Properties

Label 5292.2.l.d.3313.3
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.3
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.d.361.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05408 q^{5} +5.05408 q^{11} +(-0.500000 - 0.866025i) q^{13} +(-0.136673 - 0.236725i) q^{17} +(-2.69076 + 4.66053i) q^{19} +5.32743 q^{23} -0.780738 q^{25} +(-4.16372 + 7.21177i) q^{29} +(-5.08113 + 8.80077i) q^{31} +(-4.08113 + 7.06872i) q^{37} +(2.52704 + 4.37697i) q^{41} +(-2.30039 + 3.98439i) q^{43} +(-0.690757 - 1.19643i) q^{47} +(1.71780 + 2.97532i) q^{53} +10.3815 q^{55} +(-0.890369 + 1.54216i) q^{59} +(0.390369 + 0.676139i) q^{61} +(-1.02704 - 1.77889i) q^{65} +(4.19076 - 7.25860i) q^{67} +7.78074 q^{71} +(4.69076 + 8.12463i) q^{73} +(-6.47150 - 11.2090i) q^{79} +(2.86333 - 4.95943i) q^{83} +(-0.280738 - 0.486253i) q^{85} +(6.90856 - 11.9660i) q^{89} +(-5.52704 + 9.57312i) q^{95} +(-1.10963 + 1.92194i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} + 12 q^{11} - 3 q^{13} + 3 q^{19} + 12 q^{23} + 12 q^{25} - 15 q^{29} - 3 q^{31} + 3 q^{37} + 6 q^{41} - 3 q^{43} + 15 q^{47} - 18 q^{53} + 24 q^{55} + 3 q^{59} - 6 q^{61} + 3 q^{65} + 6 q^{67}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.05408 0.918614 0.459307 0.888277i \(-0.348098\pi\)
0.459307 + 0.888277i \(0.348098\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.05408 1.52386 0.761932 0.647657i \(-0.224251\pi\)
0.761932 + 0.647657i \(0.224251\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.136673 0.236725i −0.0331481 0.0574142i 0.848975 0.528432i \(-0.177220\pi\)
−0.882124 + 0.471018i \(0.843887\pi\)
\(18\) 0 0
\(19\) −2.69076 + 4.66053i −0.617302 + 1.06920i 0.372674 + 0.927962i \(0.378441\pi\)
−0.989976 + 0.141236i \(0.954892\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.32743 1.11085 0.555423 0.831568i \(-0.312556\pi\)
0.555423 + 0.831568i \(0.312556\pi\)
\(24\) 0 0
\(25\) −0.780738 −0.156148
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.16372 + 7.21177i −0.773183 + 1.33919i 0.162628 + 0.986687i \(0.448003\pi\)
−0.935810 + 0.352504i \(0.885330\pi\)
\(30\) 0 0
\(31\) −5.08113 + 8.80077i −0.912597 + 1.58066i −0.102216 + 0.994762i \(0.532593\pi\)
−0.810382 + 0.585903i \(0.800740\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.08113 + 7.06872i −0.670933 + 1.16209i 0.306707 + 0.951804i \(0.400773\pi\)
−0.977640 + 0.210286i \(0.932560\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.52704 + 4.37697i 0.394658 + 0.683567i 0.993057 0.117631i \(-0.0375299\pi\)
−0.598400 + 0.801198i \(0.704197\pi\)
\(42\) 0 0
\(43\) −2.30039 + 3.98439i −0.350806 + 0.607614i −0.986391 0.164417i \(-0.947426\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.690757 1.19643i −0.100757 0.174517i 0.811240 0.584714i \(-0.198793\pi\)
−0.911997 + 0.410197i \(0.865460\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.71780 + 2.97532i 0.235958 + 0.408691i 0.959551 0.281536i \(-0.0908439\pi\)
−0.723593 + 0.690227i \(0.757511\pi\)
\(54\) 0 0
\(55\) 10.3815 1.39984
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.890369 + 1.54216i −0.115916 + 0.200773i −0.918146 0.396243i \(-0.870314\pi\)
0.802229 + 0.597016i \(0.203647\pi\)
\(60\) 0 0
\(61\) 0.390369 + 0.676139i 0.0499816 + 0.0865707i 0.889934 0.456090i \(-0.150750\pi\)
−0.839952 + 0.542660i \(0.817417\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.02704 1.77889i −0.127389 0.220644i
\(66\) 0 0
\(67\) 4.19076 7.25860i 0.511982 0.886780i −0.487921 0.872888i \(-0.662245\pi\)
0.999904 0.0138919i \(-0.00442207\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.78074 0.923404 0.461702 0.887035i \(-0.347239\pi\)
0.461702 + 0.887035i \(0.347239\pi\)
\(72\) 0 0
\(73\) 4.69076 + 8.12463i 0.549012 + 0.950916i 0.998343 + 0.0575506i \(0.0183291\pi\)
−0.449331 + 0.893365i \(0.648338\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.47150 11.2090i −0.728100 1.26111i −0.957685 0.287818i \(-0.907070\pi\)
0.229585 0.973289i \(-0.426263\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.86333 4.95943i 0.314291 0.544368i −0.664996 0.746847i \(-0.731567\pi\)
0.979287 + 0.202479i \(0.0648999\pi\)
\(84\) 0 0
\(85\) −0.280738 0.486253i −0.0304503 0.0527415i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.90856 11.9660i 0.732306 1.26839i −0.223590 0.974683i \(-0.571778\pi\)
0.955895 0.293707i \(-0.0948890\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.52704 + 9.57312i −0.567063 + 0.982181i
\(96\) 0 0
\(97\) −1.10963 + 1.92194i −0.112666 + 0.195143i −0.916844 0.399245i \(-0.869272\pi\)
0.804178 + 0.594388i \(0.202606\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.72665 0.271312 0.135656 0.990756i \(-0.456686\pi\)
0.135656 + 0.990756i \(0.456686\pi\)
\(102\) 0 0
\(103\) −17.9823 −1.77185 −0.885924 0.463831i \(-0.846475\pi\)
−0.885924 + 0.463831i \(0.846475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.554084 0.959702i 0.0535653 0.0927779i −0.837999 0.545671i \(-0.816275\pi\)
0.891565 + 0.452893i \(0.149608\pi\)
\(108\) 0 0
\(109\) −1.69076 2.92848i −0.161945 0.280497i 0.773621 0.633649i \(-0.218443\pi\)
−0.935566 + 0.353151i \(0.885110\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.43560 + 16.3429i 0.887626 + 1.53741i 0.842673 + 0.538425i \(0.180980\pi\)
0.0449531 + 0.998989i \(0.485686\pi\)
\(114\) 0 0
\(115\) 10.9430 1.02044
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.5438 1.32216
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8741 −1.06205
\(126\) 0 0
\(127\) 17.1623 1.52290 0.761452 0.648221i \(-0.224487\pi\)
0.761452 + 0.648221i \(0.224487\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −17.8889 −1.56296 −0.781481 0.623930i \(-0.785535\pi\)
−0.781481 + 0.623930i \(0.785535\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.49261 0.383829 0.191915 0.981412i \(-0.438530\pi\)
0.191915 + 0.981412i \(0.438530\pi\)
\(138\) 0 0
\(139\) 9.07227 + 15.7136i 0.769500 + 1.33281i 0.937834 + 0.347083i \(0.112828\pi\)
−0.168334 + 0.985730i \(0.553839\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.52704 4.37697i −0.211322 0.366020i
\(144\) 0 0
\(145\) −8.55262 + 14.8136i −0.710257 + 1.23020i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.50739 0.369260 0.184630 0.982808i \(-0.440891\pi\)
0.184630 + 0.982808i \(0.440891\pi\)
\(150\) 0 0
\(151\) −10.9823 −0.893726 −0.446863 0.894602i \(-0.647459\pi\)
−0.446863 + 0.894602i \(0.647459\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.4371 + 18.0775i −0.838325 + 1.45202i
\(156\) 0 0
\(157\) 2.08998 3.61995i 0.166799 0.288904i −0.770494 0.637447i \(-0.779990\pi\)
0.937293 + 0.348544i \(0.113324\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.80924 4.86575i 0.220037 0.381115i −0.734782 0.678303i \(-0.762716\pi\)
0.954819 + 0.297188i \(0.0960489\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.44592 + 9.43260i 0.421418 + 0.729917i 0.996078 0.0884750i \(-0.0281993\pi\)
−0.574661 + 0.818392i \(0.694866\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.30039 12.6446i −0.555038 0.961354i −0.997901 0.0647648i \(-0.979370\pi\)
0.442862 0.896590i \(-0.353963\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.7448 20.3427i −0.877851 1.52048i −0.853695 0.520774i \(-0.825644\pi\)
−0.0241559 0.999708i \(-0.507690\pi\)
\(180\) 0 0
\(181\) 1.39922 0.104003 0.0520017 0.998647i \(-0.483440\pi\)
0.0520017 + 0.998647i \(0.483440\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.38298 + 14.5197i −0.616329 + 1.06751i
\(186\) 0 0
\(187\) −0.690757 1.19643i −0.0505132 0.0874914i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.6819 + 20.2336i 0.845273 + 1.46406i 0.885384 + 0.464860i \(0.153895\pi\)
−0.0401112 + 0.999195i \(0.512771\pi\)
\(192\) 0 0
\(193\) 7.27188 12.5953i 0.523442 0.906628i −0.476186 0.879345i \(-0.657981\pi\)
0.999628 0.0272830i \(-0.00868552\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.3422 1.23558 0.617791 0.786343i \(-0.288028\pi\)
0.617791 + 0.786343i \(0.288028\pi\)
\(198\) 0 0
\(199\) −5.77188 9.99720i −0.409158 0.708682i 0.585638 0.810573i \(-0.300844\pi\)
−0.994796 + 0.101891i \(0.967511\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.19076 + 8.99066i 0.362538 + 0.627935i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.5993 + 23.5547i −0.940684 + 1.62931i
\(210\) 0 0
\(211\) 12.2630 + 21.2402i 0.844222 + 1.46223i 0.886295 + 0.463120i \(0.153270\pi\)
−0.0420736 + 0.999115i \(0.513396\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.72519 + 8.18427i −0.322255 + 0.558163i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.136673 + 0.236725i −0.00919363 + 0.0159238i
\(222\) 0 0
\(223\) 4.28074 7.41446i 0.286659 0.496509i −0.686351 0.727271i \(-0.740789\pi\)
0.973010 + 0.230762i \(0.0741219\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.1986 −1.40700 −0.703501 0.710694i \(-0.748381\pi\)
−0.703501 + 0.710694i \(0.748381\pi\)
\(228\) 0 0
\(229\) 4.56148 0.301431 0.150715 0.988577i \(-0.451842\pi\)
0.150715 + 0.988577i \(0.451842\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.75370 11.6977i 0.442449 0.766345i −0.555421 0.831569i \(-0.687443\pi\)
0.997871 + 0.0652244i \(0.0207763\pi\)
\(234\) 0 0
\(235\) −1.41887 2.45756i −0.0925571 0.160314i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.82743 11.8255i −0.441630 0.764925i 0.556181 0.831061i \(-0.312266\pi\)
−0.997811 + 0.0661361i \(0.978933\pi\)
\(240\) 0 0
\(241\) −3.21926 −0.207371 −0.103685 0.994610i \(-0.533064\pi\)
−0.103685 + 0.994610i \(0.533064\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.38151 0.342418
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.38151 0.276559 0.138279 0.990393i \(-0.455843\pi\)
0.138279 + 0.990393i \(0.455843\pi\)
\(252\) 0 0
\(253\) 26.9253 1.69278
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4533 0.714438 0.357219 0.934021i \(-0.383725\pi\)
0.357219 + 0.934021i \(0.383725\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.83482 0.421453 0.210727 0.977545i \(-0.432417\pi\)
0.210727 + 0.977545i \(0.432417\pi\)
\(264\) 0 0
\(265\) 3.52850 + 6.11155i 0.216754 + 0.375429i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.83628 8.37669i −0.294873 0.510736i 0.680082 0.733136i \(-0.261944\pi\)
−0.974955 + 0.222400i \(0.928611\pi\)
\(270\) 0 0
\(271\) −6.41887 + 11.1178i −0.389919 + 0.675359i −0.992438 0.122745i \(-0.960830\pi\)
0.602519 + 0.798104i \(0.294164\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.94592 −0.237948
\(276\) 0 0
\(277\) 11.5831 0.695959 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.46410 + 4.26795i −0.146996 + 0.254605i −0.930116 0.367266i \(-0.880294\pi\)
0.783120 + 0.621871i \(0.213627\pi\)
\(282\) 0 0
\(283\) −9.30039 + 16.1087i −0.552851 + 0.957565i 0.445217 + 0.895423i \(0.353127\pi\)
−0.998067 + 0.0621426i \(0.980207\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.46264 14.6577i 0.497802 0.862219i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.3801 + 21.4429i 0.723250 + 1.25271i 0.959690 + 0.281060i \(0.0906861\pi\)
−0.236440 + 0.971646i \(0.575981\pi\)
\(294\) 0 0
\(295\) −1.82889 + 3.16774i −0.106482 + 0.184433i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.66372 4.61369i −0.154047 0.266817i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.801851 + 1.38885i 0.0459138 + 0.0795251i
\(306\) 0 0
\(307\) −21.9430 −1.25235 −0.626176 0.779681i \(-0.715381\pi\)
−0.626176 + 0.779681i \(0.715381\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.5811 + 23.5232i −0.770115 + 1.33388i 0.167384 + 0.985892i \(0.446468\pi\)
−0.937499 + 0.347987i \(0.886865\pi\)
\(312\) 0 0
\(313\) −4.27188 7.39912i −0.241461 0.418223i 0.719670 0.694317i \(-0.244293\pi\)
−0.961131 + 0.276094i \(0.910960\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.199612 + 0.345738i 0.0112113 + 0.0194186i 0.871577 0.490259i \(-0.163098\pi\)
−0.860365 + 0.509678i \(0.829765\pi\)
\(318\) 0 0
\(319\) −21.0438 + 36.4489i −1.17822 + 2.04075i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.47102 0.0818495
\(324\) 0 0
\(325\) 0.390369 + 0.676139i 0.0216538 + 0.0375054i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.80924 + 4.86575i 0.154410 + 0.267446i 0.932844 0.360281i \(-0.117319\pi\)
−0.778434 + 0.627726i \(0.783986\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.60817 14.9098i 0.470314 0.814609i
\(336\) 0 0
\(337\) 14.4911 + 25.0994i 0.789383 + 1.36725i 0.926345 + 0.376675i \(0.122933\pi\)
−0.136962 + 0.990576i \(0.543734\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −25.6804 + 44.4798i −1.39067 + 2.40872i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.2345 29.8511i 0.925198 1.60249i 0.133955 0.990987i \(-0.457232\pi\)
0.791243 0.611502i \(-0.209434\pi\)
\(348\) 0 0
\(349\) 8.78074 15.2087i 0.470022 0.814102i −0.529390 0.848378i \(-0.677579\pi\)
0.999412 + 0.0342762i \(0.0109126\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.8889 1.75050 0.875250 0.483671i \(-0.160697\pi\)
0.875250 + 0.483671i \(0.160697\pi\)
\(354\) 0 0
\(355\) 15.9823 0.848252
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.48181 2.56657i 0.0782071 0.135459i −0.824269 0.566198i \(-0.808414\pi\)
0.902476 + 0.430739i \(0.141747\pi\)
\(360\) 0 0
\(361\) −4.98035 8.62622i −0.262124 0.454012i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.63521 + 16.6887i 0.504330 + 0.873525i
\(366\) 0 0
\(367\) −13.3638 −0.697585 −0.348792 0.937200i \(-0.613408\pi\)
−0.348792 + 0.937200i \(0.613408\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.60078 0.238219 0.119110 0.992881i \(-0.461996\pi\)
0.119110 + 0.992881i \(0.461996\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.32743 0.428884
\(378\) 0 0
\(379\) −2.21926 −0.113996 −0.0569979 0.998374i \(-0.518153\pi\)
−0.0569979 + 0.998374i \(0.518153\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −31.0335 −1.58574 −0.792868 0.609394i \(-0.791413\pi\)
−0.792868 + 0.609394i \(0.791413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.8348 1.25918 0.629588 0.776929i \(-0.283224\pi\)
0.629588 + 0.776929i \(0.283224\pi\)
\(390\) 0 0
\(391\) −0.728116 1.26113i −0.0368224 0.0637783i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13.2930 23.0241i −0.668843 1.15847i
\(396\) 0 0
\(397\) 8.86186 15.3492i 0.444764 0.770354i −0.553272 0.833001i \(-0.686621\pi\)
0.998036 + 0.0626467i \(0.0199541\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.1770 −1.50697 −0.753485 0.657466i \(-0.771629\pi\)
−0.753485 + 0.657466i \(0.771629\pi\)
\(402\) 0 0
\(403\) 10.1623 0.506218
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.6264 + 35.7259i −1.02241 + 1.77087i
\(408\) 0 0
\(409\) 8.38151 14.5172i 0.414439 0.717830i −0.580930 0.813953i \(-0.697311\pi\)
0.995369 + 0.0961236i \(0.0306444\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.88151 10.1871i 0.288712 0.500064i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.44445 2.50187i −0.0705662 0.122224i 0.828583 0.559866i \(-0.189147\pi\)
−0.899150 + 0.437641i \(0.855814\pi\)
\(420\) 0 0
\(421\) 0.0899807 0.155851i 0.00438539 0.00759572i −0.863824 0.503793i \(-0.831937\pi\)
0.868210 + 0.496197i \(0.165271\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.106706 + 0.184820i 0.00517600 + 0.00896509i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.38298 4.12744i −0.114784 0.198812i 0.802909 0.596101i \(-0.203284\pi\)
−0.917693 + 0.397289i \(0.869951\pi\)
\(432\) 0 0
\(433\) 27.7630 1.33421 0.667103 0.744965i \(-0.267534\pi\)
0.667103 + 0.744965i \(0.267534\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −14.3348 + 24.8286i −0.685728 + 1.18771i
\(438\) 0 0
\(439\) −2.32889 4.03376i −0.111152 0.192521i 0.805083 0.593162i \(-0.202121\pi\)
−0.916235 + 0.400641i \(0.868787\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.38151 2.39285i −0.0656377 0.113688i 0.831339 0.555766i \(-0.187575\pi\)
−0.896977 + 0.442078i \(0.854242\pi\)
\(444\) 0 0
\(445\) 14.1908 24.5791i 0.672706 1.16516i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −19.9430 −0.941168 −0.470584 0.882355i \(-0.655957\pi\)
−0.470584 + 0.882355i \(0.655957\pi\)
\(450\) 0 0
\(451\) 12.7719 + 22.1216i 0.601405 + 1.04166i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.6908 23.7131i −0.640427 1.10925i −0.985338 0.170616i \(-0.945424\pi\)
0.344911 0.938635i \(-0.387909\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.02558 5.24046i 0.140915 0.244072i −0.786926 0.617047i \(-0.788329\pi\)
0.927842 + 0.372975i \(0.121662\pi\)
\(462\) 0 0
\(463\) 8.77188 + 15.1933i 0.407664 + 0.706095i 0.994628 0.103519i \(-0.0330101\pi\)
−0.586964 + 0.809613i \(0.699677\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.8078 20.4517i 0.546399 0.946391i −0.452119 0.891958i \(-0.649332\pi\)
0.998517 0.0544328i \(-0.0173351\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.6264 + 20.1374i −0.534580 + 0.925920i
\(474\) 0 0
\(475\) 2.10078 3.63865i 0.0963902 0.166953i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 38.2527 1.74781 0.873906 0.486096i \(-0.161579\pi\)
0.873906 + 0.486096i \(0.161579\pi\)
\(480\) 0 0
\(481\) 8.16225 0.372167
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.27928 + 3.94782i −0.103497 + 0.179261i
\(486\) 0 0
\(487\) 3.28959 + 5.69774i 0.149066 + 0.258189i 0.930882 0.365319i \(-0.119040\pi\)
−0.781817 + 0.623508i \(0.785707\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.02704 1.77889i −0.0463498 0.0802801i 0.841920 0.539603i \(-0.181426\pi\)
−0.888270 + 0.459323i \(0.848092\pi\)
\(492\) 0 0
\(493\) 2.27627 0.102518
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −16.3245 −0.730785 −0.365393 0.930854i \(-0.619065\pi\)
−0.365393 + 0.930854i \(0.619065\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.60078 −0.249726 −0.124863 0.992174i \(-0.539849\pi\)
−0.124863 + 0.992174i \(0.539849\pi\)
\(504\) 0 0
\(505\) 5.60078 0.249231
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.672570 0.0298111 0.0149056 0.999889i \(-0.495255\pi\)
0.0149056 + 0.999889i \(0.495255\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.9371 −1.62764
\(516\) 0 0
\(517\) −3.49115 6.04684i −0.153540 0.265940i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.2267 22.9092i −0.579470 1.00367i −0.995540 0.0943392i \(-0.969926\pi\)
0.416070 0.909333i \(-0.363407\pi\)
\(522\) 0 0
\(523\) 13.6534 23.6484i 0.597021 1.03407i −0.396237 0.918148i \(-0.629684\pi\)
0.993258 0.115923i \(-0.0369826\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.77781 0.121003
\(528\) 0 0
\(529\) 5.38151 0.233979
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.52704 4.37697i 0.109458 0.189587i
\(534\) 0 0
\(535\) 1.13814 1.97131i 0.0492059 0.0852271i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.66225 16.7355i 0.415413 0.719516i −0.580059 0.814574i \(-0.696971\pi\)
0.995472 + 0.0950586i \(0.0303038\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.47296 6.01534i −0.148765 0.257669i
\(546\) 0 0
\(547\) 9.17111 15.8848i 0.392128 0.679186i −0.600602 0.799548i \(-0.705072\pi\)
0.992730 + 0.120362i \(0.0384056\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22.4071 38.8102i −0.954574 1.65337i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.59931 + 7.96625i 0.194879 + 0.337541i 0.946861 0.321643i \(-0.104235\pi\)
−0.751982 + 0.659184i \(0.770902\pi\)
\(558\) 0 0
\(559\) 4.60078 0.194592
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.5811 + 28.7194i −0.698811 + 1.21038i 0.270068 + 0.962841i \(0.412954\pi\)
−0.968879 + 0.247535i \(0.920379\pi\)
\(564\) 0 0
\(565\) 19.3815 + 33.5698i 0.815386 + 1.41229i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.1008 + 22.6912i 0.549213 + 0.951265i 0.998329 + 0.0577914i \(0.0184058\pi\)
−0.449116 + 0.893474i \(0.648261\pi\)
\(570\) 0 0
\(571\) −4.89037 + 8.47037i −0.204656 + 0.354474i −0.950023 0.312180i \(-0.898941\pi\)
0.745367 + 0.666654i \(0.232274\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.15933 −0.173456
\(576\) 0 0
\(577\) 18.1534 + 31.4426i 0.755736 + 1.30897i 0.945008 + 0.327048i \(0.106054\pi\)
−0.189272 + 0.981925i \(0.560613\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.68190 + 15.0375i 0.359568 + 0.622789i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0737 20.9123i 0.498336 0.863144i −0.501662 0.865064i \(-0.667278\pi\)
0.999998 + 0.00191995i \(0.000611139\pi\)
\(588\) 0 0
\(589\) −27.3442 47.3615i −1.12670 1.95150i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20.7448 + 35.9311i −0.851889 + 1.47551i 0.0276133 + 0.999619i \(0.491209\pi\)
−0.879502 + 0.475896i \(0.842124\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.3422 + 19.6453i −0.463430 + 0.802685i −0.999129 0.0417243i \(-0.986715\pi\)
0.535699 + 0.844409i \(0.320048\pi\)
\(600\) 0 0
\(601\) −20.1249 + 34.8573i −0.820912 + 1.42186i 0.0840927 + 0.996458i \(0.473201\pi\)
−0.905004 + 0.425403i \(0.860133\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.8741 1.21456
\(606\) 0 0
\(607\) −17.3245 −0.703180 −0.351590 0.936154i \(-0.614359\pi\)
−0.351590 + 0.936154i \(0.614359\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.690757 + 1.19643i −0.0279450 + 0.0484022i
\(612\) 0 0
\(613\) 16.4823 + 28.5482i 0.665713 + 1.15305i 0.979091 + 0.203421i \(0.0652060\pi\)
−0.313378 + 0.949629i \(0.601461\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.4700 23.3308i −0.542283 0.939262i −0.998772 0.0495330i \(-0.984227\pi\)
0.456489 0.889729i \(-0.349107\pi\)
\(618\) 0 0
\(619\) 1.98229 0.0796750 0.0398375 0.999206i \(-0.487316\pi\)
0.0398375 + 0.999206i \(0.487316\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.4868 −0.819470
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.23112 0.0889606
\(630\) 0 0
\(631\) −25.4868 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 35.2527 1.39896
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.0846 1.58325 0.791623 0.611009i \(-0.209236\pi\)
0.791623 + 0.611009i \(0.209236\pi\)
\(642\) 0 0
\(643\) 3.50885 + 6.07751i 0.138376 + 0.239674i 0.926882 0.375353i \(-0.122479\pi\)
−0.788506 + 0.615027i \(0.789145\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.90709 + 10.2314i 0.232232 + 0.402237i 0.958465 0.285212i \(-0.0920639\pi\)
−0.726233 + 0.687449i \(0.758731\pi\)
\(648\) 0 0
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.273346 −0.0106969 −0.00534843 0.999986i \(-0.501702\pi\)
−0.00534843 + 0.999986i \(0.501702\pi\)
\(654\) 0 0
\(655\) −36.7453 −1.43576
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.39970 12.8167i 0.288251 0.499266i −0.685141 0.728410i \(-0.740259\pi\)
0.973392 + 0.229144i \(0.0735928\pi\)
\(660\) 0 0
\(661\) −4.50885 + 7.80956i −0.175374 + 0.303757i −0.940291 0.340372i \(-0.889447\pi\)
0.764917 + 0.644129i \(0.222780\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −22.1819 + 38.4202i −0.858887 + 1.48764i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.97296 + 3.41726i 0.0761652 + 0.131922i
\(672\) 0 0
\(673\) −11.9803 + 20.7506i −0.461809 + 0.799876i −0.999051 0.0435519i \(-0.986133\pi\)
0.537243 + 0.843428i \(0.319466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.32889 + 5.76581i 0.127940 + 0.221598i 0.922878 0.385092i \(-0.125830\pi\)
−0.794938 + 0.606690i \(0.792497\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.0364 26.0438i −0.575351 0.996537i −0.996003 0.0893152i \(-0.971532\pi\)
0.420652 0.907222i \(-0.361801\pi\)
\(684\) 0 0
\(685\) 9.22820 0.352591
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.71780 2.97532i 0.0654429 0.113351i
\(690\) 0 0
\(691\) −1.63814 2.83733i −0.0623176 0.107937i 0.833183 0.552997i \(-0.186516\pi\)
−0.895501 + 0.445060i \(0.853183\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.6352 + 32.2771i 0.706874 + 1.22434i
\(696\) 0 0
\(697\) 0.690757 1.19643i 0.0261643 0.0453179i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.2891 1.21954 0.609771 0.792578i \(-0.291261\pi\)
0.609771 + 0.792578i \(0.291261\pi\)
\(702\) 0 0
\(703\) −21.9626 38.0404i −0.828337 1.43472i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.5438 + 42.5111i 0.921761 + 1.59654i 0.796690 + 0.604388i \(0.206582\pi\)
0.125071 + 0.992148i \(0.460084\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −27.0693 + 46.8855i −1.01376 + 1.75588i
\(714\) 0 0
\(715\) −5.19076 8.99066i −0.194123 0.336231i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.9808 36.3399i 0.782453 1.35525i −0.148056 0.988979i \(-0.547302\pi\)
0.930509 0.366269i \(-0.119365\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.25077 5.63050i 0.120731 0.209112i
\(726\) 0 0
\(727\) −14.2434 + 24.6703i −0.528258 + 0.914969i 0.471200 + 0.882027i \(0.343821\pi\)
−0.999457 + 0.0329425i \(0.989512\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.25760 0.0465142
\(732\) 0 0
\(733\) −28.5261 −1.05363 −0.526817 0.849979i \(-0.676615\pi\)
−0.526817 + 0.849979i \(0.676615\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.1804 36.6856i 0.780192 1.35133i
\(738\) 0 0
\(739\) −3.92967 6.80639i −0.144555 0.250377i 0.784652 0.619937i \(-0.212842\pi\)
−0.929207 + 0.369560i \(0.879508\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.37364 5.84332i −0.123767 0.214371i 0.797483 0.603341i \(-0.206164\pi\)
−0.921250 + 0.388970i \(0.872831\pi\)
\(744\) 0 0
\(745\) 9.25856 0.339207
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.1800 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.5586 −0.820990
\(756\) 0 0
\(757\) −20.3815 −0.740779 −0.370389 0.928877i \(-0.620776\pi\)
−0.370389 + 0.928877i \(0.620776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.6549 1.47374 0.736869 0.676036i \(-0.236304\pi\)
0.736869 + 0.676036i \(0.236304\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.78074 0.0642987
\(768\) 0 0
\(769\) −16.9518 29.3615i −0.611299 1.05880i −0.991022 0.133701i \(-0.957314\pi\)
0.379723 0.925100i \(-0.376019\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.37412 + 7.57620i 0.157326 + 0.272497i 0.933904 0.357525i \(-0.116379\pi\)
−0.776577 + 0.630022i \(0.783046\pi\)
\(774\) 0 0
\(775\) 3.96703 6.87110i 0.142500 0.246817i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.1986 −0.974492
\(780\) 0 0
\(781\) 39.3245 1.40714
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.29300 7.43569i 0.153224 0.265391i
\(786\) 0 0
\(787\) 4.64260 8.04122i 0.165491 0.286639i −0.771339 0.636425i \(-0.780412\pi\)
0.936830 + 0.349786i \(0.113746\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.390369 0.676139i 0.0138624 0.0240104i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.2271 19.4460i −0.397685 0.688811i 0.595754 0.803167i \(-0.296853\pi\)
−0.993440 + 0.114355i \(0.963520\pi\)
\(798\) 0 0
\(799\) −0.188816 + 0.327039i −0.00667983 + 0.0115698i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.7075 + 41.0626i 0.836619 + 1.44907i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.70107 4.67840i −0.0949647 0.164484i 0.814629 0.579982i \(-0.196940\pi\)
−0.909594 + 0.415498i \(0.863607\pi\)
\(810\) 0 0
\(811\) 0.0177088 0.000621841 0.000310920 1.00000i \(-0.499901\pi\)
0.000310920 1.00000i \(0.499901\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.77042 9.99466i 0.202129 0.350098i
\(816\) 0 0
\(817\) −12.3796 21.4420i −0.433106 0.750162i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.528505 0.915397i −0.0184449 0.0319476i 0.856656 0.515889i \(-0.172538\pi\)
−0.875101 + 0.483941i \(0.839205\pi\)
\(822\) 0 0
\(823\) −6.76303 + 11.7139i −0.235744 + 0.408321i −0.959489 0.281747i \(-0.909086\pi\)
0.723744 + 0.690068i \(0.242419\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 49.3068 1.71457 0.857283 0.514846i \(-0.172151\pi\)
0.857283 + 0.514846i \(0.172151\pi\)
\(828\) 0 0
\(829\) −26.8530 46.5108i −0.932644 1.61539i −0.778783 0.627294i \(-0.784163\pi\)
−0.153861 0.988093i \(-0.549171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 11.1864 + 19.3754i 0.387120 + 0.670512i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.7163 32.4176i 0.646160 1.11918i −0.337873 0.941192i \(-0.609707\pi\)
0.984032 0.177990i \(-0.0569593\pi\)
\(840\) 0 0
\(841\) −20.1730 34.9407i −0.695622 1.20485i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.3245 21.3467i 0.423976 0.734348i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.7419 + 37.6581i −0.745303 + 1.29090i
\(852\) 0 0
\(853\) −10.3092 + 17.8561i −0.352982 + 0.611382i −0.986770 0.162124i \(-0.948166\pi\)
0.633789 + 0.773506i \(0.281499\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8889 0.713551 0.356776 0.934190i \(-0.383876\pi\)
0.356776 + 0.934190i \(0.383876\pi\)
\(858\) 0 0
\(859\) −26.8860 −0.917338 −0.458669 0.888607i \(-0.651674\pi\)
−0.458669 + 0.888607i \(0.651674\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13.4071 23.2218i 0.456383 0.790478i −0.542384 0.840131i \(-0.682478\pi\)
0.998767 + 0.0496527i \(0.0158114\pi\)
\(864\) 0 0
\(865\) −14.9956 25.9732i −0.509866 0.883114i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −32.7075 56.6510i −1.10953 1.92175i
\(870\) 0 0
\(871\) −8.38151 −0.283997
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.9076 −1.28005 −0.640024 0.768355i \(-0.721076\pi\)
−0.640024 + 0.768355i \(0.721076\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.47782 0.251934 0.125967 0.992034i \(-0.459797\pi\)
0.125967 + 0.992034i \(0.459797\pi\)
\(882\) 0 0
\(883\) 5.07472 0.170778 0.0853889 0.996348i \(-0.472787\pi\)
0.0853889 + 0.996348i \(0.472787\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.5231 0.621946 0.310973 0.950419i \(-0.399345\pi\)
0.310973 + 0.950419i \(0.399345\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.43464 0.248791
\(894\) 0 0
\(895\) −24.1249 41.7855i −0.806406 1.39674i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −42.3127 73.2878i −1.41121 2.44428i
\(900\) 0 0
\(901\) 0.469554 0.813291i 0.0156431 0.0270947i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.87412 0.0955391
\(906\) 0 0
\(907\) −49.6490 −1.64857 −0.824284 0.566176i \(-0.808422\pi\)
−0.824284 + 0.566176i \(0.808422\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.9808 20.7514i 0.396943 0.687525i −0.596404 0.802684i \(-0.703405\pi\)
0.993347 + 0.115159i \(0.0367379\pi\)
\(912\) 0 0
\(913\) 14.4715 25.0654i 0.478937 0.829543i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 9.41887 16.3140i 0.310700 0.538148i −0.667814 0.744328i \(-0.732770\pi\)
0.978514 + 0.206180i \(0.0661032\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.89037 6.73832i −0.128053 0.221794i
\(924\) 0 0
\(925\) 3.18629 5.51882i 0.104765 0.181458i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.45185 12.9070i −0.244487 0.423464i 0.717500 0.696558i \(-0.245286\pi\)
−0.961987 + 0.273094i \(0.911953\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.41887 2.45756i −0.0464021 0.0803708i
\(936\) 0 0
\(937\) −3.94299 −0.128812 −0.0644059 0.997924i \(-0.520515\pi\)
−0.0644059 + 0.997924i \(0.520515\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21.4056 37.0756i 0.697804 1.20863i −0.271423 0.962460i \(-0.587494\pi\)
0.969226 0.246171i \(-0.0791725\pi\)
\(942\) 0 0
\(943\) 13.4626 + 23.3180i 0.438404 + 0.759338i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.5919 23.5419i −0.441678 0.765009i 0.556136 0.831091i \(-0.312283\pi\)
−0.997814 + 0.0660823i \(0.978950\pi\)
\(948\) 0 0
\(949\) 4.69076 8.12463i 0.152268 0.263737i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.12295 −0.0363760 −0.0181880 0.999835i \(-0.505790\pi\)
−0.0181880 + 0.999835i \(0.505790\pi\)
\(954\) 0 0
\(955\) 23.9956 + 41.5616i 0.776480 + 1.34490i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −36.1357 62.5889i −1.16567 2.01900i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.9371 25.8717i 0.480841 0.832841i
\(966\) 0 0
\(967\) 4.75223 + 8.23111i 0.152822 + 0.264695i 0.932264 0.361780i \(-0.117831\pi\)
−0.779442 + 0.626474i \(0.784497\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.2989 21.3024i 0.394691 0.683625i −0.598370 0.801220i \(-0.704185\pi\)
0.993062 + 0.117594i \(0.0375182\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.7016 + 21.9997i −0.406359 + 0.703834i −0.994479 0.104940i \(-0.966535\pi\)
0.588120 + 0.808774i \(0.299868\pi\)
\(978\) 0 0
\(979\) 34.9164 60.4770i 1.11593 1.93285i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.8535 0.728913 0.364457 0.931220i \(-0.381255\pi\)
0.364457 + 0.931220i \(0.381255\pi\)
\(984\) 0 0
\(985\) 35.6224 1.13502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2552 + 21.2266i −0.389691 + 0.674965i
\(990\) 0 0
\(991\) −12.2345 21.1908i −0.388642 0.673149i 0.603625 0.797269i \(-0.293723\pi\)
−0.992267 + 0.124120i \(0.960389\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.8559 20.5351i −0.375858 0.651006i
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.d.3313.3 6
3.2 odd 2 1764.2.l.g.961.3 6
7.2 even 3 5292.2.j.e.3529.1 6
7.3 odd 6 5292.2.i.d.2125.3 6
7.4 even 3 5292.2.i.g.2125.1 6
7.5 odd 6 756.2.j.a.505.3 6
7.6 odd 2 5292.2.l.g.3313.1 6
9.4 even 3 5292.2.i.g.1549.1 6
9.5 odd 6 1764.2.i.e.373.2 6
21.2 odd 6 1764.2.j.d.1177.2 6
21.5 even 6 252.2.j.b.169.2 yes 6
21.11 odd 6 1764.2.i.e.1537.2 6
21.17 even 6 1764.2.i.f.1537.2 6
21.20 even 2 1764.2.l.d.961.1 6
28.19 even 6 3024.2.r.i.2017.3 6
63.4 even 3 inner 5292.2.l.d.361.3 6
63.5 even 6 252.2.j.b.85.2 6
63.13 odd 6 5292.2.i.d.1549.3 6
63.23 odd 6 1764.2.j.d.589.2 6
63.31 odd 6 5292.2.l.g.361.1 6
63.32 odd 6 1764.2.l.g.949.3 6
63.40 odd 6 756.2.j.a.253.3 6
63.41 even 6 1764.2.i.f.373.2 6
63.47 even 6 2268.2.a.g.1.3 3
63.58 even 3 5292.2.j.e.1765.1 6
63.59 even 6 1764.2.l.d.949.1 6
63.61 odd 6 2268.2.a.j.1.1 3
84.47 odd 6 1008.2.r.g.673.2 6
252.47 odd 6 9072.2.a.bt.1.3 3
252.103 even 6 3024.2.r.i.1009.3 6
252.131 odd 6 1008.2.r.g.337.2 6
252.187 even 6 9072.2.a.bz.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.2 6 63.5 even 6
252.2.j.b.169.2 yes 6 21.5 even 6
756.2.j.a.253.3 6 63.40 odd 6
756.2.j.a.505.3 6 7.5 odd 6
1008.2.r.g.337.2 6 252.131 odd 6
1008.2.r.g.673.2 6 84.47 odd 6
1764.2.i.e.373.2 6 9.5 odd 6
1764.2.i.e.1537.2 6 21.11 odd 6
1764.2.i.f.373.2 6 63.41 even 6
1764.2.i.f.1537.2 6 21.17 even 6
1764.2.j.d.589.2 6 63.23 odd 6
1764.2.j.d.1177.2 6 21.2 odd 6
1764.2.l.d.949.1 6 63.59 even 6
1764.2.l.d.961.1 6 21.20 even 2
1764.2.l.g.949.3 6 63.32 odd 6
1764.2.l.g.961.3 6 3.2 odd 2
2268.2.a.g.1.3 3 63.47 even 6
2268.2.a.j.1.1 3 63.61 odd 6
3024.2.r.i.1009.3 6 252.103 even 6
3024.2.r.i.2017.3 6 28.19 even 6
5292.2.i.d.1549.3 6 63.13 odd 6
5292.2.i.d.2125.3 6 7.3 odd 6
5292.2.i.g.1549.1 6 9.4 even 3
5292.2.i.g.2125.1 6 7.4 even 3
5292.2.j.e.1765.1 6 63.58 even 3
5292.2.j.e.3529.1 6 7.2 even 3
5292.2.l.d.361.3 6 63.4 even 3 inner
5292.2.l.d.3313.3 6 1.1 even 1 trivial
5292.2.l.g.361.1 6 63.31 odd 6
5292.2.l.g.3313.1 6 7.6 odd 2
9072.2.a.bt.1.3 3 252.47 odd 6
9072.2.a.bz.1.1 3 252.187 even 6