Properties

Label 531.2.m.a
Level $531$
Weight $2$
Character orbit 531.m
Analytic conductor $4.240$
Analytic rank $0$
Dimension $3248$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(4,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(174)) chi = DirichletCharacter(H, H._module([58, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.m (of order \(87\), degree \(56\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(3248\)
Relative dimension: \(58\) over \(\Q(\zeta_{87})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{87}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 3248 q - 29 q^{2} - 58 q^{3} + 29 q^{4} - 25 q^{5} - 66 q^{6} - 27 q^{7} - 116 q^{8} - 62 q^{9} - 116 q^{10} - 33 q^{11} - 58 q^{12} - 27 q^{13} - 33 q^{14} - 51 q^{15} + 29 q^{16} - 126 q^{17} - 78 q^{18}+ \cdots - 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −1.11737 2.53423i 0.109412 + 1.72859i −3.82487 + 4.18674i 2.16943 0.910101i 4.25840 2.20874i −1.18066 + 0.171731i 9.63467 + 3.24630i −2.97606 + 0.378256i −4.73045 4.48092i
4.2 −1.08034 2.45026i 0.836206 1.51683i −3.48769 + 3.81766i −3.50876 + 1.47197i −4.62001 0.410233i −1.37358 + 0.199792i 8.04683 + 2.71129i −1.60152 2.53676i 7.39737 + 7.00716i
4.3 −1.07888 2.44694i −0.114188 1.72828i −3.47456 + 3.80329i 2.48452 1.04229i −4.10580 + 2.14401i 4.47379 0.650731i 7.98656 + 2.69099i −2.97392 + 0.394700i −5.23090 4.95498i
4.4 −1.03633 2.35043i −1.73198 + 0.0156715i −3.10161 + 3.39505i −1.79241 + 0.751936i 1.83173 + 4.05466i −2.03940 + 0.296638i 6.32554 + 2.13132i 2.99951 0.0542854i 3.62489 + 3.43368i
4.5 −0.992901 2.25194i 1.08539 + 1.34979i −2.73643 + 2.99533i −3.27551 + 1.37412i 1.96197 3.78444i 3.11928 0.453711i 4.79775 + 1.61655i −0.643876 + 2.93009i 6.34669 + 6.01190i
4.6 −0.986609 2.23767i −1.69894 + 0.337037i −2.68482 + 2.93883i 1.19347 0.500676i 2.43037 + 3.46915i 1.19400 0.173672i 4.58999 + 1.54655i 2.77281 1.14521i −2.29784 2.17663i
4.7 −0.967951 2.19536i 1.72737 0.127256i −2.53369 + 2.77341i 0.812833 0.340993i −1.95138 3.66901i 3.32533 0.483682i 3.99375 + 1.34565i 2.96761 0.439635i −1.53538 1.45439i
4.8 −0.917418 2.08074i 1.04953 1.37785i −2.13887 + 2.34123i 3.27750 1.37495i −3.82982 0.919745i −4.96812 + 0.722633i 2.52379 + 0.850364i −0.796955 2.89221i −5.86775 5.55823i
4.9 −0.914097 2.07321i 1.47791 + 0.903206i −2.11367 + 2.31364i −0.362328 + 0.152001i 0.521583 3.88964i −3.18656 + 0.463498i 2.43442 + 0.820250i 1.36844 + 2.66971i 0.646333 + 0.612240i
4.10 −0.864970 1.96179i −0.788647 1.54209i −1.75148 + 1.91719i −0.481587 + 0.202031i −2.34309 + 2.88102i −1.07926 + 0.156983i 1.21254 + 0.408551i −1.75607 + 2.43233i 0.812901 + 0.770021i
4.11 −0.774002 1.75547i −0.188020 + 1.72182i −1.13364 + 1.24089i 0.0443068 0.0185872i 3.16812 1.00263i −0.953357 + 0.138670i −0.580418 0.195566i −2.92930 0.647471i −0.0669229 0.0633927i
4.12 −0.738184 1.67423i −1.32405 1.11665i −0.909179 + 0.995197i −2.29772 + 0.963923i −0.892133 + 3.04105i 3.68113 0.535435i −1.13060 0.380943i 0.506207 + 2.95698i 3.30997 + 3.13537i
4.13 −0.721710 1.63687i −1.14463 + 1.29993i −0.809512 + 0.886101i 3.57669 1.50047i 2.95390 + 0.935442i 1.52572 0.221922i −1.35587 0.456846i −0.379630 2.97588i −5.03740 4.77168i
4.14 −0.713364 1.61794i 1.54698 + 0.779016i −0.759884 + 0.831777i 3.58957 1.50587i 0.156844 3.05864i 0.869170 0.126424i −1.46349 0.493107i 1.78627 + 2.41024i −4.99708 4.73348i
4.15 −0.700893 1.58966i −1.19780 + 1.25111i −0.686795 + 0.751772i −2.23191 + 0.936314i 2.82836 + 1.02720i 2.79042 0.405878i −1.61631 0.544599i −0.130538 2.99716i 3.05275 + 2.89172i
4.16 −0.585309 1.32751i 1.25099 1.19792i −0.0707233 + 0.0774144i −2.01564 + 0.845586i −2.32246 0.959547i 3.08503 0.448730i −2.60557 0.877919i 0.129969 2.99718i 2.30229 + 2.18085i
4.17 −0.584975 1.32675i 1.38185 1.04426i −0.0691071 + 0.0756453i 1.01737 0.426799i −2.19382 1.22251i 1.15974 0.168689i −2.60738 0.878528i 0.819038 2.88603i −1.16139 1.10013i
4.18 −0.548422 1.24385i 1.72799 + 0.118560i 0.102576 0.112281i −2.33072 + 0.977763i −0.800197 2.21437i −3.60762 + 0.524743i −2.77236 0.934117i 2.97189 + 0.409740i 2.49440 + 2.36282i
4.19 −0.478377 1.08498i −1.62569 + 0.597611i 0.400626 0.438530i 0.172397 0.0723227i 1.42609 + 1.47795i −4.30271 + 0.625846i −2.91482 0.982117i 2.28572 1.94306i −0.160939 0.152450i
4.20 −0.470938 1.06811i −1.40021 1.01952i 0.429888 0.470560i 2.30323 0.966231i −0.429549 + 1.97570i −1.82284 + 0.265139i −2.91749 0.983017i 0.921150 + 2.85508i −2.11672 2.00506i
See next 80 embeddings (of 3248 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.58
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
59.c even 29 1 inner
531.m even 87 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 531.2.m.a 3248
9.c even 3 1 inner 531.2.m.a 3248
59.c even 29 1 inner 531.2.m.a 3248
531.m even 87 1 inner 531.2.m.a 3248
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
531.2.m.a 3248 1.a even 1 1 trivial
531.2.m.a 3248 9.c even 3 1 inner
531.2.m.a 3248 59.c even 29 1 inner
531.2.m.a 3248 531.m even 87 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(531, [\chi])\).