
\(834\) 27.8826 0.965495
\(835\) 3.07948 0.106570
\(836\) −6.19792 −0.214360
\(837\) 5.30864 0.183493
\(838\) −33.4401 −1.15517
\(839\) 22.7247 0.784543 0.392271 0.919850i \(-0.371689\pi\)
0.392271 + 0.919850i \(0.371689\pi\)
\(840\) 2.56155 0.0883820
\(841\) 38.3227 1.32147
\(842\) −28.3340 −0.976454
\(843\) 41.3562 1.42438
\(844\) −24.7554 −0.852117
\(845\) −6.97586 −0.239977
\(846\) −4.73236 −0.162702
\(847\) −17.8584 −0.613623
\(848\) 11.1231 0.381969
\(849\) 34.1721 1.17278
\(850\) 0.579224 0.0198672
\(851\) 53.2778 1.82634
\(852\) −6.99942 −0.239796
\(853\) −47.3368 −1.62078 −0.810391 0.585890i \(-0.800745\pi\)
−0.810391 + 0.585890i \(0.800745\pi\)
\(854\) 5.04703 0.172706
\(855\) −1.69822 −0.0580778
\(856\) −0.175035 −0.00598258
\(857\) −55.0546 −1.88063 −0.940315 0.340304i \(-0.889470\pi\)
−0.940315 + 0.340304i \(0.889470\pi\)
\(858\) −4.43014 −0.151242
\(859\) 13.9751 0.476824 0.238412 0.971164i \(-0.423373\pi\)
0.238412 + 0.971164i \(0.423373\pi\)
\(860\) 5.37582 0.183314
\(861\) 18.0093 0.613756
\(862\) 40.9834 1.39590
\(863\) −36.0098 −1.22579 −0.612893 0.790166i \(-0.709995\pi\)
−0.612893 + 0.790166i \(0.709995\pi\)
\(864\) −4.51327 −0.153544
\(865\) 9.79680 0.333101
\(866\) −17.0843 −0.580549
\(867\) 32.3663 1.09922
\(868\) 2.41066 0.0818232
\(869\) −6.96696 −0.236338
\(870\) 10.2551 0.347681
\(871\) −9.30053 −0.315136
\(872\) −3.52505 −0.119373
\(873\) 8.33796 0.282197
\(874\) 29.7169 1.00519
\(875\) −12.8633 −0.434860
\(876\) 23.4319 0.791692
\(877\) 31.5675 1.06596 0.532979 0.846129i \(-0.321073\pi\)
0.532979 + 0.846129i \(0.321073\pi\)
\(878\) −0.240874 −0.00812912
\(879\) −28.5844 −0.964129
\(880\) 0.991691 0.0334299
\(881\) 25.2649 0.851195 0.425597 0.904913i \(-0.360064\pi\)
0.425597 + 0.904913i \(0.360064\pi\)
\(882\) 1.76854 0.0595499
\(883\) −39.3854 −1.32543 −0.662713 0.748874i \(-0.730595\pi\)
−0.662713 + 0.748874i \(0.730595\pi\)
\(884\) −0.194865 −0.00655401
\(885\) −13.0222 −0.437736
\(886\) 22.3711 0.751573
\(887\) 25.7106 0.863278 0.431639 0.902047i \(-0.357935\pi\)
0.431639 + 0.902047i \(0.357935\pi\)
\(888\) 14.0047 0.469966
\(889\) 16.1179 0.540576
\(890\) −2.62806 −0.0880929
\(891\) −15.8708 −0.531692
\(892\) 5.36710 0.179704
\(893\) −30.7070 −1.02757
\(894\) 5.64832 0.188908
\(895\) −3.39366 −0.113438
\(896\) −2.04948 −0.0684684
\(897\) 21.2410 0.709215
\(898\) −18.9102 −0.631041
\(899\) 9.65101 0.321879
\(900\) −2.88681 −0.0962270
\(901\) 1.40984 0.0469685
\(902\) 6.97221 0.232149
\(903\) −32.0140 −1.06536
\(904\) 21.0041 0.698585
\(905\) 2.60596 0.0866249
\(906\) 12.4124 0.412373
\(907\) −43.7944 −1.45417 −0.727084 0.686548i \(-0.759125\pi\)
−0.727084 + 0.686548i \(0.759125\pi\)
\(908\) −25.4413 −0.844298
\(909\) −4.92376 −0.163311
\(910\) 2.06651 0.0685041
\(911\) −45.0976 −1.49415 −0.747075 0.664739i \(-0.768543\pi\)
−0.747075 + 0.664739i \(0.768543\pi\)
\(912\) 7.81141 0.258662
\(913\) −0.730468 −0.0241750
\(914\) 34.3164 1.13509
\(915\) 3.07788 0.101752
\(916\) −2.13547 −0.0705579
\(917\) −12.7279 −0.420311
\(918\) −0.572050 −0.0188805
\(919\) 1.62104 0.0534731 0.0267365 0.999643i \(-0.491488\pi\)
0.0267365 + 0.999643i \(0.491488\pi\)
\(920\) −4.75481 −0.156761
\(921\) 15.7512 0.519019
\(922\) −3.84608 −0.126664
\(923\) −5.64672 −0.185864
\(924\) −5.90570 −0.194283
\(925\) −33.5831 −1.10420
\(926\) 6.87308 0.225863
\(927\) 0.0510031 0.00167516
\(928\) −8.20504 −0.269344
\(929\) −3.81619 −0.125205 −0.0626025 0.998039i \(-0.519940\pi\)
−0.0626025 + 0.998039i \(0.519940\pi\)
\(930\) 1.47012 0.0482070
\(931\) 11.4756 0.376096
\(932\) 13.8645 0.454148
\(933\) 46.8542 1.53394
\(934\) 22.8376 0.747269
\(935\) 0.125696 0.00411068
\(936\) 0.971191 0.0317444
\(937\) −27.9150 −0.911944 −0.455972 0.889994i \(-0.650708\pi\)
−0.455972 + 0.889994i \(0.650708\pi\)
\(938\) −12.3983 −0.404819
\(939\) −14.5534 −0.474934
\(940\) 4.91323 0.160252
\(941\) 9.29342 0.302957 0.151478 0.988461i \(-0.451597\pi\)
0.151478 + 0.988461i \(0.451597\pi\)
\(942\) −8.67052 −0.282501
\(943\) −33.4293 −1.08861
\(944\) 10.4190 0.339109
\(945\) 6.06651 0.197344
\(946\) −12.3940 −0.402965
\(947\) −46.0615 −1.49680 −0.748398 0.663250i \(-0.769177\pi\)
−0.748398 + 0.663250i \(0.769177\pi\)
\(948\) 8.78065 0.285182
\(949\) 18.9035 0.613634
\(950\) −18.7317 −0.607736
\(951\) −5.29164 −0.171593
\(952\) −0.259769 −0.00841916
\(953\) 51.0765 1.65453 0.827265 0.561811i \(-0.189895\pi\)
0.827265 + 0.561811i \(0.189895\pi\)
\(954\) −7.02653 −0.227492
\(955\) 14.2145 0.459972
\(956\) 17.5309 0.566990
\(957\) −23.6433 −0.764280
\(958\) 27.1928 0.878561
\(959\) −2.52283 −0.0814664
\(960\) −1.24985 −0.0403389
\(961\) −29.6165 −0.955370
\(962\) 11.2981 0.364267
\(963\) 0.110571 0.00356309
\(964\) −6.65118 −0.214220
\(965\) −2.73976 −0.0881960
\(966\) 28.3158 0.911045
\(967\) 11.5052 0.369983 0.184992 0.982740i \(-0.440774\pi\)
0.184992 + 0.982740i \(0.440774\pi\)
\(968\) 8.71364 0.280067
\(969\) 0.990085 0.0318061
\(970\) −8.65663 −0.277948
\(971\) −22.6394 −0.726532 −0.363266 0.931685i \(-0.618338\pi\)
−0.363266 + 0.931685i \(0.618338\pi\)
\(972\) 6.46259 0.207288
\(973\) 29.9862 0.961314
\(974\) 24.5938 0.788035
\(975\) −13.3890 −0.428791
\(976\) −2.46259 −0.0788256
\(977\) 38.4642 1.23058 0.615290 0.788301i \(-0.289039\pi\)
0.615290 + 0.788301i \(0.289039\pi\)
\(978\) −27.6801 −0.885112
\(979\) 6.05904 0.193648
\(980\) −1.83613 −0.0586531
\(981\) 2.22679 0.0710960
\(982\) −13.8920 −0.443311
\(983\) −53.2201 −1.69746 −0.848729 0.528828i \(-0.822632\pi\)
−0.848729 + 0.528828i \(0.822632\pi\)
\(984\) −8.78726 −0.280128
\(985\) −0.995573 −0.0317216
\(986\) −1.03998 −0.0331196
\(987\) −29.2592 −0.931330
\(988\) 6.30178 0.200486
\(989\) 59.4251 1.88961
\(990\) −0.626457 −0.0199101
\(991\) −6.96323 −0.221194 −0.110597 0.993865i \(-0.535276\pi\)
−0.110597 + 0.993865i \(0.535276\pi\)
\(992\) −1.17623 −0.0373453
\(993\) −33.1169 −1.05093
\(994\) −7.52749 −0.238758
\(995\) −7.97916 −0.252956
\(996\) 0.920628 0.0291712
\(997\) −50.0522 −1.58517 −0.792585 0.609761i \(-0.791265\pi\)
−0.792585 + 0.609761i \(0.791265\pi\)
\(998\) −6.88806 −0.218038
\(999\) 33.1672 1.04936
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.2.a.c.1.1 4
3.2 odd 2 4842.2.a.j.1.3 4
4.3 odd 2 4304.2.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.c.1.1 4 1.1 even 1 trivial
4304.2.a.e.1.4 4 4.3 odd 2
4842.2.a.j.1.3 4 3.2 odd 2