# Properties

 Label 5292.2.i.e Level $5292$ Weight $2$ Character orbit 5292.i Analytic conductor $42.257$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5292 = 2^{2} \cdot 3^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5292.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$42.2568327497$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.309123.1 Defining polynomial: $$x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$3$$ Twist minimal: no (minimal twist has level 252) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( \beta_{1} - \beta_{5} ) q^{5} +O(q^{10})$$ $$q + ( \beta_{1} - \beta_{5} ) q^{5} + ( 1 - 2 \beta_{2} - \beta_{4} - \beta_{5} ) q^{11} + ( 1 - 2 \beta_{2} - \beta_{4} - 2 \beta_{5} ) q^{13} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} ) q^{17} + ( \beta_{2} - 2 \beta_{5} ) q^{19} + ( -\beta_{1} - \beta_{2} - \beta_{3} + 4 \beta_{4} + \beta_{5} ) q^{23} + ( 2 + \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{25} + ( 3 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} - 3 \beta_{5} ) q^{29} -3 \beta_{1} q^{31} + ( 2 - 2 \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{37} + ( 1 - 2 \beta_{2} - \beta_{4} + \beta_{5} ) q^{41} + ( -\beta_{1} + 4 \beta_{2} + 4 \beta_{3} + \beta_{5} ) q^{43} + ( 8 + 2 \beta_{1} + \beta_{3} ) q^{47} + ( -\beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{53} + ( -1 + 4 \beta_{1} - \beta_{3} ) q^{55} + ( 11 + \beta_{1} + \beta_{3} ) q^{59} + ( -4 - 7 \beta_{1} + \beta_{3} ) q^{61} + ( -4 + 5 \beta_{1} - 2 \beta_{3} ) q^{65} + ( 3 + 2 \beta_{1} + \beta_{3} ) q^{67} + ( -3 + 5 \beta_{1} + 3 \beta_{3} ) q^{71} + ( 2 \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{5} ) q^{73} + ( -4 - 4 \beta_{1} + \beta_{3} ) q^{79} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} - 7 \beta_{4} + 2 \beta_{5} ) q^{83} + ( 5 - 2 \beta_{2} - 5 \beta_{4} - 2 \beta_{5} ) q^{85} + ( -5 + 4 \beta_{2} + 5 \beta_{4} + \beta_{5} ) q^{89} + ( -7 + \beta_{1} - 2 \beta_{3} ) q^{95} + ( \beta_{1} + 5 \beta_{2} + 5 \beta_{3} - \beta_{4} - \beta_{5} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q - q^{5} + O(q^{10})$$ $$6q - q^{5} + 2q^{11} + 3q^{13} - 2q^{17} + 3q^{19} + 14q^{23} + 6q^{25} + q^{29} + 6q^{31} + 3q^{37} - 3q^{43} + 42q^{47} + 6q^{53} - 12q^{55} + 62q^{59} - 12q^{61} - 30q^{65} + 12q^{67} - 34q^{71} - 3q^{73} - 18q^{79} - 20q^{83} + 15q^{85} - 12q^{89} - 40q^{95} - 9q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{2} - \nu + 2$$ $$\beta_{2}$$ $$=$$ $$($$$$-\nu^{5} + \nu^{4} - 8 \nu^{3} + 5 \nu^{2} - 18 \nu + 6$$$$)/3$$ $$\beta_{3}$$ $$=$$ $$\nu^{4} - 2 \nu^{3} + 6 \nu^{2} - 5 \nu + 3$$ $$\beta_{4}$$ $$=$$ $$($$$$-2 \nu^{5} + 5 \nu^{4} - 16 \nu^{3} + 19 \nu^{2} - 21 \nu + 9$$$$)/3$$ $$\beta_{5}$$ $$=$$ $$($$$$2 \nu^{5} - 5 \nu^{4} + 19 \nu^{3} - 22 \nu^{2} + 30 \nu - 9$$$$)/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$-2 \beta_{5} - \beta_{4} - \beta_{3} - 2 \beta_{2} + \beta_{1} + 2$$$$)/3$$ $$\nu^{2}$$ $$=$$ $$($$$$-2 \beta_{5} - \beta_{4} - \beta_{3} - 2 \beta_{2} + 4 \beta_{1} - 4$$$$)/3$$ $$\nu^{3}$$ $$=$$ $$($$$$7 \beta_{5} + 5 \beta_{4} + 2 \beta_{3} + 4 \beta_{2} + \beta_{1} - 10$$$$)/3$$ $$\nu^{4}$$ $$=$$ $$($$$$16 \beta_{5} + 11 \beta_{4} + 8 \beta_{3} + 10 \beta_{2} - 17 \beta_{1} + 5$$$$)/3$$ $$\nu^{5}$$ $$=$$ $$($$$$-14 \beta_{5} - 16 \beta_{4} + 5 \beta_{3} - 5 \beta_{2} - 23 \beta_{1} + 47$$$$)/3$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$2647$$ $$\chi(n)$$ $$-1 + \beta_{4}$$ $$-1 + \beta_{4}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1549.1
 0.5 − 2.05195i 0.5 + 1.41036i 0.5 − 0.224437i 0.5 + 2.05195i 0.5 − 1.41036i 0.5 + 0.224437i
0 0 0 −1.23025 2.13086i 0 0 0 0 0
1549.2 0 0 0 −0.119562 0.207087i 0 0 0 0 0
1549.3 0 0 0 0.849814 + 1.47192i 0 0 0 0 0
2125.1 0 0 0 −1.23025 + 2.13086i 0 0 0 0 0
2125.2 0 0 0 −0.119562 + 0.207087i 0 0 0 0 0
2125.3 0 0 0 0.849814 1.47192i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2125.3 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5292.2.i.e 6
3.b odd 2 1 1764.2.i.d 6
7.b odd 2 1 5292.2.i.f 6
7.c even 3 1 5292.2.j.d 6
7.c even 3 1 5292.2.l.f 6
7.d odd 6 1 756.2.j.b 6
7.d odd 6 1 5292.2.l.e 6
9.c even 3 1 5292.2.l.f 6
9.d odd 6 1 1764.2.l.f 6
21.c even 2 1 1764.2.i.g 6
21.g even 6 1 252.2.j.a 6
21.g even 6 1 1764.2.l.e 6
21.h odd 6 1 1764.2.j.e 6
21.h odd 6 1 1764.2.l.f 6
28.f even 6 1 3024.2.r.j 6
63.g even 3 1 5292.2.j.d 6
63.h even 3 1 inner 5292.2.i.e 6
63.i even 6 1 1764.2.i.g 6
63.i even 6 1 2268.2.a.i 3
63.j odd 6 1 1764.2.i.d 6
63.k odd 6 1 756.2.j.b 6
63.l odd 6 1 5292.2.l.e 6
63.n odd 6 1 1764.2.j.e 6
63.o even 6 1 1764.2.l.e 6
63.s even 6 1 252.2.j.a 6
63.t odd 6 1 2268.2.a.h 3
63.t odd 6 1 5292.2.i.f 6
84.j odd 6 1 1008.2.r.j 6
252.n even 6 1 3024.2.r.j 6
252.r odd 6 1 9072.2.a.by 3
252.bj even 6 1 9072.2.a.bv 3
252.bn odd 6 1 1008.2.r.j 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.j.a 6 21.g even 6 1
252.2.j.a 6 63.s even 6 1
756.2.j.b 6 7.d odd 6 1
756.2.j.b 6 63.k odd 6 1
1008.2.r.j 6 84.j odd 6 1
1008.2.r.j 6 252.bn odd 6 1
1764.2.i.d 6 3.b odd 2 1
1764.2.i.d 6 63.j odd 6 1
1764.2.i.g 6 21.c even 2 1
1764.2.i.g 6 63.i even 6 1
1764.2.j.e 6 21.h odd 6 1
1764.2.j.e 6 63.n odd 6 1
1764.2.l.e 6 21.g even 6 1
1764.2.l.e 6 63.o even 6 1
1764.2.l.f 6 9.d odd 6 1
1764.2.l.f 6 21.h odd 6 1
2268.2.a.h 3 63.t odd 6 1
2268.2.a.i 3 63.i even 6 1
3024.2.r.j 6 28.f even 6 1
3024.2.r.j 6 252.n even 6 1
5292.2.i.e 6 1.a even 1 1 trivial
5292.2.i.e 6 63.h even 3 1 inner
5292.2.i.f 6 7.b odd 2 1
5292.2.i.f 6 63.t odd 6 1
5292.2.j.d 6 7.c even 3 1
5292.2.j.d 6 63.g even 3 1
5292.2.l.e 6 7.d odd 6 1
5292.2.l.e 6 63.l odd 6 1
5292.2.l.f 6 7.c even 3 1
5292.2.l.f 6 9.c even 3 1
9072.2.a.bv 3 252.bj even 6 1
9072.2.a.by 3 252.r odd 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{6} + T_{5}^{5} + 5 T_{5}^{4} - 2 T_{5}^{3} + 17 T_{5}^{2} + 4 T_{5} + 1$$ acting on $$S_{2}^{\mathrm{new}}(5292, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 + T - 10 T^{2} - 7 T^{3} + 57 T^{4} + 14 T^{5} - 299 T^{6} + 70 T^{7} + 1425 T^{8} - 875 T^{9} - 6250 T^{10} + 3125 T^{11} + 15625 T^{12}$$
$7$ 1
$11$ $$1 - 2 T - 4 T^{2} - 46 T^{3} + 6 T^{4} + 230 T^{5} + 1699 T^{6} + 2530 T^{7} + 726 T^{8} - 61226 T^{9} - 58564 T^{10} - 322102 T^{11} + 1771561 T^{12}$$
$13$ $$1 - 3 T + 3 T^{2} + 84 T^{3} - 195 T^{4} - 345 T^{5} + 5006 T^{6} - 4485 T^{7} - 32955 T^{8} + 184548 T^{9} + 85683 T^{10} - 1113879 T^{11} + 4826809 T^{12}$$
$17$ $$1 + 2 T - 28 T^{2} + 22 T^{3} + 438 T^{4} - 926 T^{5} - 8297 T^{6} - 15742 T^{7} + 126582 T^{8} + 108086 T^{9} - 2338588 T^{10} + 2839714 T^{11} + 24137569 T^{12}$$
$19$ $$1 - 3 T - 24 T^{2} - 29 T^{3} + 357 T^{4} + 1524 T^{5} - 8997 T^{6} + 28956 T^{7} + 128877 T^{8} - 198911 T^{9} - 3127704 T^{10} - 7428297 T^{11} + 47045881 T^{12}$$
$23$ $$1 - 14 T + 74 T^{2} - 358 T^{3} + 2628 T^{4} - 11188 T^{5} + 33943 T^{6} - 257324 T^{7} + 1390212 T^{8} - 4355786 T^{9} + 20708234 T^{10} - 90108802 T^{11} + 148035889 T^{12}$$
$29$ $$1 - T - 46 T^{2} - 149 T^{3} + 897 T^{4} + 4282 T^{5} - 13523 T^{6} + 124178 T^{7} + 754377 T^{8} - 3633961 T^{9} - 32534926 T^{10} - 20511149 T^{11} + 594823321 T^{12}$$
$31$ $$( 1 - 3 T + 57 T^{2} - 159 T^{3} + 1767 T^{4} - 2883 T^{5} + 29791 T^{6} )^{2}$$
$37$ $$1 - 3 T - 72 T^{2} + 155 T^{3} + 2967 T^{4} - 2244 T^{5} - 114171 T^{6} - 83028 T^{7} + 4061823 T^{8} + 7851215 T^{9} - 134939592 T^{10} - 208031871 T^{11} + 2565726409 T^{12}$$
$41$ $$1 - 90 T^{2} + 18 T^{3} + 4410 T^{4} - 810 T^{5} - 194177 T^{6} - 33210 T^{7} + 7413210 T^{8} + 1240578 T^{9} - 254318490 T^{10} + 4750104241 T^{12}$$
$43$ $$1 + 3 T - 24 T^{2} - 979 T^{3} - 1947 T^{4} + 14820 T^{5} + 386067 T^{6} + 637260 T^{7} - 3600003 T^{8} - 77837353 T^{9} - 82051224 T^{10} + 441025329 T^{11} + 6321363049 T^{12}$$
$47$ $$( 1 - 21 T + 261 T^{2} - 2181 T^{3} + 12267 T^{4} - 46389 T^{5} + 103823 T^{6} )^{2}$$
$53$ $$1 - 6 T - 126 T^{2} + 282 T^{3} + 13896 T^{4} - 15396 T^{5} - 801173 T^{6} - 815988 T^{7} + 39033864 T^{8} + 41983314 T^{9} - 994200606 T^{10} - 2509172958 T^{11} + 22164361129 T^{12}$$
$59$ $$( 1 - 31 T + 485 T^{2} - 4647 T^{3} + 28615 T^{4} - 107911 T^{5} + 205379 T^{6} )^{2}$$
$61$ $$( 1 + 6 T - 12 T^{2} - 357 T^{3} - 732 T^{4} + 22326 T^{5} + 226981 T^{6} )^{2}$$
$67$ $$( 1 - 6 T + 186 T^{2} - 811 T^{3} + 12462 T^{4} - 26934 T^{5} + 300763 T^{6} )^{2}$$
$71$ $$( 1 + 17 T + 119 T^{2} + 507 T^{3} + 8449 T^{4} + 85697 T^{5} + 357911 T^{6} )^{2}$$
$73$ $$1 + 3 T - 186 T^{2} - 133 T^{3} + 22713 T^{4} + 582 T^{5} - 1916871 T^{6} + 42486 T^{7} + 121037577 T^{8} - 51739261 T^{9} - 5282072826 T^{10} + 6219214779 T^{11} + 151334226289 T^{12}$$
$79$ $$( 1 + 9 T + 195 T^{2} + 1053 T^{3} + 15405 T^{4} + 56169 T^{5} + 493039 T^{6} )^{2}$$
$83$ $$1 + 20 T + 38 T^{2} + 346 T^{3} + 32058 T^{4} + 183754 T^{5} - 606869 T^{6} + 15251582 T^{7} + 220847562 T^{8} + 197838302 T^{9} + 1803416198 T^{10} + 78780812860 T^{11} + 326940373369 T^{12}$$
$89$ $$1 + 12 T - 72 T^{2} - 258 T^{3} + 10332 T^{4} - 58524 T^{5} - 1852445 T^{6} - 5208636 T^{7} + 81839772 T^{8} - 181882002 T^{9} - 4517441352 T^{10} + 67008713388 T^{11} + 496981290961 T^{12}$$
$97$ $$1 + 9 T - 66 T^{2} - 2023 T^{3} - 7707 T^{4} + 73950 T^{5} + 1766073 T^{6} + 7173150 T^{7} - 72515163 T^{8} - 1846337479 T^{9} - 5842932546 T^{10} + 77286062313 T^{11} + 832972004929 T^{12}$$