Properties

Label 5292.2.l.g.3313.1
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.1
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.g.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.05408 q^{5} +5.05408 q^{11} +(0.500000 + 0.866025i) q^{13} +(0.136673 + 0.236725i) q^{17} +(2.69076 - 4.66053i) q^{19} +5.32743 q^{23} -0.780738 q^{25} +(-4.16372 + 7.21177i) q^{29} +(5.08113 - 8.80077i) q^{31} +(-4.08113 + 7.06872i) q^{37} +(-2.52704 - 4.37697i) q^{41} +(-2.30039 + 3.98439i) q^{43} +(0.690757 + 1.19643i) q^{47} +(1.71780 + 2.97532i) q^{53} -10.3815 q^{55} +(0.890369 - 1.54216i) q^{59} +(-0.390369 - 0.676139i) q^{61} +(-1.02704 - 1.77889i) q^{65} +(4.19076 - 7.25860i) q^{67} +7.78074 q^{71} +(-4.69076 - 8.12463i) q^{73} +(-6.47150 - 11.2090i) q^{79} +(-2.86333 + 4.95943i) q^{83} +(-0.280738 - 0.486253i) q^{85} +(-6.90856 + 11.9660i) q^{89} +(-5.52704 + 9.57312i) q^{95} +(1.10963 - 1.92194i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{5} + 12 q^{11} + 3 q^{13} - 3 q^{19} + 12 q^{23} + 12 q^{25} - 15 q^{29} + 3 q^{31} + 3 q^{37} - 6 q^{41} - 3 q^{43} - 15 q^{47} - 18 q^{53} - 24 q^{55} - 3 q^{59} + 6 q^{61} + 3 q^{65} + 6 q^{67}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.05408 −0.918614 −0.459307 0.888277i \(-0.651902\pi\)
−0.459307 + 0.888277i \(0.651902\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.05408 1.52386 0.761932 0.647657i \(-0.224251\pi\)
0.761932 + 0.647657i \(0.224251\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.136673 + 0.236725i 0.0331481 + 0.0574142i 0.882124 0.471018i \(-0.156113\pi\)
−0.848975 + 0.528432i \(0.822780\pi\)
\(18\) 0 0
\(19\) 2.69076 4.66053i 0.617302 1.06920i −0.372674 0.927962i \(-0.621559\pi\)
0.989976 0.141236i \(-0.0451077\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.32743 1.11085 0.555423 0.831568i \(-0.312556\pi\)
0.555423 + 0.831568i \(0.312556\pi\)
\(24\) 0 0
\(25\) −0.780738 −0.156148
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.16372 + 7.21177i −0.773183 + 1.33919i 0.162628 + 0.986687i \(0.448003\pi\)
−0.935810 + 0.352504i \(0.885330\pi\)
\(30\) 0 0
\(31\) 5.08113 8.80077i 0.912597 1.58066i 0.102216 0.994762i \(-0.467407\pi\)
0.810382 0.585903i \(-0.199260\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.08113 + 7.06872i −0.670933 + 1.16209i 0.306707 + 0.951804i \(0.400773\pi\)
−0.977640 + 0.210286i \(0.932560\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.52704 4.37697i −0.394658 0.683567i 0.598400 0.801198i \(-0.295803\pi\)
−0.993057 + 0.117631i \(0.962470\pi\)
\(42\) 0 0
\(43\) −2.30039 + 3.98439i −0.350806 + 0.607614i −0.986391 0.164417i \(-0.947426\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.690757 + 1.19643i 0.100757 + 0.174517i 0.911997 0.410197i \(-0.134540\pi\)
−0.811240 + 0.584714i \(0.801207\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.71780 + 2.97532i 0.235958 + 0.408691i 0.959551 0.281536i \(-0.0908439\pi\)
−0.723593 + 0.690227i \(0.757511\pi\)
\(54\) 0 0
\(55\) −10.3815 −1.39984
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.890369 1.54216i 0.115916 0.200773i −0.802229 0.597016i \(-0.796353\pi\)
0.918146 + 0.396243i \(0.129686\pi\)
\(60\) 0 0
\(61\) −0.390369 0.676139i −0.0499816 0.0865707i 0.839952 0.542660i \(-0.182583\pi\)
−0.889934 + 0.456090i \(0.849250\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.02704 1.77889i −0.127389 0.220644i
\(66\) 0 0
\(67\) 4.19076 7.25860i 0.511982 0.886780i −0.487921 0.872888i \(-0.662245\pi\)
0.999904 0.0138919i \(-0.00442207\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.78074 0.923404 0.461702 0.887035i \(-0.347239\pi\)
0.461702 + 0.887035i \(0.347239\pi\)
\(72\) 0 0
\(73\) −4.69076 8.12463i −0.549012 0.950916i −0.998343 0.0575506i \(-0.981671\pi\)
0.449331 0.893365i \(-0.351662\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.47150 11.2090i −0.728100 1.26111i −0.957685 0.287818i \(-0.907070\pi\)
0.229585 0.973289i \(-0.426263\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.86333 + 4.95943i −0.314291 + 0.544368i −0.979287 0.202479i \(-0.935100\pi\)
0.664996 + 0.746847i \(0.268433\pi\)
\(84\) 0 0
\(85\) −0.280738 0.486253i −0.0304503 0.0527415i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.90856 + 11.9660i −0.732306 + 1.26839i 0.223590 + 0.974683i \(0.428222\pi\)
−0.955895 + 0.293707i \(0.905111\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.52704 + 9.57312i −0.567063 + 0.982181i
\(96\) 0 0
\(97\) 1.10963 1.92194i 0.112666 0.195143i −0.804178 0.594388i \(-0.797394\pi\)
0.916844 + 0.399245i \(0.130728\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.72665 −0.271312 −0.135656 0.990756i \(-0.543314\pi\)
−0.135656 + 0.990756i \(0.543314\pi\)
\(102\) 0 0
\(103\) 17.9823 1.77185 0.885924 0.463831i \(-0.153525\pi\)
0.885924 + 0.463831i \(0.153525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.554084 0.959702i 0.0535653 0.0927779i −0.837999 0.545671i \(-0.816275\pi\)
0.891565 + 0.452893i \(0.149608\pi\)
\(108\) 0 0
\(109\) −1.69076 2.92848i −0.161945 0.280497i 0.773621 0.633649i \(-0.218443\pi\)
−0.935566 + 0.353151i \(0.885110\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.43560 + 16.3429i 0.887626 + 1.53741i 0.842673 + 0.538425i \(0.180980\pi\)
0.0449531 + 0.998989i \(0.485686\pi\)
\(114\) 0 0
\(115\) −10.9430 −1.02044
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.5438 1.32216
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8741 1.06205
\(126\) 0 0
\(127\) 17.1623 1.52290 0.761452 0.648221i \(-0.224487\pi\)
0.761452 + 0.648221i \(0.224487\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.8889 1.56296 0.781481 0.623930i \(-0.214465\pi\)
0.781481 + 0.623930i \(0.214465\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.49261 0.383829 0.191915 0.981412i \(-0.438530\pi\)
0.191915 + 0.981412i \(0.438530\pi\)
\(138\) 0 0
\(139\) −9.07227 15.7136i −0.769500 1.33281i −0.937834 0.347083i \(-0.887172\pi\)
0.168334 0.985730i \(-0.446161\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.52704 + 4.37697i 0.211322 + 0.366020i
\(144\) 0 0
\(145\) 8.55262 14.8136i 0.710257 1.23020i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.50739 0.369260 0.184630 0.982808i \(-0.440891\pi\)
0.184630 + 0.982808i \(0.440891\pi\)
\(150\) 0 0
\(151\) −10.9823 −0.893726 −0.446863 0.894602i \(-0.647459\pi\)
−0.446863 + 0.894602i \(0.647459\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.4371 + 18.0775i −0.838325 + 1.45202i
\(156\) 0 0
\(157\) −2.08998 + 3.61995i −0.166799 + 0.288904i −0.937293 0.348544i \(-0.886676\pi\)
0.770494 + 0.637447i \(0.220010\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.80924 4.86575i 0.220037 0.381115i −0.734782 0.678303i \(-0.762716\pi\)
0.954819 + 0.297188i \(0.0960489\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.44592 9.43260i −0.421418 0.729917i 0.574661 0.818392i \(-0.305134\pi\)
−0.996078 + 0.0884750i \(0.971801\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.30039 + 12.6446i 0.555038 + 0.961354i 0.997901 + 0.0647648i \(0.0206297\pi\)
−0.442862 + 0.896590i \(0.646037\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.7448 20.3427i −0.877851 1.52048i −0.853695 0.520774i \(-0.825644\pi\)
−0.0241559 0.999708i \(-0.507690\pi\)
\(180\) 0 0
\(181\) −1.39922 −0.104003 −0.0520017 0.998647i \(-0.516560\pi\)
−0.0520017 + 0.998647i \(0.516560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.38298 14.5197i 0.616329 1.06751i
\(186\) 0 0
\(187\) 0.690757 + 1.19643i 0.0505132 + 0.0874914i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.6819 + 20.2336i 0.845273 + 1.46406i 0.885384 + 0.464860i \(0.153895\pi\)
−0.0401112 + 0.999195i \(0.512771\pi\)
\(192\) 0 0
\(193\) 7.27188 12.5953i 0.523442 0.906628i −0.476186 0.879345i \(-0.657981\pi\)
0.999628 0.0272830i \(-0.00868552\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.3422 1.23558 0.617791 0.786343i \(-0.288028\pi\)
0.617791 + 0.786343i \(0.288028\pi\)
\(198\) 0 0
\(199\) 5.77188 + 9.99720i 0.409158 + 0.708682i 0.994796 0.101891i \(-0.0324892\pi\)
−0.585638 + 0.810573i \(0.699156\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.19076 + 8.99066i 0.362538 + 0.627935i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 13.5993 23.5547i 0.940684 1.62931i
\(210\) 0 0
\(211\) 12.2630 + 21.2402i 0.844222 + 1.46223i 0.886295 + 0.463120i \(0.153270\pi\)
−0.0420736 + 0.999115i \(0.513396\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.72519 8.18427i 0.322255 0.558163i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.136673 + 0.236725i −0.00919363 + 0.0159238i
\(222\) 0 0
\(223\) −4.28074 + 7.41446i −0.286659 + 0.496509i −0.973010 0.230762i \(-0.925878\pi\)
0.686351 + 0.727271i \(0.259211\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.1986 1.40700 0.703501 0.710694i \(-0.251619\pi\)
0.703501 + 0.710694i \(0.251619\pi\)
\(228\) 0 0
\(229\) −4.56148 −0.301431 −0.150715 0.988577i \(-0.548158\pi\)
−0.150715 + 0.988577i \(0.548158\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.75370 11.6977i 0.442449 0.766345i −0.555421 0.831569i \(-0.687443\pi\)
0.997871 + 0.0652244i \(0.0207763\pi\)
\(234\) 0 0
\(235\) −1.41887 2.45756i −0.0925571 0.160314i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.82743 11.8255i −0.441630 0.764925i 0.556181 0.831061i \(-0.312266\pi\)
−0.997811 + 0.0661361i \(0.978933\pi\)
\(240\) 0 0
\(241\) 3.21926 0.207371 0.103685 0.994610i \(-0.466936\pi\)
0.103685 + 0.994610i \(0.466936\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.38151 0.342418
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.38151 −0.276559 −0.138279 0.990393i \(-0.544157\pi\)
−0.138279 + 0.990393i \(0.544157\pi\)
\(252\) 0 0
\(253\) 26.9253 1.69278
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.4533 −0.714438 −0.357219 0.934021i \(-0.616275\pi\)
−0.357219 + 0.934021i \(0.616275\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.83482 0.421453 0.210727 0.977545i \(-0.432417\pi\)
0.210727 + 0.977545i \(0.432417\pi\)
\(264\) 0 0
\(265\) −3.52850 6.11155i −0.216754 0.375429i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.83628 + 8.37669i 0.294873 + 0.510736i 0.974955 0.222400i \(-0.0713892\pi\)
−0.680082 + 0.733136i \(0.738056\pi\)
\(270\) 0 0
\(271\) 6.41887 11.1178i 0.389919 0.675359i −0.602519 0.798104i \(-0.705836\pi\)
0.992438 + 0.122745i \(0.0391697\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.94592 −0.237948
\(276\) 0 0
\(277\) 11.5831 0.695959 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.46410 + 4.26795i −0.146996 + 0.254605i −0.930116 0.367266i \(-0.880294\pi\)
0.783120 + 0.621871i \(0.213627\pi\)
\(282\) 0 0
\(283\) 9.30039 16.1087i 0.552851 0.957565i −0.445217 0.895423i \(-0.646873\pi\)
0.998067 0.0621426i \(-0.0197934\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.46264 14.6577i 0.497802 0.862219i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.3801 21.4429i −0.723250 1.25271i −0.959690 0.281060i \(-0.909314\pi\)
0.236440 0.971646i \(-0.424019\pi\)
\(294\) 0 0
\(295\) −1.82889 + 3.16774i −0.106482 + 0.184433i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.66372 + 4.61369i 0.154047 + 0.266817i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.801851 + 1.38885i 0.0459138 + 0.0795251i
\(306\) 0 0
\(307\) 21.9430 1.25235 0.626176 0.779681i \(-0.284619\pi\)
0.626176 + 0.779681i \(0.284619\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5811 23.5232i 0.770115 1.33388i −0.167384 0.985892i \(-0.553532\pi\)
0.937499 0.347987i \(-0.113135\pi\)
\(312\) 0 0
\(313\) 4.27188 + 7.39912i 0.241461 + 0.418223i 0.961131 0.276094i \(-0.0890400\pi\)
−0.719670 + 0.694317i \(0.755707\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.199612 + 0.345738i 0.0112113 + 0.0194186i 0.871577 0.490259i \(-0.163098\pi\)
−0.860365 + 0.509678i \(0.829765\pi\)
\(318\) 0 0
\(319\) −21.0438 + 36.4489i −1.17822 + 2.04075i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.47102 0.0818495
\(324\) 0 0
\(325\) −0.390369 0.676139i −0.0216538 0.0375054i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.80924 + 4.86575i 0.154410 + 0.267446i 0.932844 0.360281i \(-0.117319\pi\)
−0.778434 + 0.627726i \(0.783986\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.60817 + 14.9098i −0.470314 + 0.814609i
\(336\) 0 0
\(337\) 14.4911 + 25.0994i 0.789383 + 1.36725i 0.926345 + 0.376675i \(0.122933\pi\)
−0.136962 + 0.990576i \(0.543734\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 25.6804 44.4798i 1.39067 2.40872i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.2345 29.8511i 0.925198 1.60249i 0.133955 0.990987i \(-0.457232\pi\)
0.791243 0.611502i \(-0.209434\pi\)
\(348\) 0 0
\(349\) −8.78074 + 15.2087i −0.470022 + 0.814102i −0.999412 0.0342762i \(-0.989087\pi\)
0.529390 + 0.848378i \(0.322421\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −32.8889 −1.75050 −0.875250 0.483671i \(-0.839303\pi\)
−0.875250 + 0.483671i \(0.839303\pi\)
\(354\) 0 0
\(355\) −15.9823 −0.848252
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.48181 2.56657i 0.0782071 0.135459i −0.824269 0.566198i \(-0.808414\pi\)
0.902476 + 0.430739i \(0.141747\pi\)
\(360\) 0 0
\(361\) −4.98035 8.62622i −0.262124 0.454012i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.63521 + 16.6887i 0.504330 + 0.873525i
\(366\) 0 0
\(367\) 13.3638 0.697585 0.348792 0.937200i \(-0.386592\pi\)
0.348792 + 0.937200i \(0.386592\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.60078 0.238219 0.119110 0.992881i \(-0.461996\pi\)
0.119110 + 0.992881i \(0.461996\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.32743 −0.428884
\(378\) 0 0
\(379\) −2.21926 −0.113996 −0.0569979 0.998374i \(-0.518153\pi\)
−0.0569979 + 0.998374i \(0.518153\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.0335 1.58574 0.792868 0.609394i \(-0.208587\pi\)
0.792868 + 0.609394i \(0.208587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.8348 1.25918 0.629588 0.776929i \(-0.283224\pi\)
0.629588 + 0.776929i \(0.283224\pi\)
\(390\) 0 0
\(391\) 0.728116 + 1.26113i 0.0368224 + 0.0637783i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.2930 + 23.0241i 0.668843 + 1.15847i
\(396\) 0 0
\(397\) −8.86186 + 15.3492i −0.444764 + 0.770354i −0.998036 0.0626467i \(-0.980046\pi\)
0.553272 + 0.833001i \(0.313379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.1770 −1.50697 −0.753485 0.657466i \(-0.771629\pi\)
−0.753485 + 0.657466i \(0.771629\pi\)
\(402\) 0 0
\(403\) 10.1623 0.506218
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.6264 + 35.7259i −1.02241 + 1.77087i
\(408\) 0 0
\(409\) −8.38151 + 14.5172i −0.414439 + 0.717830i −0.995369 0.0961236i \(-0.969356\pi\)
0.580930 + 0.813953i \(0.302689\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.88151 10.1871i 0.288712 0.500064i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.44445 + 2.50187i 0.0705662 + 0.122224i 0.899150 0.437641i \(-0.144186\pi\)
−0.828583 + 0.559866i \(0.810853\pi\)
\(420\) 0 0
\(421\) 0.0899807 0.155851i 0.00438539 0.00759572i −0.863824 0.503793i \(-0.831937\pi\)
0.868210 + 0.496197i \(0.165271\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.106706 0.184820i −0.00517600 0.00896509i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.38298 4.12744i −0.114784 0.198812i 0.802909 0.596101i \(-0.203284\pi\)
−0.917693 + 0.397289i \(0.869951\pi\)
\(432\) 0 0
\(433\) −27.7630 −1.33421 −0.667103 0.744965i \(-0.732466\pi\)
−0.667103 + 0.744965i \(0.732466\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.3348 24.8286i 0.685728 1.18771i
\(438\) 0 0
\(439\) 2.32889 + 4.03376i 0.111152 + 0.192521i 0.916235 0.400641i \(-0.131213\pi\)
−0.805083 + 0.593162i \(0.797879\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.38151 2.39285i −0.0656377 0.113688i 0.831339 0.555766i \(-0.187575\pi\)
−0.896977 + 0.442078i \(0.854242\pi\)
\(444\) 0 0
\(445\) 14.1908 24.5791i 0.672706 1.16516i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −19.9430 −0.941168 −0.470584 0.882355i \(-0.655957\pi\)
−0.470584 + 0.882355i \(0.655957\pi\)
\(450\) 0 0
\(451\) −12.7719 22.1216i −0.601405 1.04166i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.6908 23.7131i −0.640427 1.10925i −0.985338 0.170616i \(-0.945424\pi\)
0.344911 0.938635i \(-0.387909\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.02558 + 5.24046i −0.140915 + 0.244072i −0.927842 0.372975i \(-0.878338\pi\)
0.786926 + 0.617047i \(0.211671\pi\)
\(462\) 0 0
\(463\) 8.77188 + 15.1933i 0.407664 + 0.706095i 0.994628 0.103519i \(-0.0330101\pi\)
−0.586964 + 0.809613i \(0.699677\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.8078 + 20.4517i −0.546399 + 0.946391i 0.452119 + 0.891958i \(0.350668\pi\)
−0.998517 + 0.0544328i \(0.982665\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.6264 + 20.1374i −0.534580 + 0.925920i
\(474\) 0 0
\(475\) −2.10078 + 3.63865i −0.0963902 + 0.166953i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −38.2527 −1.74781 −0.873906 0.486096i \(-0.838421\pi\)
−0.873906 + 0.486096i \(0.838421\pi\)
\(480\) 0 0
\(481\) −8.16225 −0.372167
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.27928 + 3.94782i −0.103497 + 0.179261i
\(486\) 0 0
\(487\) 3.28959 + 5.69774i 0.149066 + 0.258189i 0.930882 0.365319i \(-0.119040\pi\)
−0.781817 + 0.623508i \(0.785707\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.02704 1.77889i −0.0463498 0.0802801i 0.841920 0.539603i \(-0.181426\pi\)
−0.888270 + 0.459323i \(0.848092\pi\)
\(492\) 0 0
\(493\) −2.27627 −0.102518
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −16.3245 −0.730785 −0.365393 0.930854i \(-0.619065\pi\)
−0.365393 + 0.930854i \(0.619065\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.60078 0.249726 0.124863 0.992174i \(-0.460151\pi\)
0.124863 + 0.992174i \(0.460151\pi\)
\(504\) 0 0
\(505\) 5.60078 0.249231
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.672570 −0.0298111 −0.0149056 0.999889i \(-0.504745\pi\)
−0.0149056 + 0.999889i \(0.504745\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.9371 −1.62764
\(516\) 0 0
\(517\) 3.49115 + 6.04684i 0.153540 + 0.265940i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.2267 + 22.9092i 0.579470 + 1.00367i 0.995540 + 0.0943392i \(0.0300738\pi\)
−0.416070 + 0.909333i \(0.636593\pi\)
\(522\) 0 0
\(523\) −13.6534 + 23.6484i −0.597021 + 1.03407i 0.396237 + 0.918148i \(0.370316\pi\)
−0.993258 + 0.115923i \(0.963017\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.77781 0.121003
\(528\) 0 0
\(529\) 5.38151 0.233979
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.52704 4.37697i 0.109458 0.189587i
\(534\) 0 0
\(535\) −1.13814 + 1.97131i −0.0492059 + 0.0852271i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.66225 16.7355i 0.415413 0.719516i −0.580059 0.814574i \(-0.696971\pi\)
0.995472 + 0.0950586i \(0.0303038\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.47296 + 6.01534i 0.148765 + 0.257669i
\(546\) 0 0
\(547\) 9.17111 15.8848i 0.392128 0.679186i −0.600602 0.799548i \(-0.705072\pi\)
0.992730 + 0.120362i \(0.0384056\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.4071 + 38.8102i 0.954574 + 1.65337i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.59931 + 7.96625i 0.194879 + 0.337541i 0.946861 0.321643i \(-0.104235\pi\)
−0.751982 + 0.659184i \(0.770902\pi\)
\(558\) 0 0
\(559\) −4.60078 −0.194592
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.5811 28.7194i 0.698811 1.21038i −0.270068 0.962841i \(-0.587046\pi\)
0.968879 0.247535i \(-0.0796206\pi\)
\(564\) 0 0
\(565\) −19.3815 33.5698i −0.815386 1.41229i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.1008 + 22.6912i 0.549213 + 0.951265i 0.998329 + 0.0577914i \(0.0184058\pi\)
−0.449116 + 0.893474i \(0.648261\pi\)
\(570\) 0 0
\(571\) −4.89037 + 8.47037i −0.204656 + 0.354474i −0.950023 0.312180i \(-0.898941\pi\)
0.745367 + 0.666654i \(0.232274\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.15933 −0.173456
\(576\) 0 0
\(577\) −18.1534 31.4426i −0.755736 1.30897i −0.945008 0.327048i \(-0.893946\pi\)
0.189272 0.981925i \(-0.439387\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.68190 + 15.0375i 0.359568 + 0.622789i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.0737 + 20.9123i −0.498336 + 0.863144i −0.999998 0.00191995i \(-0.999389\pi\)
0.501662 + 0.865064i \(0.332722\pi\)
\(588\) 0 0
\(589\) −27.3442 47.3615i −1.12670 1.95150i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.7448 35.9311i 0.851889 1.47551i −0.0276133 0.999619i \(-0.508791\pi\)
0.879502 0.475896i \(-0.157876\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.3422 + 19.6453i −0.463430 + 0.802685i −0.999129 0.0417243i \(-0.986715\pi\)
0.535699 + 0.844409i \(0.320048\pi\)
\(600\) 0 0
\(601\) 20.1249 34.8573i 0.820912 1.42186i −0.0840927 0.996458i \(-0.526799\pi\)
0.905004 0.425403i \(-0.139867\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −29.8741 −1.21456
\(606\) 0 0
\(607\) 17.3245 0.703180 0.351590 0.936154i \(-0.385641\pi\)
0.351590 + 0.936154i \(0.385641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.690757 + 1.19643i −0.0279450 + 0.0484022i
\(612\) 0 0
\(613\) 16.4823 + 28.5482i 0.665713 + 1.15305i 0.979091 + 0.203421i \(0.0652060\pi\)
−0.313378 + 0.949629i \(0.601461\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.4700 23.3308i −0.542283 0.939262i −0.998772 0.0495330i \(-0.984227\pi\)
0.456489 0.889729i \(-0.349107\pi\)
\(618\) 0 0
\(619\) −1.98229 −0.0796750 −0.0398375 0.999206i \(-0.512684\pi\)
−0.0398375 + 0.999206i \(0.512684\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.4868 −0.819470
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.23112 −0.0889606
\(630\) 0 0
\(631\) −25.4868 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −35.2527 −1.39896
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.0846 1.58325 0.791623 0.611009i \(-0.209236\pi\)
0.791623 + 0.611009i \(0.209236\pi\)
\(642\) 0 0
\(643\) −3.50885 6.07751i −0.138376 0.239674i 0.788506 0.615027i \(-0.210855\pi\)
−0.926882 + 0.375353i \(0.877521\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.90709 10.2314i −0.232232 0.402237i 0.726233 0.687449i \(-0.241269\pi\)
−0.958465 + 0.285212i \(0.907936\pi\)
\(648\) 0 0
\(649\) 4.50000 7.79423i 0.176640 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.273346 −0.0106969 −0.00534843 0.999986i \(-0.501702\pi\)
−0.00534843 + 0.999986i \(0.501702\pi\)
\(654\) 0 0
\(655\) −36.7453 −1.43576
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.39970 12.8167i 0.288251 0.499266i −0.685141 0.728410i \(-0.740259\pi\)
0.973392 + 0.229144i \(0.0735928\pi\)
\(660\) 0 0
\(661\) 4.50885 7.80956i 0.175374 0.303757i −0.764917 0.644129i \(-0.777220\pi\)
0.940291 + 0.340372i \(0.110553\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −22.1819 + 38.4202i −0.858887 + 1.48764i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.97296 3.41726i −0.0761652 0.131922i
\(672\) 0 0
\(673\) −11.9803 + 20.7506i −0.461809 + 0.799876i −0.999051 0.0435519i \(-0.986133\pi\)
0.537243 + 0.843428i \(0.319466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.32889 5.76581i −0.127940 0.221598i 0.794938 0.606690i \(-0.207503\pi\)
−0.922878 + 0.385092i \(0.874170\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.0364 26.0438i −0.575351 0.996537i −0.996003 0.0893152i \(-0.971532\pi\)
0.420652 0.907222i \(-0.361801\pi\)
\(684\) 0 0
\(685\) −9.22820 −0.352591
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.71780 + 2.97532i −0.0654429 + 0.113351i
\(690\) 0 0
\(691\) 1.63814 + 2.83733i 0.0623176 + 0.107937i 0.895501 0.445060i \(-0.146817\pi\)
−0.833183 + 0.552997i \(0.813484\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.6352 + 32.2771i 0.706874 + 1.22434i
\(696\) 0 0
\(697\) 0.690757 1.19643i 0.0261643 0.0453179i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.2891 1.21954 0.609771 0.792578i \(-0.291261\pi\)
0.609771 + 0.792578i \(0.291261\pi\)
\(702\) 0 0
\(703\) 21.9626 + 38.0404i 0.828337 + 1.43472i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.5438 + 42.5111i 0.921761 + 1.59654i 0.796690 + 0.604388i \(0.206582\pi\)
0.125071 + 0.992148i \(0.460084\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 27.0693 46.8855i 1.01376 1.75588i
\(714\) 0 0
\(715\) −5.19076 8.99066i −0.194123 0.336231i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.9808 + 36.3399i −0.782453 + 1.35525i 0.148056 + 0.988979i \(0.452698\pi\)
−0.930509 + 0.366269i \(0.880635\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.25077 5.63050i 0.120731 0.209112i
\(726\) 0 0
\(727\) 14.2434 24.6703i 0.528258 0.914969i −0.471200 0.882027i \(-0.656179\pi\)
0.999457 0.0329425i \(-0.0104878\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.25760 −0.0465142
\(732\) 0 0
\(733\) 28.5261 1.05363 0.526817 0.849979i \(-0.323385\pi\)
0.526817 + 0.849979i \(0.323385\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.1804 36.6856i 0.780192 1.35133i
\(738\) 0 0
\(739\) −3.92967 6.80639i −0.144555 0.250377i 0.784652 0.619937i \(-0.212842\pi\)
−0.929207 + 0.369560i \(0.879508\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.37364 5.84332i −0.123767 0.214371i 0.797483 0.603341i \(-0.206164\pi\)
−0.921250 + 0.388970i \(0.872831\pi\)
\(744\) 0 0
\(745\) −9.25856 −0.339207
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.1800 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.5586 0.820990
\(756\) 0 0
\(757\) −20.3815 −0.740779 −0.370389 0.928877i \(-0.620776\pi\)
−0.370389 + 0.928877i \(0.620776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −40.6549 −1.47374 −0.736869 0.676036i \(-0.763696\pi\)
−0.736869 + 0.676036i \(0.763696\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.78074 0.0642987
\(768\) 0 0
\(769\) 16.9518 + 29.3615i 0.611299 + 1.05880i 0.991022 + 0.133701i \(0.0426861\pi\)
−0.379723 + 0.925100i \(0.623981\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.37412 7.57620i −0.157326 0.272497i 0.776577 0.630022i \(-0.216954\pi\)
−0.933904 + 0.357525i \(0.883621\pi\)
\(774\) 0 0
\(775\) −3.96703 + 6.87110i −0.142500 + 0.246817i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.1986 −0.974492
\(780\) 0 0
\(781\) 39.3245 1.40714
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.29300 7.43569i 0.153224 0.265391i
\(786\) 0 0
\(787\) −4.64260 + 8.04122i −0.165491 + 0.286639i −0.936830 0.349786i \(-0.886254\pi\)
0.771339 + 0.636425i \(0.219588\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.390369 0.676139i 0.0138624 0.0240104i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.2271 + 19.4460i 0.397685 + 0.688811i 0.993440 0.114355i \(-0.0364802\pi\)
−0.595754 + 0.803167i \(0.703147\pi\)
\(798\) 0 0
\(799\) −0.188816 + 0.327039i −0.00667983 + 0.0115698i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −23.7075 41.0626i −0.836619 1.44907i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.70107 4.67840i −0.0949647 0.164484i 0.814629 0.579982i \(-0.196940\pi\)
−0.909594 + 0.415498i \(0.863607\pi\)
\(810\) 0 0
\(811\) −0.0177088 −0.000621841 −0.000310920 1.00000i \(-0.500099\pi\)
−0.000310920 1.00000i \(0.500099\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.77042 + 9.99466i −0.202129 + 0.350098i
\(816\) 0 0
\(817\) 12.3796 + 21.4420i 0.433106 + 0.750162i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.528505 0.915397i −0.0184449 0.0319476i 0.856656 0.515889i \(-0.172538\pi\)
−0.875101 + 0.483941i \(0.839205\pi\)
\(822\) 0 0
\(823\) −6.76303 + 11.7139i −0.235744 + 0.408321i −0.959489 0.281747i \(-0.909086\pi\)
0.723744 + 0.690068i \(0.242419\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 49.3068 1.71457 0.857283 0.514846i \(-0.172151\pi\)
0.857283 + 0.514846i \(0.172151\pi\)
\(828\) 0 0
\(829\) 26.8530 + 46.5108i 0.932644 + 1.61539i 0.778783 + 0.627294i \(0.215837\pi\)
0.153861 + 0.988093i \(0.450829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 11.1864 + 19.3754i 0.387120 + 0.670512i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −18.7163 + 32.4176i −0.646160 + 1.11918i 0.337873 + 0.941192i \(0.390293\pi\)
−0.984032 + 0.177990i \(0.943041\pi\)
\(840\) 0 0
\(841\) −20.1730 34.9407i −0.695622 1.20485i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.3245 + 21.3467i −0.423976 + 0.734348i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.7419 + 37.6581i −0.745303 + 1.29090i
\(852\) 0 0
\(853\) 10.3092 17.8561i 0.352982 0.611382i −0.633789 0.773506i \(-0.718501\pi\)
0.986770 + 0.162124i \(0.0518344\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.8889 −0.713551 −0.356776 0.934190i \(-0.616124\pi\)
−0.356776 + 0.934190i \(0.616124\pi\)
\(858\) 0 0
\(859\) 26.8860 0.917338 0.458669 0.888607i \(-0.348326\pi\)
0.458669 + 0.888607i \(0.348326\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13.4071 23.2218i 0.456383 0.790478i −0.542384 0.840131i \(-0.682478\pi\)
0.998767 + 0.0496527i \(0.0158114\pi\)
\(864\) 0 0
\(865\) −14.9956 25.9732i −0.509866 0.883114i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −32.7075 56.6510i −1.10953 1.92175i
\(870\) 0 0
\(871\) 8.38151 0.283997
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.9076 −1.28005 −0.640024 0.768355i \(-0.721076\pi\)
−0.640024 + 0.768355i \(0.721076\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.47782 −0.251934 −0.125967 0.992034i \(-0.540203\pi\)
−0.125967 + 0.992034i \(0.540203\pi\)
\(882\) 0 0
\(883\) 5.07472 0.170778 0.0853889 0.996348i \(-0.472787\pi\)
0.0853889 + 0.996348i \(0.472787\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18.5231 −0.621946 −0.310973 0.950419i \(-0.600655\pi\)
−0.310973 + 0.950419i \(0.600655\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.43464 0.248791
\(894\) 0 0
\(895\) 24.1249 + 41.7855i 0.806406 + 1.39674i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 42.3127 + 73.2878i 1.41121 + 2.44428i
\(900\) 0 0
\(901\) −0.469554 + 0.813291i −0.0156431 + 0.0270947i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.87412 0.0955391
\(906\) 0 0
\(907\) −49.6490 −1.64857 −0.824284 0.566176i \(-0.808422\pi\)
−0.824284 + 0.566176i \(0.808422\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.9808 20.7514i 0.396943 0.687525i −0.596404 0.802684i \(-0.703405\pi\)
0.993347 + 0.115159i \(0.0367379\pi\)
\(912\) 0 0
\(913\) −14.4715 + 25.0654i −0.478937 + 0.829543i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 9.41887 16.3140i 0.310700 0.538148i −0.667814 0.744328i \(-0.732770\pi\)
0.978514 + 0.206180i \(0.0661032\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.89037 + 6.73832i 0.128053 + 0.221794i
\(924\) 0 0
\(925\) 3.18629 5.51882i 0.104765 0.181458i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.45185 + 12.9070i 0.244487 + 0.423464i 0.961987 0.273094i \(-0.0880471\pi\)
−0.717500 + 0.696558i \(0.754714\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.41887 2.45756i −0.0464021 0.0803708i
\(936\) 0 0
\(937\) 3.94299 0.128812 0.0644059 0.997924i \(-0.479485\pi\)
0.0644059 + 0.997924i \(0.479485\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −21.4056 + 37.0756i −0.697804 + 1.20863i 0.271423 + 0.962460i \(0.412506\pi\)
−0.969226 + 0.246171i \(0.920827\pi\)
\(942\) 0 0
\(943\) −13.4626 23.3180i −0.438404 0.759338i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.5919 23.5419i −0.441678 0.765009i 0.556136 0.831091i \(-0.312283\pi\)
−0.997814 + 0.0660823i \(0.978950\pi\)
\(948\) 0 0
\(949\) 4.69076 8.12463i 0.152268 0.263737i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.12295 −0.0363760 −0.0181880 0.999835i \(-0.505790\pi\)
−0.0181880 + 0.999835i \(0.505790\pi\)
\(954\) 0 0
\(955\) −23.9956 41.5616i −0.776480 1.34490i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −36.1357 62.5889i −1.16567 2.01900i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.9371 + 25.8717i −0.480841 + 0.832841i
\(966\) 0 0
\(967\) 4.75223 + 8.23111i 0.152822 + 0.264695i 0.932264 0.361780i \(-0.117831\pi\)
−0.779442 + 0.626474i \(0.784497\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.2989 + 21.3024i −0.394691 + 0.683625i −0.993062 0.117594i \(-0.962482\pi\)
0.598370 + 0.801220i \(0.295815\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.7016 + 21.9997i −0.406359 + 0.703834i −0.994479 0.104940i \(-0.966535\pi\)
0.588120 + 0.808774i \(0.299868\pi\)
\(978\) 0 0
\(979\) −34.9164 + 60.4770i −1.11593 + 1.93285i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.8535 −0.728913 −0.364457 0.931220i \(-0.618745\pi\)
−0.364457 + 0.931220i \(0.618745\pi\)
\(984\) 0 0
\(985\) −35.6224 −1.13502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2552 + 21.2266i −0.389691 + 0.674965i
\(990\) 0 0
\(991\) −12.2345 21.1908i −0.388642 0.673149i 0.603625 0.797269i \(-0.293723\pi\)
−0.992267 + 0.124120i \(0.960389\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.8559 20.5351i −0.375858 0.651006i
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.g.3313.1 6
3.2 odd 2 1764.2.l.d.961.1 6
7.2 even 3 756.2.j.a.505.3 6
7.3 odd 6 5292.2.i.g.2125.1 6
7.4 even 3 5292.2.i.d.2125.3 6
7.5 odd 6 5292.2.j.e.3529.1 6
7.6 odd 2 5292.2.l.d.3313.3 6
9.4 even 3 5292.2.i.d.1549.3 6
9.5 odd 6 1764.2.i.f.373.2 6
21.2 odd 6 252.2.j.b.169.2 yes 6
21.5 even 6 1764.2.j.d.1177.2 6
21.11 odd 6 1764.2.i.f.1537.2 6
21.17 even 6 1764.2.i.e.1537.2 6
21.20 even 2 1764.2.l.g.961.3 6
28.23 odd 6 3024.2.r.i.2017.3 6
63.2 odd 6 2268.2.a.g.1.3 3
63.4 even 3 inner 5292.2.l.g.361.1 6
63.5 even 6 1764.2.j.d.589.2 6
63.13 odd 6 5292.2.i.g.1549.1 6
63.16 even 3 2268.2.a.j.1.1 3
63.23 odd 6 252.2.j.b.85.2 6
63.31 odd 6 5292.2.l.d.361.3 6
63.32 odd 6 1764.2.l.d.949.1 6
63.40 odd 6 5292.2.j.e.1765.1 6
63.41 even 6 1764.2.i.e.373.2 6
63.58 even 3 756.2.j.a.253.3 6
63.59 even 6 1764.2.l.g.949.3 6
84.23 even 6 1008.2.r.g.673.2 6
252.23 even 6 1008.2.r.g.337.2 6
252.79 odd 6 9072.2.a.bz.1.1 3
252.191 even 6 9072.2.a.bt.1.3 3
252.247 odd 6 3024.2.r.i.1009.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.2 6 63.23 odd 6
252.2.j.b.169.2 yes 6 21.2 odd 6
756.2.j.a.253.3 6 63.58 even 3
756.2.j.a.505.3 6 7.2 even 3
1008.2.r.g.337.2 6 252.23 even 6
1008.2.r.g.673.2 6 84.23 even 6
1764.2.i.e.373.2 6 63.41 even 6
1764.2.i.e.1537.2 6 21.17 even 6
1764.2.i.f.373.2 6 9.5 odd 6
1764.2.i.f.1537.2 6 21.11 odd 6
1764.2.j.d.589.2 6 63.5 even 6
1764.2.j.d.1177.2 6 21.5 even 6
1764.2.l.d.949.1 6 63.32 odd 6
1764.2.l.d.961.1 6 3.2 odd 2
1764.2.l.g.949.3 6 63.59 even 6
1764.2.l.g.961.3 6 21.20 even 2
2268.2.a.g.1.3 3 63.2 odd 6
2268.2.a.j.1.1 3 63.16 even 3
3024.2.r.i.1009.3 6 252.247 odd 6
3024.2.r.i.2017.3 6 28.23 odd 6
5292.2.i.d.1549.3 6 9.4 even 3
5292.2.i.d.2125.3 6 7.4 even 3
5292.2.i.g.1549.1 6 63.13 odd 6
5292.2.i.g.2125.1 6 7.3 odd 6
5292.2.j.e.1765.1 6 63.40 odd 6
5292.2.j.e.3529.1 6 7.5 odd 6
5292.2.l.d.361.3 6 63.31 odd 6
5292.2.l.d.3313.3 6 7.6 odd 2
5292.2.l.g.361.1 6 63.4 even 3 inner
5292.2.l.g.3313.1 6 1.1 even 1 trivial
9072.2.a.bt.1.3 3 252.191 even 6
9072.2.a.bz.1.1 3 252.79 odd 6