Properties

 Label 5376.2.c.q Level $5376$ Weight $2$ Character orbit 5376.c Analytic conductor $42.928$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$5376 = 2^{8} \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5376.c (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$42.9275761266$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 84) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} + 4 i q^{5} + q^{7} - q^{9} +O(q^{10})$$ $$q + i q^{3} + 4 i q^{5} + q^{7} - q^{9} + 2 i q^{11} + 6 i q^{13} -4 q^{15} -4 q^{17} + 4 i q^{19} + i q^{21} -2 q^{23} -11 q^{25} -i q^{27} + 2 i q^{29} -2 q^{33} + 4 i q^{35} + 2 i q^{37} -6 q^{39} -4 i q^{43} -4 i q^{45} + 12 q^{47} + q^{49} -4 i q^{51} -6 i q^{53} -8 q^{55} -4 q^{57} -8 i q^{59} -6 i q^{61} - q^{63} -24 q^{65} + 8 i q^{67} -2 i q^{69} -14 q^{71} + 2 q^{73} -11 i q^{75} + 2 i q^{77} + 12 q^{79} + q^{81} + 4 i q^{83} -16 i q^{85} -2 q^{87} + 6 i q^{91} -16 q^{95} -2 q^{97} -2 i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 2q^{7} - 2q^{9} + O(q^{10})$$ $$2q + 2q^{7} - 2q^{9} - 8q^{15} - 8q^{17} - 4q^{23} - 22q^{25} - 4q^{33} - 12q^{39} + 24q^{47} + 2q^{49} - 16q^{55} - 8q^{57} - 2q^{63} - 48q^{65} - 28q^{71} + 4q^{73} + 24q^{79} + 2q^{81} - 4q^{87} - 32q^{95} - 4q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times$$.

 $$n$$ $$1793$$ $$2815$$ $$4609$$ $$5125$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2689.1
 − 1.00000i 1.00000i
0 1.00000i 0 4.00000i 0 1.00000 0 −1.00000 0
2689.2 0 1.00000i 0 4.00000i 0 1.00000 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5376.2.c.q 2
4.b odd 2 1 5376.2.c.p 2
8.b even 2 1 inner 5376.2.c.q 2
8.d odd 2 1 5376.2.c.p 2
16.e even 4 1 84.2.a.a 1
16.e even 4 1 1344.2.a.k 1
16.f odd 4 1 336.2.a.f 1
16.f odd 4 1 1344.2.a.a 1
48.i odd 4 1 252.2.a.a 1
48.i odd 4 1 4032.2.a.bm 1
48.k even 4 1 1008.2.a.a 1
48.k even 4 1 4032.2.a.bn 1
80.i odd 4 1 2100.2.k.i 2
80.k odd 4 1 8400.2.a.e 1
80.q even 4 1 2100.2.a.r 1
80.t odd 4 1 2100.2.k.i 2
112.j even 4 1 2352.2.a.a 1
112.j even 4 1 9408.2.a.df 1
112.l odd 4 1 588.2.a.d 1
112.l odd 4 1 9408.2.a.bn 1
112.u odd 12 2 2352.2.q.b 2
112.v even 12 2 2352.2.q.z 2
112.w even 12 2 588.2.i.e 2
112.x odd 12 2 588.2.i.d 2
144.w odd 12 2 2268.2.j.n 2
144.x even 12 2 2268.2.j.a 2
240.bb even 4 1 6300.2.k.g 2
240.bf even 4 1 6300.2.k.g 2
240.bm odd 4 1 6300.2.a.w 1
336.v odd 4 1 7056.2.a.cd 1
336.y even 4 1 1764.2.a.k 1
336.bo even 12 2 1764.2.k.a 2
336.bt odd 12 2 1764.2.k.k 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.a.a 1 16.e even 4 1
252.2.a.a 1 48.i odd 4 1
336.2.a.f 1 16.f odd 4 1
588.2.a.d 1 112.l odd 4 1
588.2.i.d 2 112.x odd 12 2
588.2.i.e 2 112.w even 12 2
1008.2.a.a 1 48.k even 4 1
1344.2.a.a 1 16.f odd 4 1
1344.2.a.k 1 16.e even 4 1
1764.2.a.k 1 336.y even 4 1
1764.2.k.a 2 336.bo even 12 2
1764.2.k.k 2 336.bt odd 12 2
2100.2.a.r 1 80.q even 4 1
2100.2.k.i 2 80.i odd 4 1
2100.2.k.i 2 80.t odd 4 1
2268.2.j.a 2 144.x even 12 2
2268.2.j.n 2 144.w odd 12 2
2352.2.a.a 1 112.j even 4 1
2352.2.q.b 2 112.u odd 12 2
2352.2.q.z 2 112.v even 12 2
4032.2.a.bm 1 48.i odd 4 1
4032.2.a.bn 1 48.k even 4 1
5376.2.c.p 2 4.b odd 2 1
5376.2.c.p 2 8.d odd 2 1
5376.2.c.q 2 1.a even 1 1 trivial
5376.2.c.q 2 8.b even 2 1 inner
6300.2.a.w 1 240.bm odd 4 1
6300.2.k.g 2 240.bb even 4 1
6300.2.k.g 2 240.bf even 4 1
7056.2.a.cd 1 336.v odd 4 1
8400.2.a.e 1 80.k odd 4 1
9408.2.a.bn 1 112.l odd 4 1
9408.2.a.df 1 112.j even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(5376, [\chi])$$:

 $$T_{5}^{2} + 16$$ $$T_{11}^{2} + 4$$ $$T_{13}^{2} + 36$$ $$T_{17} + 4$$ $$T_{23} + 2$$ $$T_{31}$$ $$T_{47} - 12$$ $$T_{71} + 14$$ $$T_{79} - 12$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 + T^{2}$$
$5$ $$( 1 - 2 T + 5 T^{2} )( 1 + 2 T + 5 T^{2} )$$
$7$ $$( 1 - T )^{2}$$
$11$ $$1 - 18 T^{2} + 121 T^{4}$$
$13$ $$( 1 - 4 T + 13 T^{2} )( 1 + 4 T + 13 T^{2} )$$
$17$ $$( 1 + 4 T + 17 T^{2} )^{2}$$
$19$ $$1 - 22 T^{2} + 361 T^{4}$$
$23$ $$( 1 + 2 T + 23 T^{2} )^{2}$$
$29$ $$1 - 54 T^{2} + 841 T^{4}$$
$31$ $$( 1 + 31 T^{2} )^{2}$$
$37$ $$( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} )$$
$41$ $$( 1 + 41 T^{2} )^{2}$$
$43$ $$1 - 70 T^{2} + 1849 T^{4}$$
$47$ $$( 1 - 12 T + 47 T^{2} )^{2}$$
$53$ $$1 - 70 T^{2} + 2809 T^{4}$$
$59$ $$1 - 54 T^{2} + 3481 T^{4}$$
$61$ $$1 - 86 T^{2} + 3721 T^{4}$$
$67$ $$1 - 70 T^{2} + 4489 T^{4}$$
$71$ $$( 1 + 14 T + 71 T^{2} )^{2}$$
$73$ $$( 1 - 2 T + 73 T^{2} )^{2}$$
$79$ $$( 1 - 12 T + 79 T^{2} )^{2}$$
$83$ $$1 - 150 T^{2} + 6889 T^{4}$$
$89$ $$( 1 + 89 T^{2} )^{2}$$
$97$ $$( 1 + 2 T + 97 T^{2} )^{2}$$