Defining parameters
Level: | \( N \) | \(=\) | \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5328.ga (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 296 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1824\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5328, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3712 | 0 | 3712 |
Cusp forms | 3584 | 0 | 3584 |
Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{old}}(5328, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5328, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(888, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2664, [\chi])\)\(^{\oplus 2}\)