Defining parameters
| Level: | \( N \) | \(=\) | \( 531 = 3^{2} \cdot 59 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 531.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(531))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64 | 24 | 40 |
| Cusp forms | 57 | 24 | 33 |
| Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(59\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(10\) | \(5\) | \(5\) | \(9\) | \(5\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(22\) | \(5\) | \(17\) | \(20\) | \(5\) | \(15\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(16\) | \(10\) | \(6\) | \(14\) | \(10\) | \(4\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(16\) | \(4\) | \(12\) | \(14\) | \(4\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(26\) | \(9\) | \(17\) | \(23\) | \(9\) | \(14\) | \(3\) | \(0\) | \(3\) | ||||
| Minus space | \(-\) | \(38\) | \(15\) | \(23\) | \(34\) | \(15\) | \(19\) | \(4\) | \(0\) | \(4\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(531))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(531))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(531)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(177))\)\(^{\oplus 2}\)