Properties

Label 5376.2.c.m
Level $5376$
Weight $2$
Character orbit 5376.c
Analytic conductor $42.928$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5376 = 2^{8} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5376.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(42.9275761266\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{3} + 2 i q^{5} - q^{7} - q^{9} +O(q^{10})\) \( q -i q^{3} + 2 i q^{5} - q^{7} - q^{9} -4 i q^{11} -6 i q^{13} + 2 q^{15} -2 q^{17} -4 i q^{19} + i q^{21} -4 q^{23} + q^{25} + i q^{27} -2 i q^{29} -8 q^{31} -4 q^{33} -2 i q^{35} + 10 i q^{37} -6 q^{39} + 2 q^{41} + 8 i q^{43} -2 i q^{45} + q^{49} + 2 i q^{51} + 10 i q^{53} + 8 q^{55} -4 q^{57} -12 i q^{59} + 10 i q^{61} + q^{63} + 12 q^{65} + 8 i q^{67} + 4 i q^{69} + 12 q^{71} -2 q^{73} -i q^{75} + 4 i q^{77} + q^{81} -12 i q^{83} -4 i q^{85} -2 q^{87} -6 q^{89} + 6 i q^{91} + 8 i q^{93} + 8 q^{95} + 2 q^{97} + 4 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{7} - 2q^{9} + 4q^{15} - 4q^{17} - 8q^{23} + 2q^{25} - 16q^{31} - 8q^{33} - 12q^{39} + 4q^{41} + 2q^{49} + 16q^{55} - 8q^{57} + 2q^{63} + 24q^{65} + 24q^{71} - 4q^{73} + 2q^{81} - 4q^{87} - 12q^{89} + 16q^{95} + 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times\).

\(n\) \(1793\) \(2815\) \(4609\) \(5125\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2689.1
1.00000i
1.00000i
0 1.00000i 0 2.00000i 0 −1.00000 0 −1.00000 0
2689.2 0 1.00000i 0 2.00000i 0 −1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5376.2.c.m 2
4.b odd 2 1 5376.2.c.s 2
8.b even 2 1 inner 5376.2.c.m 2
8.d odd 2 1 5376.2.c.s 2
16.e even 4 1 672.2.a.b 1
16.e even 4 1 1344.2.a.r 1
16.f odd 4 1 672.2.a.f yes 1
16.f odd 4 1 1344.2.a.h 1
48.i odd 4 1 2016.2.a.l 1
48.i odd 4 1 4032.2.a.n 1
48.k even 4 1 2016.2.a.k 1
48.k even 4 1 4032.2.a.f 1
112.j even 4 1 4704.2.a.m 1
112.j even 4 1 9408.2.a.cb 1
112.l odd 4 1 4704.2.a.be 1
112.l odd 4 1 9408.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.a.b 1 16.e even 4 1
672.2.a.f yes 1 16.f odd 4 1
1344.2.a.h 1 16.f odd 4 1
1344.2.a.r 1 16.e even 4 1
2016.2.a.k 1 48.k even 4 1
2016.2.a.l 1 48.i odd 4 1
4032.2.a.f 1 48.k even 4 1
4032.2.a.n 1 48.i odd 4 1
4704.2.a.m 1 112.j even 4 1
4704.2.a.be 1 112.l odd 4 1
5376.2.c.m 2 1.a even 1 1 trivial
5376.2.c.m 2 8.b even 2 1 inner
5376.2.c.s 2 4.b odd 2 1
5376.2.c.s 2 8.d odd 2 1
9408.2.a.g 1 112.l odd 4 1
9408.2.a.cb 1 112.j even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5376, [\chi])\):

\( T_{5}^{2} + 4 \)
\( T_{11}^{2} + 16 \)
\( T_{13}^{2} + 36 \)
\( T_{17} + 2 \)
\( T_{23} + 4 \)
\( T_{31} + 8 \)
\( T_{47} \)
\( T_{71} - 12 \)
\( T_{79} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( 4 + T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( 16 + T^{2} \)
$13$ \( 36 + T^{2} \)
$17$ \( ( 2 + T )^{2} \)
$19$ \( 16 + T^{2} \)
$23$ \( ( 4 + T )^{2} \)
$29$ \( 4 + T^{2} \)
$31$ \( ( 8 + T )^{2} \)
$37$ \( 100 + T^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( 64 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 100 + T^{2} \)
$59$ \( 144 + T^{2} \)
$61$ \( 100 + T^{2} \)
$67$ \( 64 + T^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( ( 2 + T )^{2} \)
$79$ \( T^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( 6 + T )^{2} \)
$97$ \( ( -2 + T )^{2} \)
show more
show less