# Properties

 Label 5328.2.a.o Level $5328$ Weight $2$ Character orbit 5328.a Self dual yes Analytic conductor $42.544$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5328,2,Mod(1,5328)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5328, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5328.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5328 = 2^{4} \cdot 3^{2} \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5328.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$42.5442941969$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 296) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 2 q^{5} - q^{7}+O(q^{10})$$ q + 2 * q^5 - q^7 $$q + 2 q^{5} - q^{7} + q^{11} - 6 q^{13} + 4 q^{17} + 8 q^{19} + 6 q^{23} - q^{25} - 2 q^{29} + 4 q^{31} - 2 q^{35} - q^{37} - 7 q^{41} - 2 q^{43} + 9 q^{47} - 6 q^{49} + 3 q^{53} + 2 q^{55} - 12 q^{59} + 4 q^{61} - 12 q^{65} + 7 q^{71} + 7 q^{73} - q^{77} + 3 q^{83} + 8 q^{85} + 12 q^{89} + 6 q^{91} + 16 q^{95} - 8 q^{97}+O(q^{100})$$ q + 2 * q^5 - q^7 + q^11 - 6 * q^13 + 4 * q^17 + 8 * q^19 + 6 * q^23 - q^25 - 2 * q^29 + 4 * q^31 - 2 * q^35 - q^37 - 7 * q^41 - 2 * q^43 + 9 * q^47 - 6 * q^49 + 3 * q^53 + 2 * q^55 - 12 * q^59 + 4 * q^61 - 12 * q^65 + 7 * q^71 + 7 * q^73 - q^77 + 3 * q^83 + 8 * q^85 + 12 * q^89 + 6 * q^91 + 16 * q^95 - 8 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 2.00000 0 −1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$3$$ $$-1$$
$$37$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5328.2.a.o 1
3.b odd 2 1 592.2.a.c 1
4.b odd 2 1 2664.2.a.f 1
12.b even 2 1 296.2.a.a 1
24.f even 2 1 2368.2.a.n 1
24.h odd 2 1 2368.2.a.g 1
60.h even 2 1 7400.2.a.f 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
296.2.a.a 1 12.b even 2 1
592.2.a.c 1 3.b odd 2 1
2368.2.a.g 1 24.h odd 2 1
2368.2.a.n 1 24.f even 2 1
2664.2.a.f 1 4.b odd 2 1
5328.2.a.o 1 1.a even 1 1 trivial
7400.2.a.f 1 60.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5328))$$:

 $$T_{5} - 2$$ T5 - 2 $$T_{7} + 1$$ T7 + 1 $$T_{11} - 1$$ T11 - 1 $$T_{13} + 6$$ T13 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 2$$
$7$ $$T + 1$$
$11$ $$T - 1$$
$13$ $$T + 6$$
$17$ $$T - 4$$
$19$ $$T - 8$$
$23$ $$T - 6$$
$29$ $$T + 2$$
$31$ $$T - 4$$
$37$ $$T + 1$$
$41$ $$T + 7$$
$43$ $$T + 2$$
$47$ $$T - 9$$
$53$ $$T - 3$$
$59$ $$T + 12$$
$61$ $$T - 4$$
$67$ $$T$$
$71$ $$T - 7$$
$73$ $$T - 7$$
$79$ $$T$$
$83$ $$T - 3$$
$89$ $$T - 12$$
$97$ $$T + 8$$