Properties

Label 538.2.a
Level $538$
Weight $2$
Character orbit 538.a
Rep. character $\chi_{538}(1,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $5$
Sturm bound $135$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(135\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(538))\).

Total New Old
Modular forms 69 22 47
Cusp forms 66 22 44
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(269\)FrickeDim
\(+\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(9\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(9\)
Minus space\(-\)\(13\)

Trace form

\( 22 q + 22 q^{4} + 2 q^{5} + 2 q^{6} - 4 q^{7} + 20 q^{9} + 4 q^{10} - 6 q^{11} + 6 q^{13} + 4 q^{14} + 4 q^{15} + 22 q^{16} - 4 q^{17} - 8 q^{19} + 2 q^{20} - 20 q^{21} + 4 q^{22} - 4 q^{23} + 2 q^{24}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(538))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 269
538.2.a.a 538.a 1.a $2$ $4.296$ \(\Q(\sqrt{5}) \) None 538.2.a.a \(2\) \(-1\) \(-5\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta q^{3}+q^{4}+(-3+\beta )q^{5}-\beta q^{6}+\cdots\)
538.2.a.b 538.a 1.a $2$ $4.296$ \(\Q(\sqrt{13}) \) None 538.2.a.b \(2\) \(1\) \(1\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+(1-\beta )q^{5}+\beta q^{6}+\cdots\)
538.2.a.c 538.a 1.a $4$ $4.296$ 4.4.4913.1 None 538.2.a.c \(-4\) \(3\) \(5\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}+(2-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
538.2.a.d 538.a 1.a $7$ $4.296$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 538.2.a.d \(-7\) \(-4\) \(-6\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta _{1}+\beta _{6})q^{3}+q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
538.2.a.e 538.a 1.a $7$ $4.296$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 538.2.a.e \(7\) \(1\) \(7\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{2}q^{3}+q^{4}+(1+\beta _{4})q^{5}+\beta _{2}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(538))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(538)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 2}\)