Properties

Label 529.4.a.m.1.9
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.15026 q^{2} +9.55258 q^{3} -3.37638 q^{4} -17.5072 q^{5} -20.5405 q^{6} +3.15231 q^{7} +24.4622 q^{8} +64.2518 q^{9} +37.6451 q^{10} -12.8819 q^{11} -32.2531 q^{12} +2.45445 q^{13} -6.77829 q^{14} -167.239 q^{15} -25.5890 q^{16} -62.6503 q^{17} -138.158 q^{18} +39.6603 q^{19} +59.1111 q^{20} +30.1127 q^{21} +27.6994 q^{22} +233.677 q^{24} +181.504 q^{25} -5.27771 q^{26} +355.851 q^{27} -10.6434 q^{28} -187.506 q^{29} +359.608 q^{30} +3.14887 q^{31} -140.674 q^{32} -123.055 q^{33} +134.714 q^{34} -55.1883 q^{35} -216.938 q^{36} -132.244 q^{37} -85.2801 q^{38} +23.4463 q^{39} -428.265 q^{40} +54.1707 q^{41} -64.7502 q^{42} -235.739 q^{43} +43.4942 q^{44} -1124.87 q^{45} -128.295 q^{47} -244.441 q^{48} -333.063 q^{49} -390.280 q^{50} -598.472 q^{51} -8.28715 q^{52} -189.516 q^{53} -765.172 q^{54} +225.527 q^{55} +77.1124 q^{56} +378.859 q^{57} +403.186 q^{58} -503.522 q^{59} +564.664 q^{60} +48.0229 q^{61} -6.77088 q^{62} +202.542 q^{63} +507.199 q^{64} -42.9707 q^{65} +264.601 q^{66} +490.926 q^{67} +211.531 q^{68} +118.669 q^{70} -994.675 q^{71} +1571.74 q^{72} -235.311 q^{73} +284.358 q^{74} +1733.83 q^{75} -133.908 q^{76} -40.6077 q^{77} -50.4157 q^{78} -1338.36 q^{79} +447.993 q^{80} +1664.49 q^{81} -116.481 q^{82} -1067.95 q^{83} -101.672 q^{84} +1096.83 q^{85} +506.901 q^{86} -1791.16 q^{87} -315.119 q^{88} +1326.88 q^{89} +2418.77 q^{90} +7.73719 q^{91} +30.0798 q^{93} +275.867 q^{94} -694.344 q^{95} -1343.80 q^{96} +1126.82 q^{97} +716.172 q^{98} -827.685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.15026 −0.760232 −0.380116 0.924939i \(-0.624116\pi\)
−0.380116 + 0.924939i \(0.624116\pi\)
\(3\) 9.55258 1.83839 0.919197 0.393797i \(-0.128839\pi\)
0.919197 + 0.393797i \(0.128839\pi\)
\(4\) −3.37638 −0.422047
\(5\) −17.5072 −1.56590 −0.782948 0.622087i \(-0.786285\pi\)
−0.782948 + 0.622087i \(0.786285\pi\)
\(6\) −20.5405 −1.39761
\(7\) 3.15231 0.170209 0.0851044 0.996372i \(-0.472878\pi\)
0.0851044 + 0.996372i \(0.472878\pi\)
\(8\) 24.4622 1.08109
\(9\) 64.2518 2.37970
\(10\) 37.6451 1.19044
\(11\) −12.8819 −0.353094 −0.176547 0.984292i \(-0.556493\pi\)
−0.176547 + 0.984292i \(0.556493\pi\)
\(12\) −32.2531 −0.775890
\(13\) 2.45445 0.0523648 0.0261824 0.999657i \(-0.491665\pi\)
0.0261824 + 0.999657i \(0.491665\pi\)
\(14\) −6.77829 −0.129398
\(15\) −167.239 −2.87874
\(16\) −25.5890 −0.399829
\(17\) −62.6503 −0.893819 −0.446909 0.894579i \(-0.647475\pi\)
−0.446909 + 0.894579i \(0.647475\pi\)
\(18\) −138.158 −1.80912
\(19\) 39.6603 0.478879 0.239440 0.970911i \(-0.423036\pi\)
0.239440 + 0.970911i \(0.423036\pi\)
\(20\) 59.1111 0.660882
\(21\) 30.1127 0.312911
\(22\) 27.6994 0.268434
\(23\) 0 0
\(24\) 233.677 1.98746
\(25\) 181.504 1.45203
\(26\) −5.27771 −0.0398094
\(27\) 355.851 2.53643
\(28\) −10.6434 −0.0718362
\(29\) −187.506 −1.20065 −0.600327 0.799755i \(-0.704963\pi\)
−0.600327 + 0.799755i \(0.704963\pi\)
\(30\) 359.608 2.18851
\(31\) 3.14887 0.0182436 0.00912182 0.999958i \(-0.497096\pi\)
0.00912182 + 0.999958i \(0.497096\pi\)
\(32\) −140.674 −0.777123
\(33\) −123.055 −0.649127
\(34\) 134.714 0.679510
\(35\) −55.1883 −0.266529
\(36\) −216.938 −1.00434
\(37\) −132.244 −0.587587 −0.293793 0.955869i \(-0.594918\pi\)
−0.293793 + 0.955869i \(0.594918\pi\)
\(38\) −85.2801 −0.364059
\(39\) 23.4463 0.0962671
\(40\) −428.265 −1.69287
\(41\) 54.1707 0.206343 0.103171 0.994664i \(-0.467101\pi\)
0.103171 + 0.994664i \(0.467101\pi\)
\(42\) −64.7502 −0.237885
\(43\) −235.739 −0.836044 −0.418022 0.908437i \(-0.637276\pi\)
−0.418022 + 0.908437i \(0.637276\pi\)
\(44\) 43.4942 0.149023
\(45\) −1124.87 −3.72636
\(46\) 0 0
\(47\) −128.295 −0.398164 −0.199082 0.979983i \(-0.563796\pi\)
−0.199082 + 0.979983i \(0.563796\pi\)
\(48\) −244.441 −0.735043
\(49\) −333.063 −0.971029
\(50\) −390.280 −1.10388
\(51\) −598.472 −1.64319
\(52\) −8.28715 −0.0221004
\(53\) −189.516 −0.491171 −0.245585 0.969375i \(-0.578980\pi\)
−0.245585 + 0.969375i \(0.578980\pi\)
\(54\) −765.172 −1.92827
\(55\) 225.527 0.552909
\(56\) 77.1124 0.184010
\(57\) 378.859 0.880369
\(58\) 403.186 0.912775
\(59\) −503.522 −1.11107 −0.555534 0.831494i \(-0.687486\pi\)
−0.555534 + 0.831494i \(0.687486\pi\)
\(60\) 564.664 1.21496
\(61\) 48.0229 0.100798 0.0503992 0.998729i \(-0.483951\pi\)
0.0503992 + 0.998729i \(0.483951\pi\)
\(62\) −6.77088 −0.0138694
\(63\) 202.542 0.405045
\(64\) 507.199 0.990623
\(65\) −42.9707 −0.0819978
\(66\) 264.601 0.493487
\(67\) 490.926 0.895166 0.447583 0.894242i \(-0.352285\pi\)
0.447583 + 0.894242i \(0.352285\pi\)
\(68\) 211.531 0.377234
\(69\) 0 0
\(70\) 118.669 0.202624
\(71\) −994.675 −1.66262 −0.831312 0.555807i \(-0.812410\pi\)
−0.831312 + 0.555807i \(0.812410\pi\)
\(72\) 1571.74 2.57266
\(73\) −235.311 −0.377275 −0.188638 0.982047i \(-0.560407\pi\)
−0.188638 + 0.982047i \(0.560407\pi\)
\(74\) 284.358 0.446702
\(75\) 1733.83 2.66940
\(76\) −133.908 −0.202110
\(77\) −40.6077 −0.0600998
\(78\) −50.4157 −0.0731853
\(79\) −1338.36 −1.90604 −0.953018 0.302914i \(-0.902041\pi\)
−0.953018 + 0.302914i \(0.902041\pi\)
\(80\) 447.993 0.626090
\(81\) 1664.49 2.28326
\(82\) −116.481 −0.156868
\(83\) −1067.95 −1.41232 −0.706161 0.708051i \(-0.749575\pi\)
−0.706161 + 0.708051i \(0.749575\pi\)
\(84\) −101.672 −0.132063
\(85\) 1096.83 1.39963
\(86\) 506.901 0.635587
\(87\) −1791.16 −2.20727
\(88\) −315.119 −0.381725
\(89\) 1326.88 1.58033 0.790165 0.612894i \(-0.209995\pi\)
0.790165 + 0.612894i \(0.209995\pi\)
\(90\) 2418.77 2.83289
\(91\) 7.73719 0.00891294
\(92\) 0 0
\(93\) 30.0798 0.0335390
\(94\) 275.867 0.302697
\(95\) −694.344 −0.749875
\(96\) −1343.80 −1.42866
\(97\) 1126.82 1.17949 0.589746 0.807589i \(-0.299228\pi\)
0.589746 + 0.807589i \(0.299228\pi\)
\(98\) 716.172 0.738207
\(99\) −827.685 −0.840257
\(100\) −612.826 −0.612826
\(101\) 660.124 0.650344 0.325172 0.945655i \(-0.394578\pi\)
0.325172 + 0.945655i \(0.394578\pi\)
\(102\) 1286.87 1.24921
\(103\) −1071.59 −1.02512 −0.512560 0.858651i \(-0.671303\pi\)
−0.512560 + 0.858651i \(0.671303\pi\)
\(104\) 60.0412 0.0566108
\(105\) −527.191 −0.489986
\(106\) 407.509 0.373404
\(107\) 703.100 0.635245 0.317622 0.948217i \(-0.397116\pi\)
0.317622 + 0.948217i \(0.397116\pi\)
\(108\) −1201.49 −1.07049
\(109\) −1465.25 −1.28757 −0.643787 0.765205i \(-0.722638\pi\)
−0.643787 + 0.765205i \(0.722638\pi\)
\(110\) −484.941 −0.420339
\(111\) −1263.27 −1.08022
\(112\) −80.6646 −0.0680543
\(113\) −1302.54 −1.08436 −0.542180 0.840263i \(-0.682401\pi\)
−0.542180 + 0.840263i \(0.682401\pi\)
\(114\) −814.645 −0.669285
\(115\) 0 0
\(116\) 633.091 0.506733
\(117\) 157.703 0.124612
\(118\) 1082.70 0.844669
\(119\) −197.493 −0.152136
\(120\) −4091.04 −3.11216
\(121\) −1165.06 −0.875324
\(122\) −103.262 −0.0766302
\(123\) 517.470 0.379339
\(124\) −10.6318 −0.00769968
\(125\) −989.225 −0.707832
\(126\) −435.517 −0.307928
\(127\) 1947.63 1.36082 0.680409 0.732833i \(-0.261802\pi\)
0.680409 + 0.732833i \(0.261802\pi\)
\(128\) 34.7855 0.0240206
\(129\) −2251.92 −1.53698
\(130\) 92.3981 0.0623373
\(131\) 1062.71 0.708775 0.354387 0.935099i \(-0.384689\pi\)
0.354387 + 0.935099i \(0.384689\pi\)
\(132\) 415.482 0.273962
\(133\) 125.022 0.0815095
\(134\) −1055.62 −0.680534
\(135\) −6229.97 −3.97178
\(136\) −1532.56 −0.966295
\(137\) −1054.06 −0.657331 −0.328665 0.944446i \(-0.606599\pi\)
−0.328665 + 0.944446i \(0.606599\pi\)
\(138\) 0 0
\(139\) 1091.53 0.666063 0.333032 0.942916i \(-0.391928\pi\)
0.333032 + 0.942916i \(0.391928\pi\)
\(140\) 186.337 0.112488
\(141\) −1225.54 −0.731982
\(142\) 2138.81 1.26398
\(143\) −31.6180 −0.0184897
\(144\) −1644.14 −0.951470
\(145\) 3282.71 1.88010
\(146\) 505.980 0.286817
\(147\) −3181.61 −1.78513
\(148\) 446.505 0.247990
\(149\) −1619.85 −0.890626 −0.445313 0.895375i \(-0.646908\pi\)
−0.445313 + 0.895375i \(0.646908\pi\)
\(150\) −3728.18 −2.02937
\(151\) 234.828 0.126556 0.0632782 0.997996i \(-0.479844\pi\)
0.0632782 + 0.997996i \(0.479844\pi\)
\(152\) 970.179 0.517710
\(153\) −4025.39 −2.12702
\(154\) 87.3172 0.0456898
\(155\) −55.1280 −0.0285676
\(156\) −79.1637 −0.0406293
\(157\) 2029.08 1.03145 0.515726 0.856753i \(-0.327522\pi\)
0.515726 + 0.856753i \(0.327522\pi\)
\(158\) 2877.81 1.44903
\(159\) −1810.37 −0.902966
\(160\) 2462.82 1.21689
\(161\) 0 0
\(162\) −3579.10 −1.73580
\(163\) 1638.54 0.787362 0.393681 0.919247i \(-0.371201\pi\)
0.393681 + 0.919247i \(0.371201\pi\)
\(164\) −182.901 −0.0870863
\(165\) 2154.36 1.01646
\(166\) 2296.37 1.07369
\(167\) 1896.64 0.878842 0.439421 0.898281i \(-0.355184\pi\)
0.439421 + 0.898281i \(0.355184\pi\)
\(168\) 736.622 0.338284
\(169\) −2190.98 −0.997258
\(170\) −2358.48 −1.06404
\(171\) 2548.25 1.13959
\(172\) 795.945 0.352850
\(173\) −3817.88 −1.67785 −0.838926 0.544246i \(-0.816816\pi\)
−0.838926 + 0.544246i \(0.816816\pi\)
\(174\) 3851.47 1.67804
\(175\) 572.156 0.247148
\(176\) 329.635 0.141177
\(177\) −4809.93 −2.04258
\(178\) −2853.15 −1.20142
\(179\) −590.451 −0.246550 −0.123275 0.992373i \(-0.539340\pi\)
−0.123275 + 0.992373i \(0.539340\pi\)
\(180\) 3797.99 1.57270
\(181\) 2531.37 1.03953 0.519765 0.854309i \(-0.326019\pi\)
0.519765 + 0.854309i \(0.326019\pi\)
\(182\) −16.6370 −0.00677590
\(183\) 458.743 0.185307
\(184\) 0 0
\(185\) 2315.22 0.920100
\(186\) −64.6794 −0.0254974
\(187\) 807.054 0.315602
\(188\) 433.171 0.168044
\(189\) 1121.75 0.431722
\(190\) 1493.02 0.570079
\(191\) 324.857 0.123067 0.0615336 0.998105i \(-0.480401\pi\)
0.0615336 + 0.998105i \(0.480401\pi\)
\(192\) 4845.06 1.82116
\(193\) 2714.01 1.01222 0.506111 0.862468i \(-0.331082\pi\)
0.506111 + 0.862468i \(0.331082\pi\)
\(194\) −2422.95 −0.896688
\(195\) −410.481 −0.150744
\(196\) 1124.55 0.409820
\(197\) −2683.66 −0.970572 −0.485286 0.874355i \(-0.661285\pi\)
−0.485286 + 0.874355i \(0.661285\pi\)
\(198\) 1779.74 0.638790
\(199\) 1104.09 0.393302 0.196651 0.980474i \(-0.436993\pi\)
0.196651 + 0.980474i \(0.436993\pi\)
\(200\) 4439.98 1.56977
\(201\) 4689.61 1.64567
\(202\) −1419.44 −0.494412
\(203\) −591.077 −0.204362
\(204\) 2020.67 0.693505
\(205\) −948.380 −0.323111
\(206\) 2304.21 0.779329
\(207\) 0 0
\(208\) −62.8070 −0.0209369
\(209\) −510.900 −0.169090
\(210\) 1133.60 0.372503
\(211\) −3023.60 −0.986507 −0.493254 0.869886i \(-0.664193\pi\)
−0.493254 + 0.869886i \(0.664193\pi\)
\(212\) 639.879 0.207297
\(213\) −9501.72 −3.05656
\(214\) −1511.85 −0.482933
\(215\) 4127.14 1.30916
\(216\) 8704.88 2.74209
\(217\) 9.92621 0.00310523
\(218\) 3150.67 0.978854
\(219\) −2247.83 −0.693581
\(220\) −761.463 −0.233354
\(221\) −153.772 −0.0468046
\(222\) 2716.35 0.821215
\(223\) −1320.89 −0.396652 −0.198326 0.980136i \(-0.563550\pi\)
−0.198326 + 0.980136i \(0.563550\pi\)
\(224\) −443.449 −0.132273
\(225\) 11661.9 3.45539
\(226\) 2800.80 0.824365
\(227\) −1614.53 −0.472071 −0.236035 0.971744i \(-0.575848\pi\)
−0.236035 + 0.971744i \(0.575848\pi\)
\(228\) −1279.17 −0.371558
\(229\) 3389.10 0.977983 0.488991 0.872289i \(-0.337365\pi\)
0.488991 + 0.872289i \(0.337365\pi\)
\(230\) 0 0
\(231\) −387.909 −0.110487
\(232\) −4586.80 −1.29801
\(233\) −5564.15 −1.56446 −0.782231 0.622989i \(-0.785918\pi\)
−0.782231 + 0.622989i \(0.785918\pi\)
\(234\) −339.102 −0.0947342
\(235\) 2246.09 0.623483
\(236\) 1700.08 0.468923
\(237\) −12784.8 −3.50405
\(238\) 424.662 0.115659
\(239\) −199.085 −0.0538819 −0.0269409 0.999637i \(-0.508577\pi\)
−0.0269409 + 0.999637i \(0.508577\pi\)
\(240\) 4279.49 1.15100
\(241\) 4244.76 1.13456 0.567280 0.823525i \(-0.307996\pi\)
0.567280 + 0.823525i \(0.307996\pi\)
\(242\) 2505.18 0.665450
\(243\) 6292.24 1.66110
\(244\) −162.144 −0.0425417
\(245\) 5831.02 1.52053
\(246\) −1112.70 −0.288386
\(247\) 97.3443 0.0250764
\(248\) 77.0281 0.0197229
\(249\) −10201.7 −2.59641
\(250\) 2127.09 0.538116
\(251\) 5259.08 1.32251 0.661256 0.750160i \(-0.270024\pi\)
0.661256 + 0.750160i \(0.270024\pi\)
\(252\) −683.857 −0.170948
\(253\) 0 0
\(254\) −4187.90 −1.03454
\(255\) 10477.6 2.57307
\(256\) −4132.39 −1.00888
\(257\) 135.768 0.0329531 0.0164766 0.999864i \(-0.494755\pi\)
0.0164766 + 0.999864i \(0.494755\pi\)
\(258\) 4842.21 1.16846
\(259\) −416.873 −0.100012
\(260\) 145.085 0.0346069
\(261\) −12047.6 −2.85719
\(262\) −2285.11 −0.538833
\(263\) −437.170 −0.102498 −0.0512492 0.998686i \(-0.516320\pi\)
−0.0512492 + 0.998686i \(0.516320\pi\)
\(264\) −3010.20 −0.701762
\(265\) 3317.91 0.769123
\(266\) −268.829 −0.0619661
\(267\) 12675.2 2.90527
\(268\) −1657.55 −0.377803
\(269\) 2332.26 0.528626 0.264313 0.964437i \(-0.414855\pi\)
0.264313 + 0.964437i \(0.414855\pi\)
\(270\) 13396.1 3.01947
\(271\) 1128.81 0.253027 0.126514 0.991965i \(-0.459621\pi\)
0.126514 + 0.991965i \(0.459621\pi\)
\(272\) 1603.16 0.357374
\(273\) 73.9101 0.0163855
\(274\) 2266.50 0.499724
\(275\) −2338.11 −0.512704
\(276\) 0 0
\(277\) 1526.61 0.331137 0.165568 0.986198i \(-0.447054\pi\)
0.165568 + 0.986198i \(0.447054\pi\)
\(278\) −2347.08 −0.506362
\(279\) 202.320 0.0434143
\(280\) −1350.03 −0.288141
\(281\) 8922.62 1.89423 0.947115 0.320894i \(-0.103983\pi\)
0.947115 + 0.320894i \(0.103983\pi\)
\(282\) 2635.24 0.556476
\(283\) 6062.16 1.27335 0.636675 0.771132i \(-0.280309\pi\)
0.636675 + 0.771132i \(0.280309\pi\)
\(284\) 3358.40 0.701706
\(285\) −6632.77 −1.37857
\(286\) 67.9869 0.0140565
\(287\) 170.763 0.0351213
\(288\) −9038.58 −1.84932
\(289\) −987.944 −0.201088
\(290\) −7058.68 −1.42931
\(291\) 10764.0 2.16837
\(292\) 794.500 0.159228
\(293\) −4042.56 −0.806038 −0.403019 0.915192i \(-0.632039\pi\)
−0.403019 + 0.915192i \(0.632039\pi\)
\(294\) 6841.29 1.35712
\(295\) 8815.28 1.73982
\(296\) −3234.97 −0.635232
\(297\) −4584.03 −0.895597
\(298\) 3483.10 0.677082
\(299\) 0 0
\(300\) −5854.07 −1.12662
\(301\) −743.123 −0.142302
\(302\) −504.941 −0.0962122
\(303\) 6305.89 1.19559
\(304\) −1014.87 −0.191470
\(305\) −840.749 −0.157840
\(306\) 8655.64 1.61703
\(307\) 8641.34 1.60647 0.803236 0.595660i \(-0.203110\pi\)
0.803236 + 0.595660i \(0.203110\pi\)
\(308\) 137.107 0.0253650
\(309\) −10236.5 −1.88457
\(310\) 118.540 0.0217180
\(311\) 2199.14 0.400970 0.200485 0.979697i \(-0.435748\pi\)
0.200485 + 0.979697i \(0.435748\pi\)
\(312\) 573.548 0.104073
\(313\) −2165.82 −0.391117 −0.195558 0.980692i \(-0.562652\pi\)
−0.195558 + 0.980692i \(0.562652\pi\)
\(314\) −4363.05 −0.784143
\(315\) −3545.95 −0.634259
\(316\) 4518.80 0.804438
\(317\) −4560.17 −0.807964 −0.403982 0.914767i \(-0.632374\pi\)
−0.403982 + 0.914767i \(0.632374\pi\)
\(318\) 3892.77 0.686464
\(319\) 2415.43 0.423944
\(320\) −8879.65 −1.55121
\(321\) 6716.42 1.16783
\(322\) 0 0
\(323\) −2484.73 −0.428031
\(324\) −5619.96 −0.963642
\(325\) 445.492 0.0760352
\(326\) −3523.28 −0.598578
\(327\) −13996.9 −2.36707
\(328\) 1325.13 0.223074
\(329\) −404.425 −0.0677710
\(330\) −4632.44 −0.772749
\(331\) −4702.98 −0.780965 −0.390482 0.920610i \(-0.627692\pi\)
−0.390482 + 0.920610i \(0.627692\pi\)
\(332\) 3605.81 0.596067
\(333\) −8496.89 −1.39828
\(334\) −4078.27 −0.668123
\(335\) −8594.76 −1.40174
\(336\) −770.555 −0.125111
\(337\) 4777.48 0.772243 0.386122 0.922448i \(-0.373814\pi\)
0.386122 + 0.922448i \(0.373814\pi\)
\(338\) 4711.17 0.758147
\(339\) −12442.6 −1.99348
\(340\) −3703.33 −0.590709
\(341\) −40.5634 −0.00644173
\(342\) −5479.40 −0.866350
\(343\) −2131.16 −0.335487
\(344\) −5766.69 −0.903835
\(345\) 0 0
\(346\) 8209.44 1.27556
\(347\) 2049.09 0.317006 0.158503 0.987358i \(-0.449333\pi\)
0.158503 + 0.987358i \(0.449333\pi\)
\(348\) 6047.65 0.931575
\(349\) −7746.21 −1.18809 −0.594047 0.804430i \(-0.702471\pi\)
−0.594047 + 0.804430i \(0.702471\pi\)
\(350\) −1230.29 −0.187890
\(351\) 873.417 0.132819
\(352\) 1812.15 0.274398
\(353\) 7598.47 1.14568 0.572841 0.819666i \(-0.305841\pi\)
0.572841 + 0.819666i \(0.305841\pi\)
\(354\) 10342.6 1.55283
\(355\) 17414.0 2.60349
\(356\) −4480.06 −0.666974
\(357\) −1886.57 −0.279686
\(358\) 1269.62 0.187435
\(359\) 3897.16 0.572936 0.286468 0.958090i \(-0.407519\pi\)
0.286468 + 0.958090i \(0.407519\pi\)
\(360\) −27516.8 −4.02851
\(361\) −5286.06 −0.770675
\(362\) −5443.10 −0.790284
\(363\) −11129.3 −1.60919
\(364\) −26.1237 −0.00376168
\(365\) 4119.65 0.590774
\(366\) −986.417 −0.140877
\(367\) −1565.60 −0.222680 −0.111340 0.993782i \(-0.535514\pi\)
−0.111340 + 0.993782i \(0.535514\pi\)
\(368\) 0 0
\(369\) 3480.56 0.491032
\(370\) −4978.33 −0.699489
\(371\) −597.414 −0.0836016
\(372\) −101.561 −0.0141551
\(373\) −12141.5 −1.68542 −0.842712 0.538364i \(-0.819042\pi\)
−0.842712 + 0.538364i \(0.819042\pi\)
\(374\) −1735.38 −0.239931
\(375\) −9449.65 −1.30127
\(376\) −3138.37 −0.430449
\(377\) −460.223 −0.0628719
\(378\) −2412.06 −0.328209
\(379\) 13545.2 1.83580 0.917901 0.396810i \(-0.129883\pi\)
0.917901 + 0.396810i \(0.129883\pi\)
\(380\) 2344.37 0.316483
\(381\) 18604.8 2.50172
\(382\) −698.528 −0.0935596
\(383\) −5087.87 −0.678794 −0.339397 0.940643i \(-0.610223\pi\)
−0.339397 + 0.940643i \(0.610223\pi\)
\(384\) 332.291 0.0441593
\(385\) 710.930 0.0941100
\(386\) −5835.84 −0.769524
\(387\) −15146.7 −1.98953
\(388\) −3804.56 −0.497802
\(389\) −1620.42 −0.211204 −0.105602 0.994408i \(-0.533677\pi\)
−0.105602 + 0.994408i \(0.533677\pi\)
\(390\) 882.640 0.114601
\(391\) 0 0
\(392\) −8147.45 −1.04977
\(393\) 10151.6 1.30301
\(394\) 5770.56 0.737860
\(395\) 23430.9 2.98465
\(396\) 2794.58 0.354628
\(397\) 296.575 0.0374929 0.0187465 0.999824i \(-0.494032\pi\)
0.0187465 + 0.999824i \(0.494032\pi\)
\(398\) −2374.09 −0.299000
\(399\) 1194.28 0.149847
\(400\) −4644.50 −0.580563
\(401\) −6313.70 −0.786262 −0.393131 0.919482i \(-0.628608\pi\)
−0.393131 + 0.919482i \(0.628608\pi\)
\(402\) −10083.9 −1.25109
\(403\) 7.72873 0.000955324 0
\(404\) −2228.83 −0.274476
\(405\) −29140.7 −3.57534
\(406\) 1270.97 0.155362
\(407\) 1703.55 0.207474
\(408\) −14639.9 −1.77643
\(409\) −3596.16 −0.434765 −0.217382 0.976087i \(-0.569752\pi\)
−0.217382 + 0.976087i \(0.569752\pi\)
\(410\) 2039.26 0.245639
\(411\) −10069.0 −1.20843
\(412\) 3618.11 0.432649
\(413\) −1587.26 −0.189113
\(414\) 0 0
\(415\) 18696.9 2.21155
\(416\) −345.278 −0.0406939
\(417\) 10427.0 1.22449
\(418\) 1098.57 0.128547
\(419\) 2762.70 0.322117 0.161058 0.986945i \(-0.448509\pi\)
0.161058 + 0.986945i \(0.448509\pi\)
\(420\) 1780.00 0.206797
\(421\) 11993.9 1.38848 0.694238 0.719746i \(-0.255742\pi\)
0.694238 + 0.719746i \(0.255742\pi\)
\(422\) 6501.52 0.749974
\(423\) −8243.16 −0.947509
\(424\) −4635.98 −0.530998
\(425\) −11371.3 −1.29785
\(426\) 20431.2 2.32369
\(427\) 151.383 0.0171568
\(428\) −2373.93 −0.268104
\(429\) −302.033 −0.0339914
\(430\) −8874.44 −0.995264
\(431\) 9502.90 1.06204 0.531019 0.847360i \(-0.321809\pi\)
0.531019 + 0.847360i \(0.321809\pi\)
\(432\) −9105.87 −1.01414
\(433\) −15343.5 −1.70292 −0.851459 0.524421i \(-0.824282\pi\)
−0.851459 + 0.524421i \(0.824282\pi\)
\(434\) −21.3439 −0.00236069
\(435\) 31358.3 3.45636
\(436\) 4947.24 0.543417
\(437\) 0 0
\(438\) 4833.42 0.527282
\(439\) 8801.88 0.956926 0.478463 0.878108i \(-0.341194\pi\)
0.478463 + 0.878108i \(0.341194\pi\)
\(440\) 5516.87 0.597742
\(441\) −21399.9 −2.31075
\(442\) 330.650 0.0355824
\(443\) −3549.81 −0.380715 −0.190358 0.981715i \(-0.560965\pi\)
−0.190358 + 0.981715i \(0.560965\pi\)
\(444\) 4265.27 0.455903
\(445\) −23230.1 −2.47463
\(446\) 2840.26 0.301547
\(447\) −15473.7 −1.63732
\(448\) 1598.85 0.168613
\(449\) 8548.19 0.898472 0.449236 0.893413i \(-0.351696\pi\)
0.449236 + 0.893413i \(0.351696\pi\)
\(450\) −25076.2 −2.62690
\(451\) −697.821 −0.0728584
\(452\) 4397.87 0.457651
\(453\) 2243.21 0.232661
\(454\) 3471.66 0.358883
\(455\) −135.457 −0.0139567
\(456\) 9267.71 0.951755
\(457\) 6103.64 0.624762 0.312381 0.949957i \(-0.398873\pi\)
0.312381 + 0.949957i \(0.398873\pi\)
\(458\) −7287.45 −0.743494
\(459\) −22294.1 −2.26711
\(460\) 0 0
\(461\) −3590.11 −0.362707 −0.181354 0.983418i \(-0.558048\pi\)
−0.181354 + 0.983418i \(0.558048\pi\)
\(462\) 834.105 0.0839958
\(463\) −6055.70 −0.607845 −0.303922 0.952697i \(-0.598296\pi\)
−0.303922 + 0.952697i \(0.598296\pi\)
\(464\) 4798.09 0.480055
\(465\) −526.614 −0.0525186
\(466\) 11964.4 1.18935
\(467\) −8601.84 −0.852346 −0.426173 0.904642i \(-0.640139\pi\)
−0.426173 + 0.904642i \(0.640139\pi\)
\(468\) −532.464 −0.0525923
\(469\) 1547.55 0.152365
\(470\) −4829.67 −0.473992
\(471\) 19382.9 1.89622
\(472\) −12317.2 −1.20116
\(473\) 3036.77 0.295202
\(474\) 27490.6 2.66389
\(475\) 7198.50 0.695347
\(476\) 666.812 0.0642085
\(477\) −12176.8 −1.16884
\(478\) 428.085 0.0409627
\(479\) 7110.53 0.678264 0.339132 0.940739i \(-0.389867\pi\)
0.339132 + 0.940739i \(0.389867\pi\)
\(480\) 23526.3 2.23713
\(481\) −324.585 −0.0307688
\(482\) −9127.34 −0.862529
\(483\) 0 0
\(484\) 3933.67 0.369428
\(485\) −19727.4 −1.84696
\(486\) −13530.0 −1.26282
\(487\) −4560.49 −0.424344 −0.212172 0.977232i \(-0.568054\pi\)
−0.212172 + 0.977232i \(0.568054\pi\)
\(488\) 1174.75 0.108972
\(489\) 15652.2 1.44748
\(490\) −12538.2 −1.15596
\(491\) −10169.0 −0.934665 −0.467333 0.884082i \(-0.654785\pi\)
−0.467333 + 0.884082i \(0.654785\pi\)
\(492\) −1747.18 −0.160099
\(493\) 11747.3 1.07317
\(494\) −209.316 −0.0190639
\(495\) 14490.5 1.31576
\(496\) −80.5764 −0.00729433
\(497\) −3135.53 −0.282993
\(498\) 21936.3 1.97387
\(499\) 5785.66 0.519042 0.259521 0.965738i \(-0.416435\pi\)
0.259521 + 0.965738i \(0.416435\pi\)
\(500\) 3340.00 0.298739
\(501\) 18117.8 1.61566
\(502\) −11308.4 −1.00542
\(503\) −16030.4 −1.42099 −0.710496 0.703701i \(-0.751529\pi\)
−0.710496 + 0.703701i \(0.751529\pi\)
\(504\) 4954.61 0.437889
\(505\) −11557.0 −1.01837
\(506\) 0 0
\(507\) −20929.5 −1.83335
\(508\) −6575.92 −0.574330
\(509\) −5460.20 −0.475479 −0.237740 0.971329i \(-0.576406\pi\)
−0.237740 + 0.971329i \(0.576406\pi\)
\(510\) −22529.6 −1.95613
\(511\) −741.774 −0.0642156
\(512\) 8607.43 0.742965
\(513\) 14113.2 1.21464
\(514\) −291.936 −0.0250520
\(515\) 18760.7 1.60523
\(516\) 7603.33 0.648678
\(517\) 1652.68 0.140589
\(518\) 896.386 0.0760327
\(519\) −36470.6 −3.08455
\(520\) −1051.16 −0.0886466
\(521\) −18037.2 −1.51675 −0.758374 0.651820i \(-0.774006\pi\)
−0.758374 + 0.651820i \(0.774006\pi\)
\(522\) 25905.4 2.17213
\(523\) 15736.6 1.31571 0.657853 0.753147i \(-0.271465\pi\)
0.657853 + 0.753147i \(0.271465\pi\)
\(524\) −3588.12 −0.299137
\(525\) 5465.57 0.454356
\(526\) 940.029 0.0779225
\(527\) −197.277 −0.0163065
\(528\) 3148.87 0.259539
\(529\) 0 0
\(530\) −7134.37 −0.584712
\(531\) −32352.2 −2.64400
\(532\) −422.121 −0.0344009
\(533\) 132.959 0.0108051
\(534\) −27254.9 −2.20868
\(535\) −12309.3 −0.994727
\(536\) 12009.1 0.967752
\(537\) −5640.33 −0.453255
\(538\) −5014.97 −0.401879
\(539\) 4290.48 0.342865
\(540\) 21034.7 1.67628
\(541\) 15101.6 1.20013 0.600064 0.799952i \(-0.295142\pi\)
0.600064 + 0.799952i \(0.295142\pi\)
\(542\) −2427.24 −0.192359
\(543\) 24181.1 1.91107
\(544\) 8813.29 0.694608
\(545\) 25652.5 2.01621
\(546\) −158.926 −0.0124568
\(547\) 13944.7 1.09000 0.545002 0.838435i \(-0.316529\pi\)
0.545002 + 0.838435i \(0.316529\pi\)
\(548\) 3558.90 0.277425
\(549\) 3085.56 0.239870
\(550\) 5027.55 0.389774
\(551\) −7436.54 −0.574968
\(552\) 0 0
\(553\) −4218.92 −0.324424
\(554\) −3282.60 −0.251741
\(555\) 22116.3 1.69151
\(556\) −3685.44 −0.281110
\(557\) 18183.2 1.38321 0.691604 0.722277i \(-0.256904\pi\)
0.691604 + 0.722277i \(0.256904\pi\)
\(558\) −435.041 −0.0330050
\(559\) −578.610 −0.0437792
\(560\) 1412.21 0.106566
\(561\) 7709.45 0.580202
\(562\) −19186.0 −1.44005
\(563\) 932.071 0.0697728 0.0348864 0.999391i \(-0.488893\pi\)
0.0348864 + 0.999391i \(0.488893\pi\)
\(564\) 4137.90 0.308931
\(565\) 22803.9 1.69799
\(566\) −13035.2 −0.968041
\(567\) 5247.00 0.388630
\(568\) −24331.9 −1.79744
\(569\) 1911.06 0.140801 0.0704003 0.997519i \(-0.477572\pi\)
0.0704003 + 0.997519i \(0.477572\pi\)
\(570\) 14262.2 1.04803
\(571\) 9541.35 0.699287 0.349644 0.936883i \(-0.386303\pi\)
0.349644 + 0.936883i \(0.386303\pi\)
\(572\) 106.754 0.00780353
\(573\) 3103.22 0.226246
\(574\) −367.185 −0.0267003
\(575\) 0 0
\(576\) 32588.4 2.35738
\(577\) 16377.5 1.18164 0.590819 0.806804i \(-0.298805\pi\)
0.590819 + 0.806804i \(0.298805\pi\)
\(578\) 2124.34 0.152873
\(579\) 25925.8 1.86087
\(580\) −11083.7 −0.793491
\(581\) −3366.51 −0.240390
\(582\) −23145.4 −1.64847
\(583\) 2441.33 0.173430
\(584\) −5756.22 −0.407867
\(585\) −2760.94 −0.195130
\(586\) 8692.57 0.612776
\(587\) −21713.5 −1.52677 −0.763385 0.645944i \(-0.776464\pi\)
−0.763385 + 0.645944i \(0.776464\pi\)
\(588\) 10742.3 0.753412
\(589\) 124.885 0.00873650
\(590\) −18955.2 −1.32266
\(591\) −25635.9 −1.78430
\(592\) 3383.98 0.234934
\(593\) −2845.74 −0.197067 −0.0985333 0.995134i \(-0.531415\pi\)
−0.0985333 + 0.995134i \(0.531415\pi\)
\(594\) 9856.86 0.680862
\(595\) 3457.56 0.238229
\(596\) 5469.23 0.375886
\(597\) 10546.9 0.723044
\(598\) 0 0
\(599\) −17924.9 −1.22269 −0.611344 0.791365i \(-0.709371\pi\)
−0.611344 + 0.791365i \(0.709371\pi\)
\(600\) 42413.2 2.88586
\(601\) −13096.8 −0.888902 −0.444451 0.895803i \(-0.646601\pi\)
−0.444451 + 0.895803i \(0.646601\pi\)
\(602\) 1597.91 0.108183
\(603\) 31542.9 2.13022
\(604\) −792.867 −0.0534128
\(605\) 20396.9 1.37067
\(606\) −13559.3 −0.908925
\(607\) −9181.77 −0.613965 −0.306982 0.951715i \(-0.599319\pi\)
−0.306982 + 0.951715i \(0.599319\pi\)
\(608\) −5579.19 −0.372148
\(609\) −5646.31 −0.375698
\(610\) 1807.83 0.119995
\(611\) −314.893 −0.0208497
\(612\) 13591.2 0.897702
\(613\) −10987.3 −0.723939 −0.361969 0.932190i \(-0.617895\pi\)
−0.361969 + 0.932190i \(0.617895\pi\)
\(614\) −18581.1 −1.22129
\(615\) −9059.48 −0.594005
\(616\) −993.354 −0.0649730
\(617\) −20870.9 −1.36180 −0.680900 0.732376i \(-0.738411\pi\)
−0.680900 + 0.732376i \(0.738411\pi\)
\(618\) 22011.1 1.43271
\(619\) 5747.50 0.373201 0.186601 0.982436i \(-0.440253\pi\)
0.186601 + 0.982436i \(0.440253\pi\)
\(620\) 186.133 0.0120569
\(621\) 0 0
\(622\) −4728.72 −0.304830
\(623\) 4182.75 0.268986
\(624\) −599.969 −0.0384903
\(625\) −5369.36 −0.343639
\(626\) 4657.08 0.297339
\(627\) −4880.42 −0.310853
\(628\) −6850.94 −0.435322
\(629\) 8285.10 0.525196
\(630\) 7624.71 0.482184
\(631\) 7882.69 0.497314 0.248657 0.968592i \(-0.420011\pi\)
0.248657 + 0.968592i \(0.420011\pi\)
\(632\) −32739.1 −2.06059
\(633\) −28883.2 −1.81359
\(634\) 9805.55 0.614240
\(635\) −34097.6 −2.13090
\(636\) 6112.49 0.381095
\(637\) −817.486 −0.0508477
\(638\) −5193.80 −0.322296
\(639\) −63909.7 −3.95654
\(640\) −608.998 −0.0376137
\(641\) −15202.6 −0.936764 −0.468382 0.883526i \(-0.655163\pi\)
−0.468382 + 0.883526i \(0.655163\pi\)
\(642\) −14442.0 −0.887822
\(643\) −5844.75 −0.358468 −0.179234 0.983807i \(-0.557362\pi\)
−0.179234 + 0.983807i \(0.557362\pi\)
\(644\) 0 0
\(645\) 39424.9 2.40675
\(646\) 5342.82 0.325403
\(647\) −21668.0 −1.31662 −0.658312 0.752745i \(-0.728729\pi\)
−0.658312 + 0.752745i \(0.728729\pi\)
\(648\) 40717.1 2.46840
\(649\) 6486.32 0.392312
\(650\) −957.923 −0.0578044
\(651\) 94.8209 0.00570864
\(652\) −5532.32 −0.332304
\(653\) 15985.0 0.957947 0.478974 0.877829i \(-0.341009\pi\)
0.478974 + 0.877829i \(0.341009\pi\)
\(654\) 30097.0 1.79952
\(655\) −18605.1 −1.10987
\(656\) −1386.18 −0.0825016
\(657\) −15119.2 −0.897800
\(658\) 869.618 0.0515217
\(659\) −22009.7 −1.30103 −0.650514 0.759495i \(-0.725446\pi\)
−0.650514 + 0.759495i \(0.725446\pi\)
\(660\) −7273.94 −0.428996
\(661\) −24770.7 −1.45759 −0.728795 0.684732i \(-0.759919\pi\)
−0.728795 + 0.684732i \(0.759919\pi\)
\(662\) 10112.6 0.593714
\(663\) −1468.92 −0.0860453
\(664\) −26124.4 −1.52684
\(665\) −2188.79 −0.127635
\(666\) 18270.5 1.06302
\(667\) 0 0
\(668\) −6403.78 −0.370913
\(669\) −12617.9 −0.729203
\(670\) 18481.0 1.06565
\(671\) −618.626 −0.0355914
\(672\) −4236.09 −0.243170
\(673\) −33896.7 −1.94149 −0.970745 0.240114i \(-0.922815\pi\)
−0.970745 + 0.240114i \(0.922815\pi\)
\(674\) −10272.8 −0.587084
\(675\) 64588.2 3.68297
\(676\) 7397.57 0.420890
\(677\) −28891.6 −1.64017 −0.820084 0.572243i \(-0.806073\pi\)
−0.820084 + 0.572243i \(0.806073\pi\)
\(678\) 26754.9 1.51551
\(679\) 3552.07 0.200760
\(680\) 26830.9 1.51312
\(681\) −15422.9 −0.867852
\(682\) 87.2218 0.00489721
\(683\) 27504.0 1.54087 0.770433 0.637521i \(-0.220040\pi\)
0.770433 + 0.637521i \(0.220040\pi\)
\(684\) −8603.85 −0.480960
\(685\) 18453.7 1.02931
\(686\) 4582.55 0.255048
\(687\) 32374.6 1.79792
\(688\) 6032.34 0.334274
\(689\) −465.158 −0.0257200
\(690\) 0 0
\(691\) −640.983 −0.0352882 −0.0176441 0.999844i \(-0.505617\pi\)
−0.0176441 + 0.999844i \(0.505617\pi\)
\(692\) 12890.6 0.708133
\(693\) −2609.12 −0.143019
\(694\) −4406.09 −0.240998
\(695\) −19109.8 −1.04299
\(696\) −43815.8 −2.38625
\(697\) −3393.81 −0.184433
\(698\) 16656.4 0.903228
\(699\) −53152.0 −2.87610
\(700\) −1931.82 −0.104308
\(701\) 28422.6 1.53140 0.765698 0.643200i \(-0.222394\pi\)
0.765698 + 0.643200i \(0.222394\pi\)
\(702\) −1878.08 −0.100973
\(703\) −5244.83 −0.281383
\(704\) −6533.68 −0.349783
\(705\) 21455.9 1.14621
\(706\) −16338.7 −0.870984
\(707\) 2080.92 0.110694
\(708\) 16240.2 0.862066
\(709\) 3543.56 0.187703 0.0938513 0.995586i \(-0.470082\pi\)
0.0938513 + 0.995586i \(0.470082\pi\)
\(710\) −37444.7 −1.97926
\(711\) −85991.8 −4.53579
\(712\) 32458.5 1.70847
\(713\) 0 0
\(714\) 4056.62 0.212626
\(715\) 553.543 0.0289529
\(716\) 1993.59 0.104056
\(717\) −1901.78 −0.0990561
\(718\) −8379.90 −0.435564
\(719\) 6201.77 0.321679 0.160839 0.986981i \(-0.448580\pi\)
0.160839 + 0.986981i \(0.448580\pi\)
\(720\) 28784.4 1.48990
\(721\) −3378.00 −0.174484
\(722\) 11366.4 0.585891
\(723\) 40548.4 2.08577
\(724\) −8546.85 −0.438731
\(725\) −34033.0 −1.74338
\(726\) 23930.9 1.22336
\(727\) 23846.5 1.21653 0.608266 0.793733i \(-0.291865\pi\)
0.608266 + 0.793733i \(0.291865\pi\)
\(728\) 189.269 0.00963566
\(729\) 15165.8 0.770503
\(730\) −8858.32 −0.449125
\(731\) 14769.1 0.747272
\(732\) −1548.89 −0.0782085
\(733\) −2280.09 −0.114894 −0.0574469 0.998349i \(-0.518296\pi\)
−0.0574469 + 0.998349i \(0.518296\pi\)
\(734\) 3366.45 0.169289
\(735\) 55701.2 2.79534
\(736\) 0 0
\(737\) −6324.06 −0.316078
\(738\) −7484.12 −0.373299
\(739\) 27207.7 1.35433 0.677166 0.735830i \(-0.263208\pi\)
0.677166 + 0.735830i \(0.263208\pi\)
\(740\) −7817.07 −0.388326
\(741\) 929.889 0.0461003
\(742\) 1284.60 0.0635566
\(743\) −16617.5 −0.820509 −0.410254 0.911971i \(-0.634560\pi\)
−0.410254 + 0.911971i \(0.634560\pi\)
\(744\) 735.817 0.0362586
\(745\) 28359.1 1.39463
\(746\) 26107.4 1.28131
\(747\) −68617.7 −3.36090
\(748\) −2724.92 −0.133199
\(749\) 2216.39 0.108124
\(750\) 20319.2 0.989271
\(751\) −18065.2 −0.877774 −0.438887 0.898542i \(-0.644627\pi\)
−0.438887 + 0.898542i \(0.644627\pi\)
\(752\) 3282.94 0.159197
\(753\) 50237.8 2.43130
\(754\) 989.600 0.0477972
\(755\) −4111.19 −0.198174
\(756\) −3787.46 −0.182207
\(757\) −7974.14 −0.382860 −0.191430 0.981506i \(-0.561312\pi\)
−0.191430 + 0.981506i \(0.561312\pi\)
\(758\) −29125.6 −1.39563
\(759\) 0 0
\(760\) −16985.2 −0.810679
\(761\) −12348.8 −0.588231 −0.294115 0.955770i \(-0.595025\pi\)
−0.294115 + 0.955770i \(0.595025\pi\)
\(762\) −40005.3 −1.90189
\(763\) −4618.92 −0.219156
\(764\) −1096.84 −0.0519402
\(765\) 70473.5 3.33069
\(766\) 10940.2 0.516041
\(767\) −1235.87 −0.0581808
\(768\) −39475.0 −1.85473
\(769\) −58.1546 −0.00272706 −0.00136353 0.999999i \(-0.500434\pi\)
−0.00136353 + 0.999999i \(0.500434\pi\)
\(770\) −1528.68 −0.0715454
\(771\) 1296.93 0.0605809
\(772\) −9163.54 −0.427206
\(773\) 7820.85 0.363902 0.181951 0.983308i \(-0.441759\pi\)
0.181951 + 0.983308i \(0.441759\pi\)
\(774\) 32569.3 1.51250
\(775\) 571.531 0.0264903
\(776\) 27564.4 1.27513
\(777\) −3982.21 −0.183862
\(778\) 3484.32 0.160564
\(779\) 2148.43 0.0988132
\(780\) 1385.94 0.0636212
\(781\) 12813.3 0.587063
\(782\) 0 0
\(783\) −66724.0 −3.04537
\(784\) 8522.76 0.388245
\(785\) −35523.6 −1.61515
\(786\) −21828.7 −0.990588
\(787\) −8623.14 −0.390574 −0.195287 0.980746i \(-0.562564\pi\)
−0.195287 + 0.980746i \(0.562564\pi\)
\(788\) 9061.05 0.409628
\(789\) −4176.10 −0.188432
\(790\) −50382.6 −2.26903
\(791\) −4106.01 −0.184568
\(792\) −20247.0 −0.908390
\(793\) 117.870 0.00527829
\(794\) −637.714 −0.0285033
\(795\) 31694.6 1.41395
\(796\) −3727.83 −0.165992
\(797\) −16599.3 −0.737740 −0.368870 0.929481i \(-0.620255\pi\)
−0.368870 + 0.929481i \(0.620255\pi\)
\(798\) −2568.01 −0.113918
\(799\) 8037.69 0.355886
\(800\) −25532.9 −1.12841
\(801\) 85254.7 3.76071
\(802\) 13576.1 0.597742
\(803\) 3031.25 0.133214
\(804\) −15833.9 −0.694550
\(805\) 0 0
\(806\) −16.6188 −0.000726268 0
\(807\) 22279.1 0.971824
\(808\) 16148.1 0.703078
\(809\) 15615.4 0.678624 0.339312 0.940674i \(-0.389806\pi\)
0.339312 + 0.940674i \(0.389806\pi\)
\(810\) 62660.1 2.71809
\(811\) 23893.0 1.03452 0.517261 0.855828i \(-0.326952\pi\)
0.517261 + 0.855828i \(0.326952\pi\)
\(812\) 1995.70 0.0862504
\(813\) 10783.1 0.465164
\(814\) −3663.07 −0.157728
\(815\) −28686.3 −1.23293
\(816\) 15314.3 0.656995
\(817\) −9349.50 −0.400364
\(818\) 7732.69 0.330522
\(819\) 497.128 0.0212101
\(820\) 3202.09 0.136368
\(821\) −36505.2 −1.55182 −0.775908 0.630846i \(-0.782708\pi\)
−0.775908 + 0.630846i \(0.782708\pi\)
\(822\) 21650.9 0.918689
\(823\) 40053.3 1.69644 0.848220 0.529645i \(-0.177675\pi\)
0.848220 + 0.529645i \(0.177675\pi\)
\(824\) −26213.5 −1.10824
\(825\) −22335.0 −0.942552
\(826\) 3413.02 0.143770
\(827\) −10952.2 −0.460513 −0.230257 0.973130i \(-0.573957\pi\)
−0.230257 + 0.973130i \(0.573957\pi\)
\(828\) 0 0
\(829\) −26816.7 −1.12350 −0.561752 0.827306i \(-0.689872\pi\)
−0.561752 + 0.827306i \(0.689872\pi\)
\(830\) −40203.2 −1.68129
\(831\) 14583.0 0.608761
\(832\) 1244.89 0.0518737
\(833\) 20866.5 0.867924
\(834\) −22420.7 −0.930894
\(835\) −33205.0 −1.37617
\(836\) 1724.99 0.0713638
\(837\) 1120.53 0.0462736
\(838\) −5940.53 −0.244883
\(839\) −28301.1 −1.16456 −0.582279 0.812989i \(-0.697839\pi\)
−0.582279 + 0.812989i \(0.697839\pi\)
\(840\) −12896.2 −0.529717
\(841\) 10769.4 0.441568
\(842\) −25790.1 −1.05556
\(843\) 85234.0 3.48234
\(844\) 10208.8 0.416353
\(845\) 38358.0 1.56160
\(846\) 17724.9 0.720326
\(847\) −3672.62 −0.148988
\(848\) 4849.54 0.196384
\(849\) 57909.3 2.34092
\(850\) 24451.2 0.986668
\(851\) 0 0
\(852\) 32081.4 1.29001
\(853\) 3443.34 0.138215 0.0691076 0.997609i \(-0.477985\pi\)
0.0691076 + 0.997609i \(0.477985\pi\)
\(854\) −325.513 −0.0130431
\(855\) −44612.8 −1.78447
\(856\) 17199.4 0.686754
\(857\) −18879.2 −0.752511 −0.376256 0.926516i \(-0.622789\pi\)
−0.376256 + 0.926516i \(0.622789\pi\)
\(858\) 649.450 0.0258413
\(859\) 7621.21 0.302715 0.151357 0.988479i \(-0.451636\pi\)
0.151357 + 0.988479i \(0.451636\pi\)
\(860\) −13934.8 −0.552527
\(861\) 1631.23 0.0645669
\(862\) −20433.7 −0.807396
\(863\) 36042.2 1.42166 0.710830 0.703364i \(-0.248320\pi\)
0.710830 + 0.703364i \(0.248320\pi\)
\(864\) −50059.1 −1.97112
\(865\) 66840.6 2.62734
\(866\) 32992.6 1.29461
\(867\) −9437.42 −0.369679
\(868\) −33.5146 −0.00131055
\(869\) 17240.6 0.673010
\(870\) −67428.6 −2.62764
\(871\) 1204.95 0.0468752
\(872\) −35843.2 −1.39198
\(873\) 72399.9 2.80683
\(874\) 0 0
\(875\) −3118.35 −0.120479
\(876\) 7589.52 0.292724
\(877\) 37728.5 1.45268 0.726341 0.687335i \(-0.241219\pi\)
0.726341 + 0.687335i \(0.241219\pi\)
\(878\) −18926.3 −0.727486
\(879\) −38616.9 −1.48182
\(880\) −5771.00 −0.221069
\(881\) 20647.1 0.789579 0.394789 0.918772i \(-0.370818\pi\)
0.394789 + 0.918772i \(0.370818\pi\)
\(882\) 46015.3 1.75671
\(883\) 37529.7 1.43032 0.715160 0.698960i \(-0.246354\pi\)
0.715160 + 0.698960i \(0.246354\pi\)
\(884\) 519.192 0.0197538
\(885\) 84208.7 3.19847
\(886\) 7633.03 0.289432
\(887\) −2367.18 −0.0896080 −0.0448040 0.998996i \(-0.514266\pi\)
−0.0448040 + 0.998996i \(0.514266\pi\)
\(888\) −30902.3 −1.16781
\(889\) 6139.52 0.231623
\(890\) 49950.7 1.88129
\(891\) −21441.8 −0.806205
\(892\) 4459.83 0.167406
\(893\) −5088.21 −0.190672
\(894\) 33272.6 1.24474
\(895\) 10337.2 0.386071
\(896\) 109.655 0.00408851
\(897\) 0 0
\(898\) −18380.8 −0.683047
\(899\) −590.430 −0.0219043
\(900\) −39375.1 −1.45834
\(901\) 11873.2 0.439018
\(902\) 1500.50 0.0553893
\(903\) −7098.75 −0.261607
\(904\) −31863.0 −1.17229
\(905\) −44317.2 −1.62780
\(906\) −4823.49 −0.176876
\(907\) 1534.80 0.0561875 0.0280938 0.999605i \(-0.491056\pi\)
0.0280938 + 0.999605i \(0.491056\pi\)
\(908\) 5451.26 0.199236
\(909\) 42414.1 1.54762
\(910\) 291.268 0.0106104
\(911\) −39799.5 −1.44744 −0.723719 0.690095i \(-0.757569\pi\)
−0.723719 + 0.690095i \(0.757569\pi\)
\(912\) −9694.62 −0.351997
\(913\) 13757.2 0.498683
\(914\) −13124.4 −0.474964
\(915\) −8031.33 −0.290172
\(916\) −11442.9 −0.412755
\(917\) 3350.00 0.120640
\(918\) 47938.2 1.72353
\(919\) −52801.4 −1.89527 −0.947637 0.319350i \(-0.896535\pi\)
−0.947637 + 0.319350i \(0.896535\pi\)
\(920\) 0 0
\(921\) 82547.1 2.95333
\(922\) 7719.67 0.275742
\(923\) −2441.38 −0.0870629
\(924\) 1309.73 0.0466308
\(925\) −24002.7 −0.853194
\(926\) 13021.3 0.462103
\(927\) −68851.9 −2.43947
\(928\) 26377.3 0.933056
\(929\) 46580.9 1.64507 0.822535 0.568714i \(-0.192559\pi\)
0.822535 + 0.568714i \(0.192559\pi\)
\(930\) 1132.36 0.0399263
\(931\) −13209.4 −0.465006
\(932\) 18786.7 0.660277
\(933\) 21007.4 0.737141
\(934\) 18496.2 0.647981
\(935\) −14129.3 −0.494200
\(936\) 3857.75 0.134716
\(937\) −30935.8 −1.07858 −0.539289 0.842121i \(-0.681307\pi\)
−0.539289 + 0.842121i \(0.681307\pi\)
\(938\) −3327.64 −0.115833
\(939\) −20689.2 −0.719027
\(940\) −7583.64 −0.263139
\(941\) −29008.4 −1.00494 −0.502470 0.864595i \(-0.667575\pi\)
−0.502470 + 0.864595i \(0.667575\pi\)
\(942\) −41678.3 −1.44156
\(943\) 0 0
\(944\) 12884.6 0.444236
\(945\) −19638.8 −0.676032
\(946\) −6529.84 −0.224422
\(947\) 2389.80 0.0820044 0.0410022 0.999159i \(-0.486945\pi\)
0.0410022 + 0.999159i \(0.486945\pi\)
\(948\) 43166.2 1.47887
\(949\) −577.559 −0.0197559
\(950\) −15478.7 −0.528625
\(951\) −43561.4 −1.48536
\(952\) −4831.11 −0.164472
\(953\) 46043.0 1.56504 0.782518 0.622628i \(-0.213935\pi\)
0.782518 + 0.622628i \(0.213935\pi\)
\(954\) 26183.2 0.888587
\(955\) −5687.35 −0.192710
\(956\) 672.188 0.0227407
\(957\) 23073.6 0.779376
\(958\) −15289.5 −0.515638
\(959\) −3322.72 −0.111883
\(960\) −84823.6 −2.85174
\(961\) −29781.1 −0.999667
\(962\) 697.943 0.0233915
\(963\) 45175.4 1.51169
\(964\) −14331.9 −0.478838
\(965\) −47514.9 −1.58504
\(966\) 0 0
\(967\) 8457.00 0.281240 0.140620 0.990064i \(-0.455090\pi\)
0.140620 + 0.990064i \(0.455090\pi\)
\(968\) −28499.8 −0.946301
\(969\) −23735.6 −0.786891
\(970\) 42419.1 1.40412
\(971\) 21315.7 0.704485 0.352242 0.935909i \(-0.385419\pi\)
0.352242 + 0.935909i \(0.385419\pi\)
\(972\) −21245.0 −0.701063
\(973\) 3440.86 0.113370
\(974\) 9806.23 0.322600
\(975\) 4255.60 0.139783
\(976\) −1228.86 −0.0403021
\(977\) 26026.7 0.852269 0.426134 0.904660i \(-0.359875\pi\)
0.426134 + 0.904660i \(0.359875\pi\)
\(978\) −33656.4 −1.10042
\(979\) −17092.8 −0.558006
\(980\) −19687.7 −0.641736
\(981\) −94144.9 −3.06403
\(982\) 21866.0 0.710562
\(983\) 35252.5 1.14382 0.571912 0.820315i \(-0.306202\pi\)
0.571912 + 0.820315i \(0.306202\pi\)
\(984\) 12658.4 0.410098
\(985\) 46983.5 1.51982
\(986\) −25259.7 −0.815855
\(987\) −3863.30 −0.124590
\(988\) −328.671 −0.0105834
\(989\) 0 0
\(990\) −31158.3 −1.00028
\(991\) 37877.6 1.21415 0.607075 0.794645i \(-0.292343\pi\)
0.607075 + 0.794645i \(0.292343\pi\)
\(992\) −442.965 −0.0141776
\(993\) −44925.6 −1.43572
\(994\) 6742.20 0.215140
\(995\) −19329.6 −0.615869
\(996\) 34444.8 1.09581
\(997\) 34456.5 1.09453 0.547266 0.836959i \(-0.315669\pi\)
0.547266 + 0.836959i \(0.315669\pi\)
\(998\) −12440.7 −0.394592
\(999\) −47059.0 −1.49037
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.9 25
23.7 odd 22 23.4.c.a.3.4 50
23.10 odd 22 23.4.c.a.8.4 yes 50
23.22 odd 2 529.4.a.n.1.9 25
69.53 even 22 207.4.i.a.118.2 50
69.56 even 22 207.4.i.a.100.2 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.3.4 50 23.7 odd 22
23.4.c.a.8.4 yes 50 23.10 odd 22
207.4.i.a.100.2 50 69.56 even 22
207.4.i.a.118.2 50 69.53 even 22
529.4.a.m.1.9 25 1.1 even 1 trivial
529.4.a.n.1.9 25 23.22 odd 2