Properties

Label 5355.2.a.bd.1.3
Level $5355$
Weight $2$
Character 5355.1
Self dual yes
Analytic conductor $42.760$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5355,2,Mod(1,5355)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5355.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5355, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5355 = 3^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5355.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,0,5,-3,0,3,3,0,-1,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.7598902824\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 5355.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51414 q^{2} +4.32088 q^{4} -1.00000 q^{5} +1.00000 q^{7} +5.83502 q^{8} -2.51414 q^{10} +1.70739 q^{11} -1.32088 q^{13} +2.51414 q^{14} +6.02827 q^{16} +1.00000 q^{17} +2.00000 q^{19} -4.32088 q^{20} +4.29261 q^{22} +6.64177 q^{23} +1.00000 q^{25} -3.32088 q^{26} +4.32088 q^{28} -2.34916 q^{29} +4.34916 q^{31} +3.48586 q^{32} +2.51414 q^{34} -1.00000 q^{35} +2.00000 q^{37} +5.02827 q^{38} -5.83502 q^{40} -6.00000 q^{41} +12.0565 q^{43} +7.37743 q^{44} +16.6983 q^{46} +0.641769 q^{47} +1.00000 q^{49} +2.51414 q^{50} -5.70739 q^{52} -2.67912 q^{53} -1.70739 q^{55} +5.83502 q^{56} -5.90611 q^{58} -7.61350 q^{59} +6.93438 q^{61} +10.9344 q^{62} -3.29261 q^{64} +1.32088 q^{65} +8.64177 q^{67} +4.32088 q^{68} -2.51414 q^{70} -8.34916 q^{71} +0.386505 q^{73} +5.02827 q^{74} +8.64177 q^{76} +1.70739 q^{77} +6.38650 q^{79} -6.02827 q^{80} -15.0848 q^{82} +6.00000 q^{83} -1.00000 q^{85} +30.3118 q^{86} +9.96265 q^{88} +6.97173 q^{89} -1.32088 q^{91} +28.6983 q^{92} +1.61350 q^{94} -2.00000 q^{95} -6.25526 q^{97} +2.51414 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{4} - 3 q^{5} + 3 q^{7} + 3 q^{8} - q^{10} + 4 q^{13} + q^{14} + 5 q^{16} + 3 q^{17} + 6 q^{19} - 5 q^{20} + 18 q^{22} + 4 q^{23} + 3 q^{25} - 2 q^{26} + 5 q^{28} + 14 q^{29} - 8 q^{31}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51414 1.77776 0.888882 0.458137i \(-0.151483\pi\)
0.888882 + 0.458137i \(0.151483\pi\)
\(3\) 0 0
\(4\) 4.32088 2.16044
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 5.83502 2.06299
\(9\) 0 0
\(10\) −2.51414 −0.795040
\(11\) 1.70739 0.514797 0.257399 0.966305i \(-0.417135\pi\)
0.257399 + 0.966305i \(0.417135\pi\)
\(12\) 0 0
\(13\) −1.32088 −0.366347 −0.183174 0.983081i \(-0.558637\pi\)
−0.183174 + 0.983081i \(0.558637\pi\)
\(14\) 2.51414 0.671931
\(15\) 0 0
\(16\) 6.02827 1.50707
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) −4.32088 −0.966179
\(21\) 0 0
\(22\) 4.29261 0.915188
\(23\) 6.64177 1.38490 0.692452 0.721464i \(-0.256530\pi\)
0.692452 + 0.721464i \(0.256530\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −3.32088 −0.651279
\(27\) 0 0
\(28\) 4.32088 0.816570
\(29\) −2.34916 −0.436228 −0.218114 0.975923i \(-0.569990\pi\)
−0.218114 + 0.975923i \(0.569990\pi\)
\(30\) 0 0
\(31\) 4.34916 0.781132 0.390566 0.920575i \(-0.372279\pi\)
0.390566 + 0.920575i \(0.372279\pi\)
\(32\) 3.48586 0.616219
\(33\) 0 0
\(34\) 2.51414 0.431171
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 5.02827 0.815694
\(39\) 0 0
\(40\) −5.83502 −0.922598
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.0565 1.83861 0.919303 0.393550i \(-0.128753\pi\)
0.919303 + 0.393550i \(0.128753\pi\)
\(44\) 7.37743 1.11219
\(45\) 0 0
\(46\) 16.6983 2.46203
\(47\) 0.641769 0.0936116 0.0468058 0.998904i \(-0.485096\pi\)
0.0468058 + 0.998904i \(0.485096\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 2.51414 0.355553
\(51\) 0 0
\(52\) −5.70739 −0.791472
\(53\) −2.67912 −0.368005 −0.184002 0.982926i \(-0.558905\pi\)
−0.184002 + 0.982926i \(0.558905\pi\)
\(54\) 0 0
\(55\) −1.70739 −0.230224
\(56\) 5.83502 0.779738
\(57\) 0 0
\(58\) −5.90611 −0.775510
\(59\) −7.61350 −0.991193 −0.495596 0.868553i \(-0.665050\pi\)
−0.495596 + 0.868553i \(0.665050\pi\)
\(60\) 0 0
\(61\) 6.93438 0.887856 0.443928 0.896062i \(-0.353585\pi\)
0.443928 + 0.896062i \(0.353585\pi\)
\(62\) 10.9344 1.38867
\(63\) 0 0
\(64\) −3.29261 −0.411576
\(65\) 1.32088 0.163836
\(66\) 0 0
\(67\) 8.64177 1.05576 0.527880 0.849319i \(-0.322987\pi\)
0.527880 + 0.849319i \(0.322987\pi\)
\(68\) 4.32088 0.523984
\(69\) 0 0
\(70\) −2.51414 −0.300497
\(71\) −8.34916 −0.990863 −0.495431 0.868647i \(-0.664990\pi\)
−0.495431 + 0.868647i \(0.664990\pi\)
\(72\) 0 0
\(73\) 0.386505 0.0452370 0.0226185 0.999744i \(-0.492800\pi\)
0.0226185 + 0.999744i \(0.492800\pi\)
\(74\) 5.02827 0.584525
\(75\) 0 0
\(76\) 8.64177 0.991279
\(77\) 1.70739 0.194575
\(78\) 0 0
\(79\) 6.38650 0.718538 0.359269 0.933234i \(-0.383026\pi\)
0.359269 + 0.933234i \(0.383026\pi\)
\(80\) −6.02827 −0.673982
\(81\) 0 0
\(82\) −15.0848 −1.66584
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 30.3118 3.26861
\(87\) 0 0
\(88\) 9.96265 1.06202
\(89\) 6.97173 0.739001 0.369501 0.929230i \(-0.379529\pi\)
0.369501 + 0.929230i \(0.379529\pi\)
\(90\) 0 0
\(91\) −1.32088 −0.138466
\(92\) 28.6983 2.99201
\(93\) 0 0
\(94\) 1.61350 0.166419
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) −6.25526 −0.635126 −0.317563 0.948237i \(-0.602864\pi\)
−0.317563 + 0.948237i \(0.602864\pi\)
\(98\) 2.51414 0.253966
\(99\) 0 0
\(100\) 4.32088 0.432088
\(101\) −8.25526 −0.821429 −0.410715 0.911764i \(-0.634721\pi\)
−0.410715 + 0.911764i \(0.634721\pi\)
\(102\) 0 0
\(103\) −2.93438 −0.289133 −0.144567 0.989495i \(-0.546179\pi\)
−0.144567 + 0.989495i \(0.546179\pi\)
\(104\) −7.70739 −0.755772
\(105\) 0 0
\(106\) −6.73566 −0.654225
\(107\) 19.9253 1.92625 0.963126 0.269051i \(-0.0867099\pi\)
0.963126 + 0.269051i \(0.0867099\pi\)
\(108\) 0 0
\(109\) 7.35823 0.704791 0.352395 0.935851i \(-0.385367\pi\)
0.352395 + 0.935851i \(0.385367\pi\)
\(110\) −4.29261 −0.409284
\(111\) 0 0
\(112\) 6.02827 0.569618
\(113\) 0.971726 0.0914123 0.0457062 0.998955i \(-0.485446\pi\)
0.0457062 + 0.998955i \(0.485446\pi\)
\(114\) 0 0
\(115\) −6.64177 −0.619348
\(116\) −10.1504 −0.942445
\(117\) 0 0
\(118\) −19.1414 −1.76211
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −8.08482 −0.734984
\(122\) 17.4340 1.57840
\(123\) 0 0
\(124\) 18.7922 1.68759
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) −15.2498 −1.34790
\(129\) 0 0
\(130\) 3.32088 0.291261
\(131\) −8.44305 −0.737673 −0.368836 0.929494i \(-0.620244\pi\)
−0.368836 + 0.929494i \(0.620244\pi\)
\(132\) 0 0
\(133\) 2.00000 0.173422
\(134\) 21.7266 1.87689
\(135\) 0 0
\(136\) 5.83502 0.500349
\(137\) −0.735663 −0.0628520 −0.0314260 0.999506i \(-0.510005\pi\)
−0.0314260 + 0.999506i \(0.510005\pi\)
\(138\) 0 0
\(139\) 1.12217 0.0951811 0.0475905 0.998867i \(-0.484846\pi\)
0.0475905 + 0.998867i \(0.484846\pi\)
\(140\) −4.32088 −0.365181
\(141\) 0 0
\(142\) −20.9909 −1.76152
\(143\) −2.25526 −0.188595
\(144\) 0 0
\(145\) 2.34916 0.195087
\(146\) 0.971726 0.0804206
\(147\) 0 0
\(148\) 8.64177 0.710349
\(149\) −0.641769 −0.0525758 −0.0262879 0.999654i \(-0.508369\pi\)
−0.0262879 + 0.999654i \(0.508369\pi\)
\(150\) 0 0
\(151\) 16.1131 1.31127 0.655633 0.755080i \(-0.272402\pi\)
0.655633 + 0.755080i \(0.272402\pi\)
\(152\) 11.6700 0.946565
\(153\) 0 0
\(154\) 4.29261 0.345908
\(155\) −4.34916 −0.349333
\(156\) 0 0
\(157\) −23.3774 −1.86572 −0.932861 0.360236i \(-0.882696\pi\)
−0.932861 + 0.360236i \(0.882696\pi\)
\(158\) 16.0565 1.27739
\(159\) 0 0
\(160\) −3.48586 −0.275582
\(161\) 6.64177 0.523445
\(162\) 0 0
\(163\) 6.05655 0.474385 0.237193 0.971463i \(-0.423773\pi\)
0.237193 + 0.971463i \(0.423773\pi\)
\(164\) −25.9253 −2.02443
\(165\) 0 0
\(166\) 15.0848 1.17081
\(167\) 9.08482 0.703005 0.351502 0.936187i \(-0.385671\pi\)
0.351502 + 0.936187i \(0.385671\pi\)
\(168\) 0 0
\(169\) −11.2553 −0.865790
\(170\) −2.51414 −0.192826
\(171\) 0 0
\(172\) 52.0950 3.97220
\(173\) −24.9536 −1.89719 −0.948593 0.316499i \(-0.897493\pi\)
−0.948593 + 0.316499i \(0.897493\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 10.2926 0.775835
\(177\) 0 0
\(178\) 17.5279 1.31377
\(179\) −22.8861 −1.71059 −0.855294 0.518143i \(-0.826623\pi\)
−0.855294 + 0.518143i \(0.826623\pi\)
\(180\) 0 0
\(181\) 13.5761 1.00911 0.504554 0.863380i \(-0.331657\pi\)
0.504554 + 0.863380i \(0.331657\pi\)
\(182\) −3.32088 −0.246160
\(183\) 0 0
\(184\) 38.7549 2.85705
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 1.70739 0.124857
\(188\) 2.77301 0.202243
\(189\) 0 0
\(190\) −5.02827 −0.364789
\(191\) 2.77301 0.200648 0.100324 0.994955i \(-0.468012\pi\)
0.100324 + 0.994955i \(0.468012\pi\)
\(192\) 0 0
\(193\) −8.84049 −0.636352 −0.318176 0.948032i \(-0.603070\pi\)
−0.318176 + 0.948032i \(0.603070\pi\)
\(194\) −15.7266 −1.12910
\(195\) 0 0
\(196\) 4.32088 0.308635
\(197\) 2.44305 0.174060 0.0870301 0.996206i \(-0.472262\pi\)
0.0870301 + 0.996206i \(0.472262\pi\)
\(198\) 0 0
\(199\) 11.6508 0.825906 0.412953 0.910752i \(-0.364497\pi\)
0.412953 + 0.910752i \(0.364497\pi\)
\(200\) 5.83502 0.412598
\(201\) 0 0
\(202\) −20.7549 −1.46031
\(203\) −2.34916 −0.164879
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) −7.37743 −0.514010
\(207\) 0 0
\(208\) −7.96265 −0.552111
\(209\) 3.41478 0.236205
\(210\) 0 0
\(211\) −5.61350 −0.386449 −0.193224 0.981155i \(-0.561895\pi\)
−0.193224 + 0.981155i \(0.561895\pi\)
\(212\) −11.5761 −0.795053
\(213\) 0 0
\(214\) 50.0950 3.42442
\(215\) −12.0565 −0.822250
\(216\) 0 0
\(217\) 4.34916 0.295240
\(218\) 18.4996 1.25295
\(219\) 0 0
\(220\) −7.37743 −0.497386
\(221\) −1.32088 −0.0888523
\(222\) 0 0
\(223\) −12.9909 −0.869937 −0.434968 0.900446i \(-0.643240\pi\)
−0.434968 + 0.900446i \(0.643240\pi\)
\(224\) 3.48586 0.232909
\(225\) 0 0
\(226\) 2.44305 0.162509
\(227\) 10.0565 0.667477 0.333738 0.942666i \(-0.391690\pi\)
0.333738 + 0.942666i \(0.391690\pi\)
\(228\) 0 0
\(229\) −4.82956 −0.319146 −0.159573 0.987186i \(-0.551012\pi\)
−0.159573 + 0.987186i \(0.551012\pi\)
\(230\) −16.6983 −1.10105
\(231\) 0 0
\(232\) −13.7074 −0.899934
\(233\) −24.4996 −1.60502 −0.802511 0.596637i \(-0.796503\pi\)
−0.802511 + 0.596637i \(0.796503\pi\)
\(234\) 0 0
\(235\) −0.641769 −0.0418644
\(236\) −32.8970 −2.14141
\(237\) 0 0
\(238\) 2.51414 0.162967
\(239\) 13.9253 0.900753 0.450377 0.892839i \(-0.351290\pi\)
0.450377 + 0.892839i \(0.351290\pi\)
\(240\) 0 0
\(241\) −4.40571 −0.283796 −0.141898 0.989881i \(-0.545321\pi\)
−0.141898 + 0.989881i \(0.545321\pi\)
\(242\) −20.3263 −1.30663
\(243\) 0 0
\(244\) 29.9627 1.91816
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) −2.64177 −0.168092
\(248\) 25.3774 1.61147
\(249\) 0 0
\(250\) −2.51414 −0.159008
\(251\) −3.22699 −0.203686 −0.101843 0.994800i \(-0.532474\pi\)
−0.101843 + 0.994800i \(0.532474\pi\)
\(252\) 0 0
\(253\) 11.3401 0.712945
\(254\) 5.02827 0.315502
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) −17.3401 −1.08164 −0.540822 0.841137i \(-0.681887\pi\)
−0.540822 + 0.841137i \(0.681887\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 5.70739 0.353957
\(261\) 0 0
\(262\) −21.2270 −1.31141
\(263\) −22.2745 −1.37350 −0.686751 0.726893i \(-0.740964\pi\)
−0.686751 + 0.726893i \(0.740964\pi\)
\(264\) 0 0
\(265\) 2.67912 0.164577
\(266\) 5.02827 0.308303
\(267\) 0 0
\(268\) 37.3401 2.28091
\(269\) −20.7549 −1.26545 −0.632723 0.774378i \(-0.718063\pi\)
−0.632723 + 0.774378i \(0.718063\pi\)
\(270\) 0 0
\(271\) 5.22699 0.317517 0.158759 0.987317i \(-0.449251\pi\)
0.158759 + 0.987317i \(0.449251\pi\)
\(272\) 6.02827 0.365518
\(273\) 0 0
\(274\) −1.84956 −0.111736
\(275\) 1.70739 0.102959
\(276\) 0 0
\(277\) 12.0565 0.724408 0.362204 0.932099i \(-0.382024\pi\)
0.362204 + 0.932099i \(0.382024\pi\)
\(278\) 2.82128 0.169209
\(279\) 0 0
\(280\) −5.83502 −0.348709
\(281\) 11.3582 0.677575 0.338788 0.940863i \(-0.389983\pi\)
0.338788 + 0.940863i \(0.389983\pi\)
\(282\) 0 0
\(283\) 4.58522 0.272563 0.136282 0.990670i \(-0.456485\pi\)
0.136282 + 0.990670i \(0.456485\pi\)
\(284\) −36.0757 −2.14070
\(285\) 0 0
\(286\) −5.67004 −0.335277
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 5.90611 0.346818
\(291\) 0 0
\(292\) 1.67004 0.0977319
\(293\) −17.3401 −1.01302 −0.506509 0.862234i \(-0.669064\pi\)
−0.506509 + 0.862234i \(0.669064\pi\)
\(294\) 0 0
\(295\) 7.61350 0.443275
\(296\) 11.6700 0.678307
\(297\) 0 0
\(298\) −1.61350 −0.0934673
\(299\) −8.77301 −0.507356
\(300\) 0 0
\(301\) 12.0565 0.694928
\(302\) 40.5105 2.33112
\(303\) 0 0
\(304\) 12.0565 0.691490
\(305\) −6.93438 −0.397061
\(306\) 0 0
\(307\) −8.48040 −0.484002 −0.242001 0.970276i \(-0.577804\pi\)
−0.242001 + 0.970276i \(0.577804\pi\)
\(308\) 7.37743 0.420368
\(309\) 0 0
\(310\) −10.9344 −0.621031
\(311\) 24.9536 1.41499 0.707494 0.706719i \(-0.249826\pi\)
0.707494 + 0.706719i \(0.249826\pi\)
\(312\) 0 0
\(313\) −21.8578 −1.23548 −0.617739 0.786383i \(-0.711951\pi\)
−0.617739 + 0.786383i \(0.711951\pi\)
\(314\) −58.7741 −3.31681
\(315\) 0 0
\(316\) 27.5953 1.55236
\(317\) 34.5561 1.94087 0.970433 0.241369i \(-0.0775965\pi\)
0.970433 + 0.241369i \(0.0775965\pi\)
\(318\) 0 0
\(319\) −4.01093 −0.224569
\(320\) 3.29261 0.184063
\(321\) 0 0
\(322\) 16.6983 0.930561
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −1.32088 −0.0732695
\(326\) 15.2270 0.843345
\(327\) 0 0
\(328\) −35.0101 −1.93311
\(329\) 0.641769 0.0353819
\(330\) 0 0
\(331\) −10.8296 −0.595246 −0.297623 0.954683i \(-0.596194\pi\)
−0.297623 + 0.954683i \(0.596194\pi\)
\(332\) 25.9253 1.42284
\(333\) 0 0
\(334\) 22.8405 1.24978
\(335\) −8.64177 −0.472150
\(336\) 0 0
\(337\) −4.82956 −0.263083 −0.131541 0.991311i \(-0.541993\pi\)
−0.131541 + 0.991311i \(0.541993\pi\)
\(338\) −28.2973 −1.53917
\(339\) 0 0
\(340\) −4.32088 −0.234333
\(341\) 7.42571 0.402125
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 70.3502 3.79303
\(345\) 0 0
\(346\) −62.7367 −3.37275
\(347\) −16.5105 −0.886332 −0.443166 0.896440i \(-0.646145\pi\)
−0.443166 + 0.896440i \(0.646145\pi\)
\(348\) 0 0
\(349\) −21.3401 −1.14231 −0.571154 0.820843i \(-0.693504\pi\)
−0.571154 + 0.820843i \(0.693504\pi\)
\(350\) 2.51414 0.134386
\(351\) 0 0
\(352\) 5.95173 0.317228
\(353\) −19.2835 −1.02636 −0.513180 0.858281i \(-0.671533\pi\)
−0.513180 + 0.858281i \(0.671533\pi\)
\(354\) 0 0
\(355\) 8.34916 0.443127
\(356\) 30.1240 1.59657
\(357\) 0 0
\(358\) −57.5388 −3.04102
\(359\) −10.5105 −0.554724 −0.277362 0.960765i \(-0.589460\pi\)
−0.277362 + 0.960765i \(0.589460\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 34.1323 1.79395
\(363\) 0 0
\(364\) −5.70739 −0.299148
\(365\) −0.386505 −0.0202306
\(366\) 0 0
\(367\) 22.5671 1.17799 0.588996 0.808136i \(-0.299523\pi\)
0.588996 + 0.808136i \(0.299523\pi\)
\(368\) 40.0384 2.08715
\(369\) 0 0
\(370\) −5.02827 −0.261408
\(371\) −2.67912 −0.139093
\(372\) 0 0
\(373\) −31.2088 −1.61593 −0.807966 0.589229i \(-0.799432\pi\)
−0.807966 + 0.589229i \(0.799432\pi\)
\(374\) 4.29261 0.221966
\(375\) 0 0
\(376\) 3.74474 0.193120
\(377\) 3.10297 0.159811
\(378\) 0 0
\(379\) 4.91518 0.252476 0.126238 0.992000i \(-0.459710\pi\)
0.126238 + 0.992000i \(0.459710\pi\)
\(380\) −8.64177 −0.443313
\(381\) 0 0
\(382\) 6.97173 0.356705
\(383\) 19.2835 0.985343 0.492671 0.870215i \(-0.336020\pi\)
0.492671 + 0.870215i \(0.336020\pi\)
\(384\) 0 0
\(385\) −1.70739 −0.0870166
\(386\) −22.2262 −1.13128
\(387\) 0 0
\(388\) −27.0283 −1.37215
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 6.64177 0.335889
\(392\) 5.83502 0.294713
\(393\) 0 0
\(394\) 6.14217 0.309438
\(395\) −6.38650 −0.321340
\(396\) 0 0
\(397\) 0.386505 0.0193981 0.00969906 0.999953i \(-0.496913\pi\)
0.00969906 + 0.999953i \(0.496913\pi\)
\(398\) 29.2918 1.46827
\(399\) 0 0
\(400\) 6.02827 0.301414
\(401\) 8.80314 0.439608 0.219804 0.975544i \(-0.429458\pi\)
0.219804 + 0.975544i \(0.429458\pi\)
\(402\) 0 0
\(403\) −5.74474 −0.286166
\(404\) −35.6700 −1.77465
\(405\) 0 0
\(406\) −5.90611 −0.293115
\(407\) 3.41478 0.169264
\(408\) 0 0
\(409\) −2.07469 −0.102587 −0.0512935 0.998684i \(-0.516334\pi\)
−0.0512935 + 0.998684i \(0.516334\pi\)
\(410\) 15.0848 0.744986
\(411\) 0 0
\(412\) −12.6791 −0.624655
\(413\) −7.61350 −0.374636
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) −4.60442 −0.225750
\(417\) 0 0
\(418\) 8.58522 0.419917
\(419\) 29.8397 1.45776 0.728882 0.684639i \(-0.240040\pi\)
0.728882 + 0.684639i \(0.240040\pi\)
\(420\) 0 0
\(421\) −29.1414 −1.42026 −0.710132 0.704069i \(-0.751365\pi\)
−0.710132 + 0.704069i \(0.751365\pi\)
\(422\) −14.1131 −0.687015
\(423\) 0 0
\(424\) −15.6327 −0.759191
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 6.93438 0.335578
\(428\) 86.0950 4.16156
\(429\) 0 0
\(430\) −30.3118 −1.46177
\(431\) −6.21792 −0.299507 −0.149753 0.988723i \(-0.547848\pi\)
−0.149753 + 0.988723i \(0.547848\pi\)
\(432\) 0 0
\(433\) −2.60442 −0.125161 −0.0625803 0.998040i \(-0.519933\pi\)
−0.0625803 + 0.998040i \(0.519933\pi\)
\(434\) 10.9344 0.524867
\(435\) 0 0
\(436\) 31.7941 1.52266
\(437\) 13.2835 0.635438
\(438\) 0 0
\(439\) −13.8205 −0.659616 −0.329808 0.944048i \(-0.606984\pi\)
−0.329808 + 0.944048i \(0.606984\pi\)
\(440\) −9.96265 −0.474951
\(441\) 0 0
\(442\) −3.32088 −0.157958
\(443\) −17.9517 −0.852912 −0.426456 0.904508i \(-0.640238\pi\)
−0.426456 + 0.904508i \(0.640238\pi\)
\(444\) 0 0
\(445\) −6.97173 −0.330492
\(446\) −32.6610 −1.54654
\(447\) 0 0
\(448\) −3.29261 −0.155561
\(449\) 39.8205 1.87924 0.939622 0.342213i \(-0.111176\pi\)
0.939622 + 0.342213i \(0.111176\pi\)
\(450\) 0 0
\(451\) −10.2443 −0.482387
\(452\) 4.19872 0.197491
\(453\) 0 0
\(454\) 25.2835 1.18662
\(455\) 1.32088 0.0619240
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) −12.1422 −0.567366
\(459\) 0 0
\(460\) −28.6983 −1.33807
\(461\) −1.80128 −0.0838941 −0.0419471 0.999120i \(-0.513356\pi\)
−0.0419471 + 0.999120i \(0.513356\pi\)
\(462\) 0 0
\(463\) 11.8688 0.551588 0.275794 0.961217i \(-0.411059\pi\)
0.275794 + 0.961217i \(0.411059\pi\)
\(464\) −14.1614 −0.657425
\(465\) 0 0
\(466\) −61.5953 −2.85335
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) 8.64177 0.399040
\(470\) −1.61350 −0.0744250
\(471\) 0 0
\(472\) −44.4249 −2.04482
\(473\) 20.5852 0.946509
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 4.32088 0.198047
\(477\) 0 0
\(478\) 35.0101 1.60133
\(479\) −2.89703 −0.132369 −0.0661844 0.997807i \(-0.521083\pi\)
−0.0661844 + 0.997807i \(0.521083\pi\)
\(480\) 0 0
\(481\) −2.64177 −0.120454
\(482\) −11.0765 −0.504523
\(483\) 0 0
\(484\) −34.9336 −1.58789
\(485\) 6.25526 0.284037
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 40.4623 1.83164
\(489\) 0 0
\(490\) −2.51414 −0.113577
\(491\) −30.8114 −1.39050 −0.695250 0.718768i \(-0.744706\pi\)
−0.695250 + 0.718768i \(0.744706\pi\)
\(492\) 0 0
\(493\) −2.34916 −0.105801
\(494\) −6.64177 −0.298827
\(495\) 0 0
\(496\) 26.2179 1.17722
\(497\) −8.34916 −0.374511
\(498\) 0 0
\(499\) −33.6519 −1.50647 −0.753233 0.657754i \(-0.771507\pi\)
−0.753233 + 0.657754i \(0.771507\pi\)
\(500\) −4.32088 −0.193236
\(501\) 0 0
\(502\) −8.11310 −0.362105
\(503\) −36.6236 −1.63297 −0.816483 0.577369i \(-0.804079\pi\)
−0.816483 + 0.577369i \(0.804079\pi\)
\(504\) 0 0
\(505\) 8.25526 0.367354
\(506\) 28.5105 1.26745
\(507\) 0 0
\(508\) 8.64177 0.383416
\(509\) 41.6519 1.84619 0.923094 0.384575i \(-0.125652\pi\)
0.923094 + 0.384575i \(0.125652\pi\)
\(510\) 0 0
\(511\) 0.386505 0.0170980
\(512\) −49.3365 −2.18038
\(513\) 0 0
\(514\) −43.5953 −1.92291
\(515\) 2.93438 0.129304
\(516\) 0 0
\(517\) 1.09575 0.0481910
\(518\) 5.02827 0.220930
\(519\) 0 0
\(520\) 7.70739 0.337991
\(521\) −9.41478 −0.412469 −0.206234 0.978503i \(-0.566121\pi\)
−0.206234 + 0.978503i \(0.566121\pi\)
\(522\) 0 0
\(523\) −0.367304 −0.0160611 −0.00803053 0.999968i \(-0.502556\pi\)
−0.00803053 + 0.999968i \(0.502556\pi\)
\(524\) −36.4815 −1.59370
\(525\) 0 0
\(526\) −56.0011 −2.44176
\(527\) 4.34916 0.189452
\(528\) 0 0
\(529\) 21.1131 0.917961
\(530\) 6.73566 0.292579
\(531\) 0 0
\(532\) 8.64177 0.374668
\(533\) 7.92531 0.343283
\(534\) 0 0
\(535\) −19.9253 −0.861446
\(536\) 50.4249 2.17802
\(537\) 0 0
\(538\) −52.1806 −2.24966
\(539\) 1.70739 0.0735425
\(540\) 0 0
\(541\) 25.1523 1.08138 0.540691 0.841221i \(-0.318163\pi\)
0.540691 + 0.841221i \(0.318163\pi\)
\(542\) 13.1414 0.564470
\(543\) 0 0
\(544\) 3.48586 0.149455
\(545\) −7.35823 −0.315192
\(546\) 0 0
\(547\) 14.4540 0.618008 0.309004 0.951061i \(-0.400004\pi\)
0.309004 + 0.951061i \(0.400004\pi\)
\(548\) −3.17872 −0.135788
\(549\) 0 0
\(550\) 4.29261 0.183038
\(551\) −4.69832 −0.200155
\(552\) 0 0
\(553\) 6.38650 0.271582
\(554\) 30.3118 1.28783
\(555\) 0 0
\(556\) 4.84876 0.205633
\(557\) 9.69646 0.410852 0.205426 0.978673i \(-0.434142\pi\)
0.205426 + 0.978673i \(0.434142\pi\)
\(558\) 0 0
\(559\) −15.9253 −0.673569
\(560\) −6.02827 −0.254741
\(561\) 0 0
\(562\) 28.5561 1.20457
\(563\) 13.9253 0.586882 0.293441 0.955977i \(-0.405200\pi\)
0.293441 + 0.955977i \(0.405200\pi\)
\(564\) 0 0
\(565\) −0.971726 −0.0408808
\(566\) 11.5279 0.484553
\(567\) 0 0
\(568\) −48.7175 −2.04414
\(569\) 14.1131 0.591652 0.295826 0.955242i \(-0.404405\pi\)
0.295826 + 0.955242i \(0.404405\pi\)
\(570\) 0 0
\(571\) 13.6882 0.572833 0.286416 0.958105i \(-0.407536\pi\)
0.286416 + 0.958105i \(0.407536\pi\)
\(572\) −9.74474 −0.407448
\(573\) 0 0
\(574\) −15.0848 −0.629628
\(575\) 6.64177 0.276981
\(576\) 0 0
\(577\) 3.37743 0.140604 0.0703022 0.997526i \(-0.477604\pi\)
0.0703022 + 0.997526i \(0.477604\pi\)
\(578\) 2.51414 0.104574
\(579\) 0 0
\(580\) 10.1504 0.421474
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) −4.57429 −0.189448
\(584\) 2.25526 0.0933235
\(585\) 0 0
\(586\) −43.5953 −1.80091
\(587\) 2.77301 0.114454 0.0572272 0.998361i \(-0.481774\pi\)
0.0572272 + 0.998361i \(0.481774\pi\)
\(588\) 0 0
\(589\) 8.69832 0.358408
\(590\) 19.1414 0.788038
\(591\) 0 0
\(592\) 12.0565 0.495521
\(593\) −39.5844 −1.62554 −0.812769 0.582587i \(-0.802041\pi\)
−0.812769 + 0.582587i \(0.802041\pi\)
\(594\) 0 0
\(595\) −1.00000 −0.0409960
\(596\) −2.77301 −0.113587
\(597\) 0 0
\(598\) −22.0565 −0.901959
\(599\) 13.3017 0.543492 0.271746 0.962369i \(-0.412399\pi\)
0.271746 + 0.962369i \(0.412399\pi\)
\(600\) 0 0
\(601\) −15.1222 −0.616846 −0.308423 0.951249i \(-0.599801\pi\)
−0.308423 + 0.951249i \(0.599801\pi\)
\(602\) 30.3118 1.23542
\(603\) 0 0
\(604\) 69.6228 2.83291
\(605\) 8.08482 0.328695
\(606\) 0 0
\(607\) −35.2654 −1.43138 −0.715689 0.698419i \(-0.753887\pi\)
−0.715689 + 0.698419i \(0.753887\pi\)
\(608\) 6.97173 0.282741
\(609\) 0 0
\(610\) −17.4340 −0.705881
\(611\) −0.847703 −0.0342944
\(612\) 0 0
\(613\) −24.9427 −1.00742 −0.503712 0.863872i \(-0.668033\pi\)
−0.503712 + 0.863872i \(0.668033\pi\)
\(614\) −21.3209 −0.860441
\(615\) 0 0
\(616\) 9.96265 0.401407
\(617\) −32.4249 −1.30538 −0.652689 0.757626i \(-0.726359\pi\)
−0.652689 + 0.757626i \(0.726359\pi\)
\(618\) 0 0
\(619\) 17.4449 0.701170 0.350585 0.936531i \(-0.385983\pi\)
0.350585 + 0.936531i \(0.385983\pi\)
\(620\) −18.7922 −0.754713
\(621\) 0 0
\(622\) 62.7367 2.51551
\(623\) 6.97173 0.279316
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −54.9536 −2.19639
\(627\) 0 0
\(628\) −101.011 −4.03079
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 36.3865 1.44852 0.724262 0.689525i \(-0.242181\pi\)
0.724262 + 0.689525i \(0.242181\pi\)
\(632\) 37.2654 1.48234
\(633\) 0 0
\(634\) 86.8789 3.45040
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) −1.32088 −0.0523353
\(638\) −10.0840 −0.399230
\(639\) 0 0
\(640\) 15.2498 0.602801
\(641\) −30.3876 −1.20024 −0.600118 0.799911i \(-0.704880\pi\)
−0.600118 + 0.799911i \(0.704880\pi\)
\(642\) 0 0
\(643\) −12.1131 −0.477694 −0.238847 0.971057i \(-0.576769\pi\)
−0.238847 + 0.971057i \(0.576769\pi\)
\(644\) 28.6983 1.13087
\(645\) 0 0
\(646\) 5.02827 0.197835
\(647\) −34.2262 −1.34557 −0.672785 0.739838i \(-0.734902\pi\)
−0.672785 + 0.739838i \(0.734902\pi\)
\(648\) 0 0
\(649\) −12.9992 −0.510263
\(650\) −3.32088 −0.130256
\(651\) 0 0
\(652\) 26.1696 1.02488
\(653\) 0.971726 0.0380266 0.0190133 0.999819i \(-0.493948\pi\)
0.0190133 + 0.999819i \(0.493948\pi\)
\(654\) 0 0
\(655\) 8.44305 0.329897
\(656\) −36.1696 −1.41219
\(657\) 0 0
\(658\) 1.61350 0.0629006
\(659\) −17.1523 −0.668159 −0.334079 0.942545i \(-0.608425\pi\)
−0.334079 + 0.942545i \(0.608425\pi\)
\(660\) 0 0
\(661\) −23.0957 −0.898321 −0.449160 0.893451i \(-0.648277\pi\)
−0.449160 + 0.893451i \(0.648277\pi\)
\(662\) −27.2270 −1.05821
\(663\) 0 0
\(664\) 35.0101 1.35866
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) −15.6026 −0.604134
\(668\) 39.2545 1.51880
\(669\) 0 0
\(670\) −21.7266 −0.839371
\(671\) 11.8397 0.457066
\(672\) 0 0
\(673\) 31.5097 1.21461 0.607305 0.794468i \(-0.292250\pi\)
0.607305 + 0.794468i \(0.292250\pi\)
\(674\) −12.1422 −0.467699
\(675\) 0 0
\(676\) −48.6327 −1.87049
\(677\) 34.3502 1.32019 0.660093 0.751184i \(-0.270517\pi\)
0.660093 + 0.751184i \(0.270517\pi\)
\(678\) 0 0
\(679\) −6.25526 −0.240055
\(680\) −5.83502 −0.223763
\(681\) 0 0
\(682\) 18.6692 0.714882
\(683\) −8.11310 −0.310439 −0.155219 0.987880i \(-0.549608\pi\)
−0.155219 + 0.987880i \(0.549608\pi\)
\(684\) 0 0
\(685\) 0.735663 0.0281082
\(686\) 2.51414 0.0959902
\(687\) 0 0
\(688\) 72.6802 2.77091
\(689\) 3.53880 0.134818
\(690\) 0 0
\(691\) 5.00907 0.190554 0.0952771 0.995451i \(-0.469626\pi\)
0.0952771 + 0.995451i \(0.469626\pi\)
\(692\) −107.822 −4.09876
\(693\) 0 0
\(694\) −41.5097 −1.57569
\(695\) −1.12217 −0.0425663
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) −53.6519 −2.03075
\(699\) 0 0
\(700\) 4.32088 0.163314
\(701\) −37.4532 −1.41459 −0.707294 0.706920i \(-0.750084\pi\)
−0.707294 + 0.706920i \(0.750084\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) −5.62177 −0.211878
\(705\) 0 0
\(706\) −48.4815 −1.82462
\(707\) −8.25526 −0.310471
\(708\) 0 0
\(709\) −18.1131 −0.680252 −0.340126 0.940380i \(-0.610470\pi\)
−0.340126 + 0.940380i \(0.610470\pi\)
\(710\) 20.9909 0.787775
\(711\) 0 0
\(712\) 40.6802 1.52455
\(713\) 28.8861 1.08179
\(714\) 0 0
\(715\) 2.25526 0.0843421
\(716\) −98.8882 −3.69563
\(717\) 0 0
\(718\) −26.4249 −0.986169
\(719\) −6.97173 −0.260002 −0.130001 0.991514i \(-0.541498\pi\)
−0.130001 + 0.991514i \(0.541498\pi\)
\(720\) 0 0
\(721\) −2.93438 −0.109282
\(722\) −37.7121 −1.40350
\(723\) 0 0
\(724\) 58.6610 2.18012
\(725\) −2.34916 −0.0872456
\(726\) 0 0
\(727\) −39.3702 −1.46016 −0.730080 0.683361i \(-0.760517\pi\)
−0.730080 + 0.683361i \(0.760517\pi\)
\(728\) −7.70739 −0.285655
\(729\) 0 0
\(730\) −0.971726 −0.0359652
\(731\) 12.0565 0.445928
\(732\) 0 0
\(733\) −12.0373 −0.444610 −0.222305 0.974977i \(-0.571358\pi\)
−0.222305 + 0.974977i \(0.571358\pi\)
\(734\) 56.7367 2.09419
\(735\) 0 0
\(736\) 23.1523 0.853405
\(737\) 14.7549 0.543502
\(738\) 0 0
\(739\) −21.6700 −0.797145 −0.398573 0.917137i \(-0.630494\pi\)
−0.398573 + 0.917137i \(0.630494\pi\)
\(740\) −8.64177 −0.317678
\(741\) 0 0
\(742\) −6.73566 −0.247274
\(743\) −21.3966 −0.784966 −0.392483 0.919759i \(-0.628384\pi\)
−0.392483 + 0.919759i \(0.628384\pi\)
\(744\) 0 0
\(745\) 0.641769 0.0235126
\(746\) −78.4633 −2.87275
\(747\) 0 0
\(748\) 7.37743 0.269746
\(749\) 19.9253 0.728055
\(750\) 0 0
\(751\) −13.7266 −0.500890 −0.250445 0.968131i \(-0.580577\pi\)
−0.250445 + 0.968131i \(0.580577\pi\)
\(752\) 3.86876 0.141079
\(753\) 0 0
\(754\) 7.80128 0.284106
\(755\) −16.1131 −0.586416
\(756\) 0 0
\(757\) −33.5279 −1.21859 −0.609296 0.792943i \(-0.708548\pi\)
−0.609296 + 0.792943i \(0.708548\pi\)
\(758\) 12.3574 0.448842
\(759\) 0 0
\(760\) −11.6700 −0.423317
\(761\) −24.8296 −0.900071 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(762\) 0 0
\(763\) 7.35823 0.266386
\(764\) 11.9819 0.433488
\(765\) 0 0
\(766\) 48.4815 1.75171
\(767\) 10.0565 0.363121
\(768\) 0 0
\(769\) −17.2654 −0.622606 −0.311303 0.950311i \(-0.600765\pi\)
−0.311303 + 0.950311i \(0.600765\pi\)
\(770\) −4.29261 −0.154695
\(771\) 0 0
\(772\) −38.1987 −1.37480
\(773\) −12.6418 −0.454693 −0.227346 0.973814i \(-0.573005\pi\)
−0.227346 + 0.973814i \(0.573005\pi\)
\(774\) 0 0
\(775\) 4.34916 0.156226
\(776\) −36.4996 −1.31026
\(777\) 0 0
\(778\) 15.0848 0.540817
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −14.2553 −0.510093
\(782\) 16.6983 0.597131
\(783\) 0 0
\(784\) 6.02827 0.215295
\(785\) 23.3774 0.834376
\(786\) 0 0
\(787\) 1.35823 0.0484157 0.0242079 0.999707i \(-0.492294\pi\)
0.0242079 + 0.999707i \(0.492294\pi\)
\(788\) 10.5561 0.376047
\(789\) 0 0
\(790\) −16.0565 −0.571266
\(791\) 0.971726 0.0345506
\(792\) 0 0
\(793\) −9.15951 −0.325264
\(794\) 0.971726 0.0344853
\(795\) 0 0
\(796\) 50.3419 1.78432
\(797\) 11.1704 0.395677 0.197839 0.980235i \(-0.436608\pi\)
0.197839 + 0.980235i \(0.436608\pi\)
\(798\) 0 0
\(799\) 0.641769 0.0227042
\(800\) 3.48586 0.123244
\(801\) 0 0
\(802\) 22.1323 0.781519
\(803\) 0.659914 0.0232879
\(804\) 0 0
\(805\) −6.64177 −0.234092
\(806\) −14.4431 −0.508735
\(807\) 0 0
\(808\) −48.1696 −1.69460
\(809\) 32.8031 1.15330 0.576648 0.816992i \(-0.304360\pi\)
0.576648 + 0.816992i \(0.304360\pi\)
\(810\) 0 0
\(811\) 28.3492 0.995474 0.497737 0.867328i \(-0.334165\pi\)
0.497737 + 0.867328i \(0.334165\pi\)
\(812\) −10.1504 −0.356211
\(813\) 0 0
\(814\) 8.58522 0.300912
\(815\) −6.05655 −0.212152
\(816\) 0 0
\(817\) 24.1131 0.843610
\(818\) −5.21606 −0.182375
\(819\) 0 0
\(820\) 25.9253 0.905351
\(821\) 27.8205 0.970942 0.485471 0.874253i \(-0.338648\pi\)
0.485471 + 0.874253i \(0.338648\pi\)
\(822\) 0 0
\(823\) 19.4039 0.676376 0.338188 0.941079i \(-0.390186\pi\)
0.338188 + 0.941079i \(0.390186\pi\)
\(824\) −17.1222 −0.596479
\(825\) 0 0
\(826\) −19.1414 −0.666013
\(827\) 39.8506 1.38574 0.692871 0.721062i \(-0.256346\pi\)
0.692871 + 0.721062i \(0.256346\pi\)
\(828\) 0 0
\(829\) 55.3219 1.92141 0.960705 0.277571i \(-0.0895293\pi\)
0.960705 + 0.277571i \(0.0895293\pi\)
\(830\) −15.0848 −0.523602
\(831\) 0 0
\(832\) 4.34916 0.150780
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −9.08482 −0.314393
\(836\) 14.7549 0.510308
\(837\) 0 0
\(838\) 75.0211 2.59156
\(839\) 36.4815 1.25948 0.629740 0.776806i \(-0.283161\pi\)
0.629740 + 0.776806i \(0.283161\pi\)
\(840\) 0 0
\(841\) −23.4815 −0.809705
\(842\) −73.2654 −2.52489
\(843\) 0 0
\(844\) −24.2553 −0.834901
\(845\) 11.2553 0.387193
\(846\) 0 0
\(847\) −8.08482 −0.277798
\(848\) −16.1504 −0.554608
\(849\) 0 0
\(850\) 2.51414 0.0862342
\(851\) 13.2835 0.455354
\(852\) 0 0
\(853\) 52.8970 1.81116 0.905580 0.424176i \(-0.139436\pi\)
0.905580 + 0.424176i \(0.139436\pi\)
\(854\) 17.4340 0.596579
\(855\) 0 0
\(856\) 116.265 3.97384
\(857\) 10.0109 0.341967 0.170983 0.985274i \(-0.445306\pi\)
0.170983 + 0.985274i \(0.445306\pi\)
\(858\) 0 0
\(859\) −0.567076 −0.0193484 −0.00967419 0.999953i \(-0.503079\pi\)
−0.00967419 + 0.999953i \(0.503079\pi\)
\(860\) −52.0950 −1.77642
\(861\) 0 0
\(862\) −15.6327 −0.532452
\(863\) −32.8031 −1.11663 −0.558316 0.829628i \(-0.688552\pi\)
−0.558316 + 0.829628i \(0.688552\pi\)
\(864\) 0 0
\(865\) 24.9536 0.848447
\(866\) −6.54787 −0.222506
\(867\) 0 0
\(868\) 18.7922 0.637849
\(869\) 10.9043 0.369901
\(870\) 0 0
\(871\) −11.4148 −0.386775
\(872\) 42.9354 1.45398
\(873\) 0 0
\(874\) 33.3966 1.12966
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −52.1696 −1.76164 −0.880822 0.473448i \(-0.843009\pi\)
−0.880822 + 0.473448i \(0.843009\pi\)
\(878\) −34.7466 −1.17264
\(879\) 0 0
\(880\) −10.2926 −0.346964
\(881\) 40.6802 1.37055 0.685275 0.728284i \(-0.259682\pi\)
0.685275 + 0.728284i \(0.259682\pi\)
\(882\) 0 0
\(883\) −42.1131 −1.41722 −0.708609 0.705601i \(-0.750677\pi\)
−0.708609 + 0.705601i \(0.750677\pi\)
\(884\) −5.70739 −0.191960
\(885\) 0 0
\(886\) −45.1331 −1.51628
\(887\) −54.1696 −1.81884 −0.909419 0.415880i \(-0.863473\pi\)
−0.909419 + 0.415880i \(0.863473\pi\)
\(888\) 0 0
\(889\) 2.00000 0.0670778
\(890\) −17.5279 −0.587536
\(891\) 0 0
\(892\) −56.1323 −1.87945
\(893\) 1.28354 0.0429520
\(894\) 0 0
\(895\) 22.8861 0.764998
\(896\) −15.2498 −0.509460
\(897\) 0 0
\(898\) 100.114 3.34085
\(899\) −10.2169 −0.340751
\(900\) 0 0
\(901\) −2.67912 −0.0892543
\(902\) −25.7557 −0.857570
\(903\) 0 0
\(904\) 5.67004 0.188583
\(905\) −13.5761 −0.451286
\(906\) 0 0
\(907\) 36.8223 1.22267 0.611333 0.791374i \(-0.290634\pi\)
0.611333 + 0.791374i \(0.290634\pi\)
\(908\) 43.4532 1.44204
\(909\) 0 0
\(910\) 3.32088 0.110086
\(911\) 1.70739 0.0565683 0.0282842 0.999600i \(-0.490996\pi\)
0.0282842 + 0.999600i \(0.490996\pi\)
\(912\) 0 0
\(913\) 10.2443 0.339038
\(914\) 65.3676 2.16217
\(915\) 0 0
\(916\) −20.8680 −0.689497
\(917\) −8.44305 −0.278814
\(918\) 0 0
\(919\) 23.8506 0.786759 0.393380 0.919376i \(-0.371306\pi\)
0.393380 + 0.919376i \(0.371306\pi\)
\(920\) −38.7549 −1.27771
\(921\) 0 0
\(922\) −4.52867 −0.149144
\(923\) 11.0283 0.363000
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 29.8397 0.980593
\(927\) 0 0
\(928\) −8.18884 −0.268812
\(929\) 8.75486 0.287238 0.143619 0.989633i \(-0.454126\pi\)
0.143619 + 0.989633i \(0.454126\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) −105.860 −3.46756
\(933\) 0 0
\(934\) 45.2545 1.48077
\(935\) −1.70739 −0.0558376
\(936\) 0 0
\(937\) −16.5479 −0.540596 −0.270298 0.962777i \(-0.587122\pi\)
−0.270298 + 0.962777i \(0.587122\pi\)
\(938\) 21.7266 0.709398
\(939\) 0 0
\(940\) −2.77301 −0.0904456
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) −39.8506 −1.29771
\(944\) −45.8962 −1.49380
\(945\) 0 0
\(946\) 51.7541 1.68267
\(947\) 7.92531 0.257538 0.128769 0.991675i \(-0.458897\pi\)
0.128769 + 0.991675i \(0.458897\pi\)
\(948\) 0 0
\(949\) −0.510528 −0.0165724
\(950\) 5.02827 0.163139
\(951\) 0 0
\(952\) 5.83502 0.189114
\(953\) −2.20699 −0.0714914 −0.0357457 0.999361i \(-0.511381\pi\)
−0.0357457 + 0.999361i \(0.511381\pi\)
\(954\) 0 0
\(955\) −2.77301 −0.0897325
\(956\) 60.1696 1.94603
\(957\) 0 0
\(958\) −7.28354 −0.235320
\(959\) −0.735663 −0.0237558
\(960\) 0 0
\(961\) −12.0848 −0.389833
\(962\) −6.64177 −0.214139
\(963\) 0 0
\(964\) −19.0365 −0.613126
\(965\) 8.84049 0.284585
\(966\) 0 0
\(967\) −33.9637 −1.09220 −0.546100 0.837720i \(-0.683888\pi\)
−0.546100 + 0.837720i \(0.683888\pi\)
\(968\) −47.1751 −1.51627
\(969\) 0 0
\(970\) 15.7266 0.504950
\(971\) 57.8962 1.85798 0.928989 0.370107i \(-0.120679\pi\)
0.928989 + 0.370107i \(0.120679\pi\)
\(972\) 0 0
\(973\) 1.12217 0.0359751
\(974\) −40.2262 −1.28893
\(975\) 0 0
\(976\) 41.8023 1.33806
\(977\) 52.9619 1.69440 0.847200 0.531274i \(-0.178287\pi\)
0.847200 + 0.531274i \(0.178287\pi\)
\(978\) 0 0
\(979\) 11.9035 0.380436
\(980\) −4.32088 −0.138026
\(981\) 0 0
\(982\) −77.4641 −2.47198
\(983\) 38.8789 1.24004 0.620022 0.784584i \(-0.287124\pi\)
0.620022 + 0.784584i \(0.287124\pi\)
\(984\) 0 0
\(985\) −2.44305 −0.0778421
\(986\) −5.90611 −0.188089
\(987\) 0 0
\(988\) −11.4148 −0.363152
\(989\) 80.0768 2.54629
\(990\) 0 0
\(991\) −22.4996 −0.714723 −0.357362 0.933966i \(-0.616324\pi\)
−0.357362 + 0.933966i \(0.616324\pi\)
\(992\) 15.1606 0.481349
\(993\) 0 0
\(994\) −20.9909 −0.665792
\(995\) −11.6508 −0.369357
\(996\) 0 0
\(997\) 18.5561 0.587679 0.293840 0.955855i \(-0.405067\pi\)
0.293840 + 0.955855i \(0.405067\pi\)
\(998\) −84.6055 −2.67814
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5355.2.a.bd.1.3 3
3.2 odd 2 1785.2.a.x.1.1 3
15.14 odd 2 8925.2.a.bp.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.x.1.1 3 3.2 odd 2
5355.2.a.bd.1.3 3 1.1 even 1 trivial
8925.2.a.bp.1.3 3 15.14 odd 2