Defining parameters
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(135\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(538))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 69 | 22 | 47 |
Cusp forms | 66 | 22 | 44 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(269\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(9\) | |
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(538))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 269 | |||||||
538.2.a.a | $2$ | $4.296$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(-1\) | \(-5\) | \(-4\) | $-$ | $-$ | \(q+q^{2}-\beta q^{3}+q^{4}+(-3+\beta )q^{5}-\beta q^{6}+\cdots\) | |
538.2.a.b | $2$ | $4.296$ | \(\Q(\sqrt{13}) \) | None | \(2\) | \(1\) | \(1\) | \(-2\) | $-$ | $+$ | \(q+q^{2}+\beta q^{3}+q^{4}+(1-\beta )q^{5}+\beta q^{6}+\cdots\) | |
538.2.a.c | $4$ | $4.296$ | 4.4.4913.1 | None | \(-4\) | \(3\) | \(5\) | \(-1\) | $+$ | $-$ | \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}+(2-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) | |
538.2.a.d | $7$ | $4.296$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(-7\) | \(-4\) | \(-6\) | \(-3\) | $+$ | $+$ | \(q-q^{2}+(-1+\beta _{1}+\beta _{6})q^{3}+q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\) | |
538.2.a.e | $7$ | $4.296$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(1\) | \(7\) | \(6\) | $-$ | $+$ | \(q+q^{2}+\beta _{2}q^{3}+q^{4}+(1+\beta _{4})q^{5}+\beta _{2}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(538))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(538)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 2}\)