Properties

Label 532.2.a.c
Level $532$
Weight $2$
Character orbit 532.a
Self dual yes
Analytic conductor $4.248$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [532,2,Mod(1,532)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("532.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(532, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + 3 q^{5} + q^{7} + (\beta + 2) q^{9} + ( - \beta - 1) q^{11} - q^{13} - 3 \beta q^{15} + (\beta + 1) q^{17} + q^{19} - \beta q^{21} + (2 \beta - 1) q^{23} + 4 q^{25} - 5 q^{27} + (\beta + 1) q^{29} + \cdots + ( - 4 \beta - 7) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 6 q^{5} + 2 q^{7} + 5 q^{9} - 3 q^{11} - 2 q^{13} - 3 q^{15} + 3 q^{17} + 2 q^{19} - q^{21} + 8 q^{25} - 10 q^{27} + 3 q^{29} + q^{31} + 12 q^{33} + 6 q^{35} + 10 q^{37} + q^{39} - 3 q^{41}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.79129
−1.79129
0 −2.79129 0 3.00000 0 1.00000 0 4.79129 0
1.2 0 1.79129 0 3.00000 0 1.00000 0 0.208712 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 532.2.a.c 2
3.b odd 2 1 4788.2.a.g 2
4.b odd 2 1 2128.2.a.k 2
7.b odd 2 1 3724.2.a.e 2
8.b even 2 1 8512.2.a.t 2
8.d odd 2 1 8512.2.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
532.2.a.c 2 1.a even 1 1 trivial
2128.2.a.k 2 4.b odd 2 1
3724.2.a.e 2 7.b odd 2 1
4788.2.a.g 2 3.b odd 2 1
8512.2.a.m 2 8.d odd 2 1
8512.2.a.t 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} - 5 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(532))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 5 \) Copy content Toggle raw display
$5$ \( (T - 3)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 3T - 3 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 21 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$31$ \( T^{2} - T - 47 \) Copy content Toggle raw display
$37$ \( (T - 5)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 3T - 3 \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 12T + 15 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T - 45 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T - 75 \) Copy content Toggle raw display
$61$ \( (T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 5T - 41 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T - 75 \) Copy content Toggle raw display
$73$ \( T^{2} - 19T + 43 \) Copy content Toggle raw display
$79$ \( (T + 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 15T + 9 \) Copy content Toggle raw display
$89$ \( T^{2} - 6T - 12 \) Copy content Toggle raw display
$97$ \( (T + 7)^{2} \) Copy content Toggle raw display
show more
show less