Defining parameters
| Level: | \( N \) | \(=\) | \( 532 = 2^{2} \cdot 7 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 532.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(160\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(532))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 86 | 10 | 76 |
| Cusp forms | 75 | 10 | 65 |
| Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(9\) | \(0\) | \(9\) | \(8\) | \(0\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(13\) | \(0\) | \(13\) | \(11\) | \(0\) | \(11\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(10\) | \(0\) | \(10\) | \(8\) | \(0\) | \(8\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(12\) | \(0\) | \(12\) | \(10\) | \(0\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(11\) | \(3\) | \(8\) | \(10\) | \(3\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(11\) | \(3\) | \(8\) | \(10\) | \(3\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(41\) | \(4\) | \(37\) | \(36\) | \(4\) | \(32\) | \(5\) | \(0\) | \(5\) | |||||
| Minus space | \(-\) | \(45\) | \(6\) | \(39\) | \(39\) | \(6\) | \(33\) | \(6\) | \(0\) | \(6\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(532))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | 19 | |||||||
| 532.2.a.a | $1$ | $4.248$ | \(\Q\) | None | \(0\) | \(0\) | \(-2\) | \(1\) | $-$ | $-$ | $-$ | \(q-2q^{5}+q^{7}-3q^{9}+4q^{11}+4q^{13}+\cdots\) | |
| 532.2.a.b | $2$ | $4.248$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-3\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | \(q+(-1-\beta )q^{3}-q^{5}+q^{7}+(-1+3\beta )q^{9}+\cdots\) | |
| 532.2.a.c | $2$ | $4.248$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(-1\) | \(6\) | \(2\) | $-$ | $-$ | $-$ | \(q-\beta q^{3}+3q^{5}+q^{7}+(2+\beta )q^{9}+(-1+\cdots)q^{11}+\cdots\) | |
| 532.2.a.d | $2$ | $4.248$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(-4\) | \(-2\) | $-$ | $+$ | $-$ | \(q+\beta q^{3}+(-1-2\beta )q^{5}-q^{7}+(-2+\cdots)q^{9}+\cdots\) | |
| 532.2.a.e | $3$ | $4.248$ | 3.3.733.1 | None | \(0\) | \(-1\) | \(2\) | \(-3\) | $-$ | $+$ | $+$ | \(q-\beta _{1}q^{3}+(1-\beta _{1}-\beta _{2})q^{5}-q^{7}+(2+\cdots)q^{9}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(532))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(532)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 2}\)