Properties

Label 531.2.a
Level $531$
Weight $2$
Character orbit 531.a
Rep. character $\chi_{531}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $7$
Sturm bound $120$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(120\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(531))\).

Total New Old
Modular forms 64 24 40
Cusp forms 57 24 33
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(59\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(10\)\(5\)\(5\)\(9\)\(5\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(22\)\(5\)\(17\)\(20\)\(5\)\(15\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(16\)\(10\)\(6\)\(14\)\(10\)\(4\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(16\)\(4\)\(12\)\(14\)\(4\)\(10\)\(2\)\(0\)\(2\)
Plus space\(+\)\(26\)\(9\)\(17\)\(23\)\(9\)\(14\)\(3\)\(0\)\(3\)
Minus space\(-\)\(38\)\(15\)\(23\)\(34\)\(15\)\(19\)\(4\)\(0\)\(4\)

Trace form

\( 24 q + 3 q^{2} + 21 q^{4} + 4 q^{5} + 2 q^{7} + 9 q^{8} - 2 q^{10} + 2 q^{11} - 6 q^{13} - 2 q^{14} + 15 q^{16} + 3 q^{17} - 14 q^{19} + 8 q^{20} - 4 q^{22} + 16 q^{23} + 20 q^{25} - 10 q^{26} - 2 q^{28}+ \cdots - 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(531))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 59
531.2.a.a 531.a 1.a $2$ $4.240$ \(\Q(\sqrt{5}) \) None 177.2.a.c \(-1\) \(0\) \(-2\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}-q^{5}+(1-\beta )q^{7}+\cdots\)
531.2.a.b 531.a 1.a $2$ $4.240$ \(\Q(\sqrt{5}) \) None 177.2.a.b \(1\) \(0\) \(0\) \(-7\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}+(1-2\beta )q^{5}+\cdots\)
531.2.a.c 531.a 1.a $2$ $4.240$ \(\Q(\sqrt{5}) \) None 177.2.a.a \(3\) \(0\) \(6\) \(-7\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3\beta q^{4}+3q^{5}+(-4+\beta )q^{7}+\cdots\)
531.2.a.d 531.a 1.a $3$ $4.240$ 3.3.229.1 None 177.2.a.d \(0\) \(0\) \(2\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{1}+\beta _{2})q^{5}+\cdots\)
531.2.a.e 531.a 1.a $5$ $4.240$ 5.5.246832.1 None 531.2.a.e \(-3\) \(0\) \(-8\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-\beta _{1}+\beta _{2})q^{4}+\cdots\)
531.2.a.f 531.a 1.a $5$ $4.240$ 5.5.138136.1 None 59.2.a.a \(0\) \(0\) \(-2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{3})q^{2}+(2+\beta _{2}+\beta _{3}-\beta _{4})q^{4}+\cdots\)
531.2.a.g 531.a 1.a $5$ $4.240$ 5.5.246832.1 None 531.2.a.e \(3\) \(0\) \(8\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{1}+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(531))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(531)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(177))\)\(^{\oplus 2}\)