gp: [N,k,chi] = [531,2,Mod(178,531)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("531.178");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(531, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [70]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{70} + 57 T_{2}^{68} + 1776 T_{2}^{66} - 2 T_{2}^{65} + 38265 T_{2}^{64} - 137 T_{2}^{63} + \cdots + 1327104 \)
T2^70 + 57*T2^68 + 1776*T2^66 - 2*T2^65 + 38265*T2^64 - 137*T2^63 + 629997*T2^62 - 4477*T2^61 + 8338218*T2^60 - 96863*T2^59 + 91555020*T2^58 - 1550461*T2^57 + 851062977*T2^56 - 19506916*T2^55 + 6792586610*T2^54 - 199585536*T2^53 + 47006139681*T2^52 - 1698107510*T2^51 + 284029918985*T2^50 - 12184373264*T2^49 + 1505774008072*T2^48 - 74420278599*T2^47 + 7026788631619*T2^46 - 388989306331*T2^45 + 28918754848823*T2^44 - 1744283571159*T2^43 + 105047946331832*T2^42 - 6706753502491*T2^41 + 336737693908890*T2^40 - 22038425026927*T2^39 + 951520067986600*T2^38 - 61441844941096*T2^37 + 2365245876343139*T2^36 - 143471014677525*T2^35 + 5156961725289741*T2^34 - 273969417195394*T2^33 + 9822948451913376*T2^32 - 407210939043170*T2^31 + 16265251206117479*T2^30 - 409946045838115*T2^29 + 23266592989895408*T2^28 - 96252623579564*T2^27 + 28539107201419886*T2^26 + 618344487578651*T2^25 + 29746227496038071*T2^24 + 1534992332488501*T2^23 + 26074362934228083*T2^22 + 2195942768429184*T2^21 + 18973888065249751*T2^20 + 2224471292202375*T2^19 + 11296868841060111*T2^18 + 1660751327263822*T2^17 + 5384814525625012*T2^16 + 923701027725188*T2^15 + 2002300091256684*T2^14 + 373050368697488*T2^13 + 554807663317780*T2^12 + 108699776039352*T2^11 + 109524684886440*T2^10 + 21023585155120*T2^9 + 13458780615024*T2^8 + 2607351800160*T2^7 + 1088691672768*T2^6 + 152326127360*T2^5 + 28124132096*T2^4 + 1423730688*T2^3 + 207496192*T2^2 + 5787648*T2 + 1327104
acting on \(S_{2}^{\mathrm{new}}(531, [\chi])\).