Properties

Label 529.4.a.m.1.7
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.19041 q^{2} +1.55052 q^{3} +2.17871 q^{4} -19.2991 q^{5} -4.94680 q^{6} +19.8587 q^{7} +18.5723 q^{8} -24.5959 q^{9} +61.5722 q^{10} -17.2315 q^{11} +3.37814 q^{12} +37.7704 q^{13} -63.3574 q^{14} -29.9238 q^{15} -76.6829 q^{16} +22.1500 q^{17} +78.4709 q^{18} -6.74712 q^{19} -42.0473 q^{20} +30.7914 q^{21} +54.9754 q^{22} +28.7968 q^{24} +247.457 q^{25} -120.503 q^{26} -80.0006 q^{27} +43.2664 q^{28} +226.669 q^{29} +95.4691 q^{30} +292.339 q^{31} +96.0716 q^{32} -26.7178 q^{33} -70.6675 q^{34} -383.256 q^{35} -53.5873 q^{36} +113.785 q^{37} +21.5261 q^{38} +58.5639 q^{39} -358.429 q^{40} -443.225 q^{41} -98.2371 q^{42} -277.826 q^{43} -37.5424 q^{44} +474.679 q^{45} -75.1817 q^{47} -118.899 q^{48} +51.3683 q^{49} -789.489 q^{50} +34.3441 q^{51} +82.2909 q^{52} +195.931 q^{53} +255.235 q^{54} +332.553 q^{55} +368.822 q^{56} -10.4616 q^{57} -723.168 q^{58} -354.359 q^{59} -65.1953 q^{60} -36.1334 q^{61} -932.682 q^{62} -488.442 q^{63} +306.956 q^{64} -728.937 q^{65} +85.2407 q^{66} +40.3882 q^{67} +48.2585 q^{68} +1222.74 q^{70} +635.069 q^{71} -456.802 q^{72} +354.930 q^{73} -363.022 q^{74} +383.688 q^{75} -14.7000 q^{76} -342.195 q^{77} -186.843 q^{78} -726.065 q^{79} +1479.91 q^{80} +540.046 q^{81} +1414.07 q^{82} -1190.42 q^{83} +67.0856 q^{84} -427.476 q^{85} +886.379 q^{86} +351.456 q^{87} -320.028 q^{88} -1622.29 q^{89} -1514.42 q^{90} +750.072 q^{91} +453.279 q^{93} +239.860 q^{94} +130.214 q^{95} +148.961 q^{96} -621.081 q^{97} -163.886 q^{98} +423.823 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.19041 −1.12798 −0.563990 0.825782i \(-0.690734\pi\)
−0.563990 + 0.825782i \(0.690734\pi\)
\(3\) 1.55052 0.298398 0.149199 0.988807i \(-0.452330\pi\)
0.149199 + 0.988807i \(0.452330\pi\)
\(4\) 2.17871 0.272339
\(5\) −19.2991 −1.72617 −0.863084 0.505060i \(-0.831470\pi\)
−0.863084 + 0.505060i \(0.831470\pi\)
\(6\) −4.94680 −0.336587
\(7\) 19.8587 1.07227 0.536135 0.844132i \(-0.319884\pi\)
0.536135 + 0.844132i \(0.319884\pi\)
\(8\) 18.5723 0.820787
\(9\) −24.5959 −0.910958
\(10\) 61.5722 1.94708
\(11\) −17.2315 −0.472317 −0.236158 0.971715i \(-0.575888\pi\)
−0.236158 + 0.971715i \(0.575888\pi\)
\(12\) 3.37814 0.0812655
\(13\) 37.7704 0.805817 0.402909 0.915240i \(-0.367999\pi\)
0.402909 + 0.915240i \(0.367999\pi\)
\(14\) −63.3574 −1.20950
\(15\) −29.9238 −0.515086
\(16\) −76.6829 −1.19817
\(17\) 22.1500 0.316010 0.158005 0.987438i \(-0.449494\pi\)
0.158005 + 0.987438i \(0.449494\pi\)
\(18\) 78.4709 1.02754
\(19\) −6.74712 −0.0814681 −0.0407341 0.999170i \(-0.512970\pi\)
−0.0407341 + 0.999170i \(0.512970\pi\)
\(20\) −42.0473 −0.470103
\(21\) 30.7914 0.319963
\(22\) 54.9754 0.532764
\(23\) 0 0
\(24\) 28.7968 0.244921
\(25\) 247.457 1.97966
\(26\) −120.503 −0.908946
\(27\) −80.0006 −0.570227
\(28\) 43.2664 0.292021
\(29\) 226.669 1.45143 0.725715 0.687996i \(-0.241509\pi\)
0.725715 + 0.687996i \(0.241509\pi\)
\(30\) 95.4691 0.581006
\(31\) 292.339 1.69373 0.846866 0.531806i \(-0.178487\pi\)
0.846866 + 0.531806i \(0.178487\pi\)
\(32\) 96.0716 0.530725
\(33\) −26.7178 −0.140938
\(34\) −70.6675 −0.356452
\(35\) −383.256 −1.85092
\(36\) −53.5873 −0.248090
\(37\) 113.785 0.505573 0.252786 0.967522i \(-0.418653\pi\)
0.252786 + 0.967522i \(0.418653\pi\)
\(38\) 21.5261 0.0918944
\(39\) 58.5639 0.240455
\(40\) −358.429 −1.41682
\(41\) −443.225 −1.68830 −0.844148 0.536110i \(-0.819893\pi\)
−0.844148 + 0.536110i \(0.819893\pi\)
\(42\) −98.2371 −0.360912
\(43\) −277.826 −0.985304 −0.492652 0.870226i \(-0.663972\pi\)
−0.492652 + 0.870226i \(0.663972\pi\)
\(44\) −37.5424 −0.128630
\(45\) 474.679 1.57247
\(46\) 0 0
\(47\) −75.1817 −0.233327 −0.116664 0.993171i \(-0.537220\pi\)
−0.116664 + 0.993171i \(0.537220\pi\)
\(48\) −118.899 −0.357532
\(49\) 51.3683 0.149762
\(50\) −789.489 −2.23301
\(51\) 34.3441 0.0942967
\(52\) 82.2909 0.219456
\(53\) 195.931 0.507796 0.253898 0.967231i \(-0.418287\pi\)
0.253898 + 0.967231i \(0.418287\pi\)
\(54\) 255.235 0.643204
\(55\) 332.553 0.815298
\(56\) 368.822 0.880105
\(57\) −10.4616 −0.0243100
\(58\) −723.168 −1.63718
\(59\) −354.359 −0.781926 −0.390963 0.920406i \(-0.627858\pi\)
−0.390963 + 0.920406i \(0.627858\pi\)
\(60\) −65.1953 −0.140278
\(61\) −36.1334 −0.0758427 −0.0379214 0.999281i \(-0.512074\pi\)
−0.0379214 + 0.999281i \(0.512074\pi\)
\(62\) −932.682 −1.91050
\(63\) −488.442 −0.976793
\(64\) 306.956 0.599523
\(65\) −728.937 −1.39098
\(66\) 85.2407 0.158976
\(67\) 40.3882 0.0736449 0.0368224 0.999322i \(-0.488276\pi\)
0.0368224 + 0.999322i \(0.488276\pi\)
\(68\) 48.2585 0.0860617
\(69\) 0 0
\(70\) 1222.74 2.08780
\(71\) 635.069 1.06153 0.530766 0.847518i \(-0.321904\pi\)
0.530766 + 0.847518i \(0.321904\pi\)
\(72\) −456.802 −0.747703
\(73\) 354.930 0.569060 0.284530 0.958667i \(-0.408162\pi\)
0.284530 + 0.958667i \(0.408162\pi\)
\(74\) −363.022 −0.570276
\(75\) 383.688 0.590726
\(76\) −14.7000 −0.0221870
\(77\) −342.195 −0.506451
\(78\) −186.843 −0.271228
\(79\) −726.065 −1.03403 −0.517017 0.855975i \(-0.672958\pi\)
−0.517017 + 0.855975i \(0.672958\pi\)
\(80\) 1479.91 2.06824
\(81\) 540.046 0.740804
\(82\) 1414.07 1.90436
\(83\) −1190.42 −1.57428 −0.787141 0.616774i \(-0.788439\pi\)
−0.787141 + 0.616774i \(0.788439\pi\)
\(84\) 67.0856 0.0871385
\(85\) −427.476 −0.545486
\(86\) 886.379 1.11140
\(87\) 351.456 0.433104
\(88\) −320.028 −0.387671
\(89\) −1622.29 −1.93216 −0.966079 0.258246i \(-0.916856\pi\)
−0.966079 + 0.258246i \(0.916856\pi\)
\(90\) −1514.42 −1.77371
\(91\) 750.072 0.864053
\(92\) 0 0
\(93\) 453.279 0.505407
\(94\) 239.860 0.263188
\(95\) 130.214 0.140628
\(96\) 148.961 0.158368
\(97\) −621.081 −0.650116 −0.325058 0.945694i \(-0.605384\pi\)
−0.325058 + 0.945694i \(0.605384\pi\)
\(98\) −163.886 −0.168928
\(99\) 423.823 0.430261
\(100\) 539.138 0.539138
\(101\) −608.309 −0.599297 −0.299649 0.954050i \(-0.596869\pi\)
−0.299649 + 0.954050i \(0.596869\pi\)
\(102\) −109.572 −0.106365
\(103\) −1037.77 −0.992762 −0.496381 0.868105i \(-0.665338\pi\)
−0.496381 + 0.868105i \(0.665338\pi\)
\(104\) 701.483 0.661405
\(105\) −594.248 −0.552311
\(106\) −625.100 −0.572784
\(107\) −1329.55 −1.20124 −0.600619 0.799535i \(-0.705079\pi\)
−0.600619 + 0.799535i \(0.705079\pi\)
\(108\) −174.298 −0.155295
\(109\) 1222.75 1.07448 0.537242 0.843428i \(-0.319466\pi\)
0.537242 + 0.843428i \(0.319466\pi\)
\(110\) −1060.98 −0.919640
\(111\) 176.427 0.150862
\(112\) −1522.82 −1.28476
\(113\) −727.319 −0.605490 −0.302745 0.953072i \(-0.597903\pi\)
−0.302745 + 0.953072i \(0.597903\pi\)
\(114\) 33.3767 0.0274211
\(115\) 0 0
\(116\) 493.848 0.395281
\(117\) −928.996 −0.734066
\(118\) 1130.55 0.881997
\(119\) 439.870 0.338847
\(120\) −555.753 −0.422776
\(121\) −1034.08 −0.776917
\(122\) 115.280 0.0855491
\(123\) −687.231 −0.503785
\(124\) 636.923 0.461269
\(125\) −2363.32 −1.69105
\(126\) 1558.33 1.10180
\(127\) 540.736 0.377815 0.188908 0.981995i \(-0.439505\pi\)
0.188908 + 0.981995i \(0.439505\pi\)
\(128\) −1747.89 −1.20698
\(129\) −430.776 −0.294013
\(130\) 2325.61 1.56899
\(131\) 48.5943 0.0324100 0.0162050 0.999869i \(-0.494842\pi\)
0.0162050 + 0.999869i \(0.494842\pi\)
\(132\) −58.2104 −0.0383830
\(133\) −133.989 −0.0873558
\(134\) −128.855 −0.0830700
\(135\) 1543.94 0.984307
\(136\) 411.376 0.259377
\(137\) −1628.45 −1.01553 −0.507766 0.861495i \(-0.669529\pi\)
−0.507766 + 0.861495i \(0.669529\pi\)
\(138\) 0 0
\(139\) 1143.09 0.697524 0.348762 0.937211i \(-0.386602\pi\)
0.348762 + 0.937211i \(0.386602\pi\)
\(140\) −835.005 −0.504077
\(141\) −116.571 −0.0696245
\(142\) −2026.13 −1.19739
\(143\) −650.839 −0.380601
\(144\) 1886.08 1.09148
\(145\) −4374.53 −2.50541
\(146\) −1132.37 −0.641889
\(147\) 79.6478 0.0446887
\(148\) 247.906 0.137687
\(149\) 352.672 0.193906 0.0969530 0.995289i \(-0.469090\pi\)
0.0969530 + 0.995289i \(0.469090\pi\)
\(150\) −1224.12 −0.666327
\(151\) 966.880 0.521083 0.260542 0.965463i \(-0.416099\pi\)
0.260542 + 0.965463i \(0.416099\pi\)
\(152\) −125.309 −0.0668680
\(153\) −544.799 −0.287872
\(154\) 1091.74 0.571266
\(155\) −5641.90 −2.92367
\(156\) 127.594 0.0654852
\(157\) −1212.39 −0.616303 −0.308152 0.951337i \(-0.599710\pi\)
−0.308152 + 0.951337i \(0.599710\pi\)
\(158\) 2316.45 1.16637
\(159\) 303.796 0.151526
\(160\) −1854.10 −0.916121
\(161\) 0 0
\(162\) −1722.97 −0.835612
\(163\) 772.621 0.371266 0.185633 0.982619i \(-0.440566\pi\)
0.185633 + 0.982619i \(0.440566\pi\)
\(164\) −965.660 −0.459789
\(165\) 515.630 0.243283
\(166\) 3797.92 1.77576
\(167\) −2462.48 −1.14103 −0.570517 0.821286i \(-0.693257\pi\)
−0.570517 + 0.821286i \(0.693257\pi\)
\(168\) 571.867 0.262622
\(169\) −770.396 −0.350658
\(170\) 1363.82 0.615297
\(171\) 165.951 0.0742141
\(172\) −605.303 −0.268337
\(173\) 540.078 0.237349 0.118675 0.992933i \(-0.462135\pi\)
0.118675 + 0.992933i \(0.462135\pi\)
\(174\) −1121.29 −0.488533
\(175\) 4914.18 2.12273
\(176\) 1321.36 0.565916
\(177\) −549.442 −0.233325
\(178\) 5175.76 2.17944
\(179\) 1547.02 0.645978 0.322989 0.946403i \(-0.395312\pi\)
0.322989 + 0.946403i \(0.395312\pi\)
\(180\) 1034.19 0.428244
\(181\) −1404.76 −0.576877 −0.288438 0.957498i \(-0.593136\pi\)
−0.288438 + 0.957498i \(0.593136\pi\)
\(182\) −2393.04 −0.974635
\(183\) −56.0256 −0.0226313
\(184\) 0 0
\(185\) −2195.96 −0.872704
\(186\) −1446.15 −0.570089
\(187\) −381.677 −0.149257
\(188\) −163.799 −0.0635441
\(189\) −1588.71 −0.611437
\(190\) −415.435 −0.158625
\(191\) 3186.91 1.20731 0.603656 0.797245i \(-0.293710\pi\)
0.603656 + 0.797245i \(0.293710\pi\)
\(192\) 475.942 0.178897
\(193\) −3363.83 −1.25458 −0.627289 0.778786i \(-0.715836\pi\)
−0.627289 + 0.778786i \(0.715836\pi\)
\(194\) 1981.50 0.733318
\(195\) −1130.23 −0.415065
\(196\) 111.917 0.0407860
\(197\) 1025.25 0.370794 0.185397 0.982664i \(-0.440643\pi\)
0.185397 + 0.982664i \(0.440643\pi\)
\(198\) −1352.17 −0.485326
\(199\) −1924.81 −0.685658 −0.342829 0.939398i \(-0.611385\pi\)
−0.342829 + 0.939398i \(0.611385\pi\)
\(200\) 4595.84 1.62488
\(201\) 62.6229 0.0219755
\(202\) 1940.75 0.675995
\(203\) 4501.36 1.55632
\(204\) 74.8259 0.0256807
\(205\) 8553.87 2.91428
\(206\) 3310.91 1.11982
\(207\) 0 0
\(208\) −2896.34 −0.965507
\(209\) 116.263 0.0384788
\(210\) 1895.89 0.622995
\(211\) 4157.97 1.35662 0.678309 0.734777i \(-0.262713\pi\)
0.678309 + 0.734777i \(0.262713\pi\)
\(212\) 426.877 0.138293
\(213\) 984.689 0.316759
\(214\) 4241.81 1.35497
\(215\) 5361.81 1.70080
\(216\) −1485.79 −0.468035
\(217\) 5805.48 1.81614
\(218\) −3901.09 −1.21200
\(219\) 550.327 0.169807
\(220\) 724.536 0.222037
\(221\) 836.614 0.254646
\(222\) −562.874 −0.170169
\(223\) −1252.06 −0.375983 −0.187991 0.982171i \(-0.560198\pi\)
−0.187991 + 0.982171i \(0.560198\pi\)
\(224\) 1907.86 0.569081
\(225\) −6086.42 −1.80338
\(226\) 2320.44 0.682981
\(227\) 3523.38 1.03020 0.515099 0.857131i \(-0.327755\pi\)
0.515099 + 0.857131i \(0.327755\pi\)
\(228\) −22.7927 −0.00662055
\(229\) 686.340 0.198055 0.0990275 0.995085i \(-0.468427\pi\)
0.0990275 + 0.995085i \(0.468427\pi\)
\(230\) 0 0
\(231\) −530.581 −0.151124
\(232\) 4209.77 1.19131
\(233\) −949.949 −0.267095 −0.133548 0.991042i \(-0.542637\pi\)
−0.133548 + 0.991042i \(0.542637\pi\)
\(234\) 2963.88 0.828012
\(235\) 1450.94 0.402762
\(236\) −772.047 −0.212949
\(237\) −1125.78 −0.308554
\(238\) −1403.37 −0.382213
\(239\) 3808.49 1.03076 0.515378 0.856963i \(-0.327651\pi\)
0.515378 + 0.856963i \(0.327651\pi\)
\(240\) 2294.64 0.617160
\(241\) −3055.59 −0.816713 −0.408357 0.912822i \(-0.633898\pi\)
−0.408357 + 0.912822i \(0.633898\pi\)
\(242\) 3299.13 0.876347
\(243\) 2997.37 0.791281
\(244\) −78.7242 −0.0206549
\(245\) −991.365 −0.258514
\(246\) 2192.55 0.568259
\(247\) −254.841 −0.0656485
\(248\) 5429.41 1.39019
\(249\) −1845.77 −0.469763
\(250\) 7539.95 1.90747
\(251\) 958.620 0.241066 0.120533 0.992709i \(-0.461540\pi\)
0.120533 + 0.992709i \(0.461540\pi\)
\(252\) −1064.18 −0.266019
\(253\) 0 0
\(254\) −1725.17 −0.426168
\(255\) −662.811 −0.162772
\(256\) 3120.83 0.761921
\(257\) 3288.89 0.798271 0.399135 0.916892i \(-0.369310\pi\)
0.399135 + 0.916892i \(0.369310\pi\)
\(258\) 1374.35 0.331641
\(259\) 2259.63 0.542110
\(260\) −1588.14 −0.378817
\(261\) −5575.13 −1.32219
\(262\) −155.036 −0.0365578
\(263\) −2275.07 −0.533410 −0.266705 0.963778i \(-0.585935\pi\)
−0.266705 + 0.963778i \(0.585935\pi\)
\(264\) −496.210 −0.115680
\(265\) −3781.30 −0.876542
\(266\) 427.480 0.0985356
\(267\) −2515.39 −0.576553
\(268\) 87.9943 0.0200564
\(269\) −2902.01 −0.657764 −0.328882 0.944371i \(-0.606672\pi\)
−0.328882 + 0.944371i \(0.606672\pi\)
\(270\) −4925.81 −1.11028
\(271\) 3352.53 0.751483 0.375741 0.926725i \(-0.377388\pi\)
0.375741 + 0.926725i \(0.377388\pi\)
\(272\) −1698.53 −0.378633
\(273\) 1163.00 0.257832
\(274\) 5195.43 1.14550
\(275\) −4264.05 −0.935025
\(276\) 0 0
\(277\) −6066.83 −1.31596 −0.657979 0.753036i \(-0.728588\pi\)
−0.657979 + 0.753036i \(0.728588\pi\)
\(278\) −3646.93 −0.786793
\(279\) −7190.34 −1.54292
\(280\) −7117.94 −1.51921
\(281\) 1946.68 0.413271 0.206635 0.978418i \(-0.433749\pi\)
0.206635 + 0.978418i \(0.433749\pi\)
\(282\) 371.909 0.0785350
\(283\) −3619.04 −0.760175 −0.380088 0.924951i \(-0.624106\pi\)
−0.380088 + 0.924951i \(0.624106\pi\)
\(284\) 1383.63 0.289097
\(285\) 201.899 0.0419631
\(286\) 2076.44 0.429310
\(287\) −8801.88 −1.81031
\(288\) −2362.96 −0.483469
\(289\) −4422.38 −0.900138
\(290\) 13956.5 2.82605
\(291\) −963.001 −0.193994
\(292\) 773.290 0.154977
\(293\) 2366.36 0.471823 0.235912 0.971775i \(-0.424192\pi\)
0.235912 + 0.971775i \(0.424192\pi\)
\(294\) −254.109 −0.0504080
\(295\) 6838.83 1.34974
\(296\) 2113.25 0.414968
\(297\) 1378.53 0.269328
\(298\) −1125.17 −0.218722
\(299\) 0 0
\(300\) 835.946 0.160878
\(301\) −5517.27 −1.05651
\(302\) −3084.74 −0.587771
\(303\) −943.197 −0.178829
\(304\) 517.389 0.0976127
\(305\) 697.343 0.130917
\(306\) 1738.13 0.324713
\(307\) 326.171 0.0606370 0.0303185 0.999540i \(-0.490348\pi\)
0.0303185 + 0.999540i \(0.490348\pi\)
\(308\) −745.544 −0.137926
\(309\) −1609.09 −0.296239
\(310\) 18000.0 3.29784
\(311\) −306.470 −0.0558789 −0.0279395 0.999610i \(-0.508895\pi\)
−0.0279395 + 0.999610i \(0.508895\pi\)
\(312\) 1087.67 0.197362
\(313\) 4458.02 0.805055 0.402527 0.915408i \(-0.368132\pi\)
0.402527 + 0.915408i \(0.368132\pi\)
\(314\) 3868.03 0.695178
\(315\) 9426.52 1.68611
\(316\) −1581.89 −0.281608
\(317\) −8877.46 −1.57290 −0.786448 0.617657i \(-0.788082\pi\)
−0.786448 + 0.617657i \(0.788082\pi\)
\(318\) −969.232 −0.170918
\(319\) −3905.85 −0.685534
\(320\) −5923.98 −1.03488
\(321\) −2061.50 −0.358447
\(322\) 0 0
\(323\) −149.449 −0.0257447
\(324\) 1176.60 0.201750
\(325\) 9346.55 1.59524
\(326\) −2464.98 −0.418781
\(327\) 1895.91 0.320624
\(328\) −8231.71 −1.38573
\(329\) −1493.01 −0.250190
\(330\) −1645.07 −0.274419
\(331\) −2163.47 −0.359259 −0.179630 0.983734i \(-0.557490\pi\)
−0.179630 + 0.983734i \(0.557490\pi\)
\(332\) −2593.58 −0.428738
\(333\) −2798.65 −0.460556
\(334\) 7856.33 1.28706
\(335\) −779.458 −0.127123
\(336\) −2361.17 −0.383371
\(337\) −3371.87 −0.545038 −0.272519 0.962150i \(-0.587857\pi\)
−0.272519 + 0.962150i \(0.587857\pi\)
\(338\) 2457.88 0.395536
\(339\) −1127.72 −0.180677
\(340\) −931.347 −0.148557
\(341\) −5037.44 −0.799978
\(342\) −529.452 −0.0837120
\(343\) −5791.43 −0.911684
\(344\) −5159.87 −0.808725
\(345\) 0 0
\(346\) −1723.07 −0.267725
\(347\) −1676.46 −0.259358 −0.129679 0.991556i \(-0.541395\pi\)
−0.129679 + 0.991556i \(0.541395\pi\)
\(348\) 765.722 0.117951
\(349\) 1161.04 0.178077 0.0890385 0.996028i \(-0.471621\pi\)
0.0890385 + 0.996028i \(0.471621\pi\)
\(350\) −15678.2 −2.39439
\(351\) −3021.66 −0.459499
\(352\) −1655.45 −0.250670
\(353\) −1837.85 −0.277107 −0.138554 0.990355i \(-0.544245\pi\)
−0.138554 + 0.990355i \(0.544245\pi\)
\(354\) 1752.95 0.263186
\(355\) −12256.3 −1.83238
\(356\) −3534.50 −0.526202
\(357\) 682.029 0.101112
\(358\) −4935.64 −0.728650
\(359\) −13137.1 −1.93133 −0.965666 0.259787i \(-0.916348\pi\)
−0.965666 + 0.259787i \(0.916348\pi\)
\(360\) 8815.89 1.29066
\(361\) −6813.48 −0.993363
\(362\) 4481.75 0.650705
\(363\) −1603.36 −0.231831
\(364\) 1634.19 0.235315
\(365\) −6849.84 −0.982294
\(366\) 178.745 0.0255277
\(367\) 9390.56 1.33565 0.667825 0.744319i \(-0.267226\pi\)
0.667825 + 0.744319i \(0.267226\pi\)
\(368\) 0 0
\(369\) 10901.5 1.53797
\(370\) 7006.01 0.984392
\(371\) 3890.94 0.544494
\(372\) 987.564 0.137642
\(373\) 12801.7 1.77707 0.888534 0.458811i \(-0.151724\pi\)
0.888534 + 0.458811i \(0.151724\pi\)
\(374\) 1217.71 0.168358
\(375\) −3664.38 −0.504607
\(376\) −1396.30 −0.191512
\(377\) 8561.40 1.16959
\(378\) 5068.63 0.689689
\(379\) 6576.73 0.891356 0.445678 0.895193i \(-0.352963\pi\)
0.445678 + 0.895193i \(0.352963\pi\)
\(380\) 283.698 0.0382984
\(381\) 838.424 0.112739
\(382\) −10167.5 −1.36182
\(383\) 5752.89 0.767517 0.383759 0.923433i \(-0.374629\pi\)
0.383759 + 0.923433i \(0.374629\pi\)
\(384\) −2710.14 −0.360159
\(385\) 6604.06 0.874219
\(386\) 10732.0 1.41514
\(387\) 6833.38 0.897571
\(388\) −1353.16 −0.177052
\(389\) −5859.60 −0.763736 −0.381868 0.924217i \(-0.624719\pi\)
−0.381868 + 0.924217i \(0.624719\pi\)
\(390\) 3605.91 0.468185
\(391\) 0 0
\(392\) 954.028 0.122923
\(393\) 75.3466 0.00967108
\(394\) −3270.98 −0.418248
\(395\) 14012.4 1.78492
\(396\) 923.388 0.117177
\(397\) 10657.5 1.34732 0.673661 0.739041i \(-0.264721\pi\)
0.673661 + 0.739041i \(0.264721\pi\)
\(398\) 6140.93 0.773409
\(399\) −207.753 −0.0260668
\(400\) −18975.7 −2.37197
\(401\) −6687.73 −0.832841 −0.416420 0.909172i \(-0.636716\pi\)
−0.416420 + 0.909172i \(0.636716\pi\)
\(402\) −199.793 −0.0247879
\(403\) 11041.8 1.36484
\(404\) −1325.33 −0.163212
\(405\) −10422.4 −1.27875
\(406\) −14361.2 −1.75550
\(407\) −1960.69 −0.238790
\(408\) 637.848 0.0773975
\(409\) 5118.39 0.618797 0.309399 0.950932i \(-0.399872\pi\)
0.309399 + 0.950932i \(0.399872\pi\)
\(410\) −27290.3 −3.28725
\(411\) −2524.95 −0.303033
\(412\) −2261.00 −0.270368
\(413\) −7037.12 −0.838436
\(414\) 0 0
\(415\) 22974.0 2.71747
\(416\) 3628.66 0.427668
\(417\) 1772.39 0.208140
\(418\) −370.926 −0.0434033
\(419\) −11267.7 −1.31375 −0.656877 0.753998i \(-0.728123\pi\)
−0.656877 + 0.753998i \(0.728123\pi\)
\(420\) −1294.69 −0.150416
\(421\) −9880.23 −1.14378 −0.571892 0.820329i \(-0.693790\pi\)
−0.571892 + 0.820329i \(0.693790\pi\)
\(422\) −13265.6 −1.53024
\(423\) 1849.16 0.212551
\(424\) 3638.89 0.416793
\(425\) 5481.17 0.625590
\(426\) −3141.56 −0.357298
\(427\) −717.562 −0.0813238
\(428\) −2896.71 −0.327144
\(429\) −1009.14 −0.113571
\(430\) −17106.4 −1.91847
\(431\) 3597.69 0.402075 0.201038 0.979583i \(-0.435569\pi\)
0.201038 + 0.979583i \(0.435569\pi\)
\(432\) 6134.68 0.683229
\(433\) 14357.9 1.59352 0.796761 0.604294i \(-0.206545\pi\)
0.796761 + 0.604294i \(0.206545\pi\)
\(434\) −18521.9 −2.04857
\(435\) −6782.81 −0.747611
\(436\) 2664.03 0.292624
\(437\) 0 0
\(438\) −1755.77 −0.191539
\(439\) −13097.5 −1.42394 −0.711971 0.702209i \(-0.752197\pi\)
−0.711971 + 0.702209i \(0.752197\pi\)
\(440\) 6176.26 0.669186
\(441\) −1263.45 −0.136427
\(442\) −2669.14 −0.287236
\(443\) −9920.87 −1.06401 −0.532003 0.846743i \(-0.678560\pi\)
−0.532003 + 0.846743i \(0.678560\pi\)
\(444\) 384.383 0.0410856
\(445\) 31308.8 3.33523
\(446\) 3994.59 0.424101
\(447\) 546.826 0.0578612
\(448\) 6095.74 0.642850
\(449\) −11647.7 −1.22425 −0.612127 0.790759i \(-0.709686\pi\)
−0.612127 + 0.790759i \(0.709686\pi\)
\(450\) 19418.2 2.03418
\(451\) 7637.42 0.797410
\(452\) −1584.62 −0.164899
\(453\) 1499.17 0.155490
\(454\) −11241.0 −1.16204
\(455\) −14475.7 −1.49150
\(456\) −194.295 −0.0199533
\(457\) −4382.80 −0.448619 −0.224309 0.974518i \(-0.572013\pi\)
−0.224309 + 0.974518i \(0.572013\pi\)
\(458\) −2189.70 −0.223402
\(459\) −1772.01 −0.180197
\(460\) 0 0
\(461\) −2500.17 −0.252591 −0.126296 0.991993i \(-0.540309\pi\)
−0.126296 + 0.991993i \(0.540309\pi\)
\(462\) 1692.77 0.170465
\(463\) −11935.3 −1.19801 −0.599005 0.800745i \(-0.704437\pi\)
−0.599005 + 0.800745i \(0.704437\pi\)
\(464\) −17381.7 −1.73906
\(465\) −8747.90 −0.872417
\(466\) 3030.73 0.301278
\(467\) 14879.3 1.47437 0.737184 0.675692i \(-0.236155\pi\)
0.737184 + 0.675692i \(0.236155\pi\)
\(468\) −2024.02 −0.199915
\(469\) 802.058 0.0789672
\(470\) −4629.10 −0.454308
\(471\) −1879.85 −0.183904
\(472\) −6581.26 −0.641795
\(473\) 4787.35 0.465375
\(474\) 3591.70 0.348043
\(475\) −1669.62 −0.161279
\(476\) 958.351 0.0922814
\(477\) −4819.10 −0.462581
\(478\) −12150.6 −1.16267
\(479\) −13932.8 −1.32903 −0.664513 0.747276i \(-0.731361\pi\)
−0.664513 + 0.747276i \(0.731361\pi\)
\(480\) −2874.82 −0.273369
\(481\) 4297.72 0.407399
\(482\) 9748.58 0.921236
\(483\) 0 0
\(484\) −2252.96 −0.211585
\(485\) 11986.3 1.12221
\(486\) −9562.84 −0.892550
\(487\) −15845.1 −1.47435 −0.737175 0.675702i \(-0.763841\pi\)
−0.737175 + 0.675702i \(0.763841\pi\)
\(488\) −671.080 −0.0622507
\(489\) 1197.97 0.110785
\(490\) 3162.86 0.291599
\(491\) −3273.12 −0.300843 −0.150421 0.988622i \(-0.548063\pi\)
−0.150421 + 0.988622i \(0.548063\pi\)
\(492\) −1497.28 −0.137200
\(493\) 5020.73 0.458666
\(494\) 813.048 0.0740501
\(495\) −8179.42 −0.742702
\(496\) −22417.4 −2.02938
\(497\) 12611.6 1.13825
\(498\) 5888.76 0.529883
\(499\) −13135.4 −1.17840 −0.589202 0.807986i \(-0.700558\pi\)
−0.589202 + 0.807986i \(0.700558\pi\)
\(500\) −5148.99 −0.460540
\(501\) −3818.14 −0.340483
\(502\) −3058.39 −0.271918
\(503\) 10138.3 0.898698 0.449349 0.893356i \(-0.351656\pi\)
0.449349 + 0.893356i \(0.351656\pi\)
\(504\) −9071.49 −0.801739
\(505\) 11739.8 1.03449
\(506\) 0 0
\(507\) −1194.52 −0.104636
\(508\) 1178.11 0.102894
\(509\) −1804.96 −0.157178 −0.0785888 0.996907i \(-0.525041\pi\)
−0.0785888 + 0.996907i \(0.525041\pi\)
\(510\) 2114.64 0.183604
\(511\) 7048.45 0.610186
\(512\) 4026.37 0.347543
\(513\) 539.773 0.0464553
\(514\) −10492.9 −0.900433
\(515\) 20028.1 1.71367
\(516\) −938.537 −0.0800713
\(517\) 1295.49 0.110204
\(518\) −7209.14 −0.611490
\(519\) 837.404 0.0708246
\(520\) −13538.0 −1.14170
\(521\) 1473.76 0.123928 0.0619641 0.998078i \(-0.480264\pi\)
0.0619641 + 0.998078i \(0.480264\pi\)
\(522\) 17787.0 1.49141
\(523\) −54.1107 −0.00452408 −0.00226204 0.999997i \(-0.500720\pi\)
−0.00226204 + 0.999997i \(0.500720\pi\)
\(524\) 105.873 0.00882650
\(525\) 7619.55 0.633418
\(526\) 7258.41 0.601676
\(527\) 6475.31 0.535236
\(528\) 2048.80 0.168868
\(529\) 0 0
\(530\) 12063.9 0.988721
\(531\) 8715.78 0.712302
\(532\) −291.924 −0.0237904
\(533\) −16740.8 −1.36046
\(534\) 8025.14 0.650340
\(535\) 25659.2 2.07354
\(536\) 750.102 0.0604468
\(537\) 2398.70 0.192759
\(538\) 9258.59 0.741945
\(539\) −885.152 −0.0707350
\(540\) 3363.81 0.268065
\(541\) −3147.39 −0.250123 −0.125062 0.992149i \(-0.539913\pi\)
−0.125062 + 0.992149i \(0.539913\pi\)
\(542\) −10696.0 −0.847658
\(543\) −2178.11 −0.172139
\(544\) 2127.98 0.167714
\(545\) −23598.1 −1.85474
\(546\) −3710.46 −0.290829
\(547\) 1092.23 0.0853752 0.0426876 0.999088i \(-0.486408\pi\)
0.0426876 + 0.999088i \(0.486408\pi\)
\(548\) −3547.93 −0.276569
\(549\) 888.732 0.0690895
\(550\) 13604.1 1.05469
\(551\) −1529.37 −0.118245
\(552\) 0 0
\(553\) −14418.7 −1.10876
\(554\) 19355.7 1.48437
\(555\) −3404.89 −0.260413
\(556\) 2490.47 0.189963
\(557\) 15256.2 1.16055 0.580274 0.814421i \(-0.302945\pi\)
0.580274 + 0.814421i \(0.302945\pi\)
\(558\) 22940.1 1.74038
\(559\) −10493.6 −0.793975
\(560\) 29389.2 2.21771
\(561\) −591.799 −0.0445379
\(562\) −6210.70 −0.466161
\(563\) −14937.8 −1.11821 −0.559107 0.829096i \(-0.688856\pi\)
−0.559107 + 0.829096i \(0.688856\pi\)
\(564\) −253.975 −0.0189615
\(565\) 14036.6 1.04518
\(566\) 11546.2 0.857462
\(567\) 10724.6 0.794341
\(568\) 11794.7 0.871292
\(569\) −6987.69 −0.514831 −0.257416 0.966301i \(-0.582871\pi\)
−0.257416 + 0.966301i \(0.582871\pi\)
\(570\) −644.141 −0.0473335
\(571\) −13846.6 −1.01482 −0.507411 0.861704i \(-0.669397\pi\)
−0.507411 + 0.861704i \(0.669397\pi\)
\(572\) −1417.99 −0.103652
\(573\) 4941.38 0.360260
\(574\) 28081.6 2.04199
\(575\) 0 0
\(576\) −7549.84 −0.546140
\(577\) −4051.08 −0.292286 −0.146143 0.989264i \(-0.546686\pi\)
−0.146143 + 0.989264i \(0.546686\pi\)
\(578\) 14109.2 1.01534
\(579\) −5215.70 −0.374364
\(580\) −9530.84 −0.682322
\(581\) −23640.2 −1.68805
\(582\) 3072.37 0.218821
\(583\) −3376.18 −0.239841
\(584\) 6591.86 0.467077
\(585\) 17928.8 1.26712
\(586\) −7549.66 −0.532207
\(587\) −17976.8 −1.26402 −0.632012 0.774959i \(-0.717771\pi\)
−0.632012 + 0.774959i \(0.717771\pi\)
\(588\) 173.530 0.0121705
\(589\) −1972.45 −0.137985
\(590\) −21818.7 −1.52248
\(591\) 1589.68 0.110644
\(592\) −8725.39 −0.605762
\(593\) 22373.5 1.54936 0.774680 0.632354i \(-0.217911\pi\)
0.774680 + 0.632354i \(0.217911\pi\)
\(594\) −4398.07 −0.303796
\(595\) −8489.12 −0.584908
\(596\) 768.370 0.0528082
\(597\) −2984.46 −0.204599
\(598\) 0 0
\(599\) 6088.93 0.415337 0.207669 0.978199i \(-0.433412\pi\)
0.207669 + 0.978199i \(0.433412\pi\)
\(600\) 7125.96 0.484860
\(601\) 4618.28 0.313450 0.156725 0.987642i \(-0.449906\pi\)
0.156725 + 0.987642i \(0.449906\pi\)
\(602\) 17602.3 1.19172
\(603\) −993.384 −0.0670874
\(604\) 2106.55 0.141911
\(605\) 19956.8 1.34109
\(606\) 3009.19 0.201716
\(607\) −21555.2 −1.44135 −0.720673 0.693275i \(-0.756167\pi\)
−0.720673 + 0.693275i \(0.756167\pi\)
\(608\) −648.206 −0.0432372
\(609\) 6979.47 0.464404
\(610\) −2224.81 −0.147672
\(611\) −2839.64 −0.188019
\(612\) −1186.96 −0.0783987
\(613\) −11049.5 −0.728034 −0.364017 0.931392i \(-0.618595\pi\)
−0.364017 + 0.931392i \(0.618595\pi\)
\(614\) −1040.62 −0.0683973
\(615\) 13263.0 0.869617
\(616\) −6355.34 −0.415688
\(617\) 6319.90 0.412366 0.206183 0.978513i \(-0.433896\pi\)
0.206183 + 0.978513i \(0.433896\pi\)
\(618\) 5133.64 0.334151
\(619\) −15420.9 −1.00132 −0.500662 0.865643i \(-0.666910\pi\)
−0.500662 + 0.865643i \(0.666910\pi\)
\(620\) −12292.1 −0.796229
\(621\) 0 0
\(622\) 977.766 0.0630303
\(623\) −32216.5 −2.07179
\(624\) −4490.85 −0.288106
\(625\) 14677.9 0.939384
\(626\) −14222.9 −0.908086
\(627\) 180.268 0.0114820
\(628\) −2641.46 −0.167843
\(629\) 2520.34 0.159766
\(630\) −30074.5 −1.90190
\(631\) 30890.3 1.94885 0.974424 0.224718i \(-0.0721462\pi\)
0.974424 + 0.224718i \(0.0721462\pi\)
\(632\) −13484.7 −0.848722
\(633\) 6447.03 0.404813
\(634\) 28322.7 1.77420
\(635\) −10435.7 −0.652173
\(636\) 661.883 0.0412663
\(637\) 1940.20 0.120681
\(638\) 12461.3 0.773269
\(639\) −15620.1 −0.967012
\(640\) 33732.7 2.08344
\(641\) 4693.19 0.289189 0.144594 0.989491i \(-0.453812\pi\)
0.144594 + 0.989491i \(0.453812\pi\)
\(642\) 6577.02 0.404322
\(643\) −31374.5 −1.92425 −0.962123 0.272615i \(-0.912112\pi\)
−0.962123 + 0.272615i \(0.912112\pi\)
\(644\) 0 0
\(645\) 8313.61 0.507516
\(646\) 476.802 0.0290395
\(647\) −20657.7 −1.25524 −0.627620 0.778520i \(-0.715971\pi\)
−0.627620 + 0.778520i \(0.715971\pi\)
\(648\) 10029.9 0.608042
\(649\) 6106.13 0.369317
\(650\) −29819.3 −1.79940
\(651\) 9001.53 0.541932
\(652\) 1683.32 0.101110
\(653\) 10213.7 0.612088 0.306044 0.952017i \(-0.400995\pi\)
0.306044 + 0.952017i \(0.400995\pi\)
\(654\) −6048.73 −0.361657
\(655\) −937.829 −0.0559451
\(656\) 33987.8 2.02287
\(657\) −8729.81 −0.518390
\(658\) 4763.32 0.282209
\(659\) −1863.82 −0.110173 −0.0550867 0.998482i \(-0.517544\pi\)
−0.0550867 + 0.998482i \(0.517544\pi\)
\(660\) 1123.41 0.0662556
\(661\) 7888.30 0.464174 0.232087 0.972695i \(-0.425445\pi\)
0.232087 + 0.972695i \(0.425445\pi\)
\(662\) 6902.34 0.405237
\(663\) 1297.19 0.0759859
\(664\) −22108.8 −1.29215
\(665\) 2585.87 0.150791
\(666\) 8928.84 0.519498
\(667\) 0 0
\(668\) −5365.04 −0.310748
\(669\) −1941.35 −0.112193
\(670\) 2486.79 0.143393
\(671\) 622.631 0.0358218
\(672\) 2958.18 0.169813
\(673\) −13840.8 −0.792754 −0.396377 0.918088i \(-0.629733\pi\)
−0.396377 + 0.918088i \(0.629733\pi\)
\(674\) 10757.7 0.614792
\(675\) −19796.7 −1.12885
\(676\) −1678.47 −0.0954979
\(677\) −4298.48 −0.244024 −0.122012 0.992529i \(-0.538935\pi\)
−0.122012 + 0.992529i \(0.538935\pi\)
\(678\) 3597.90 0.203800
\(679\) −12333.9 −0.697100
\(680\) −7939.21 −0.447728
\(681\) 5463.08 0.307409
\(682\) 16071.5 0.902359
\(683\) 8793.73 0.492654 0.246327 0.969187i \(-0.420776\pi\)
0.246327 + 0.969187i \(0.420776\pi\)
\(684\) 361.560 0.0202114
\(685\) 31427.7 1.75298
\(686\) 18477.0 1.02836
\(687\) 1064.19 0.0590993
\(688\) 21304.5 1.18056
\(689\) 7400.40 0.409191
\(690\) 0 0
\(691\) −27329.1 −1.50456 −0.752279 0.658845i \(-0.771045\pi\)
−0.752279 + 0.658845i \(0.771045\pi\)
\(692\) 1176.68 0.0646394
\(693\) 8416.58 0.461355
\(694\) 5348.60 0.292551
\(695\) −22060.7 −1.20404
\(696\) 6527.35 0.355486
\(697\) −9817.43 −0.533518
\(698\) −3704.18 −0.200867
\(699\) −1472.92 −0.0797008
\(700\) 10706.6 0.578101
\(701\) 103.178 0.00555917 0.00277959 0.999996i \(-0.499115\pi\)
0.00277959 + 0.999996i \(0.499115\pi\)
\(702\) 9640.32 0.518305
\(703\) −767.723 −0.0411881
\(704\) −5289.30 −0.283165
\(705\) 2249.72 0.120184
\(706\) 5863.49 0.312571
\(707\) −12080.2 −0.642608
\(708\) −1197.08 −0.0635436
\(709\) −12420.3 −0.657906 −0.328953 0.944346i \(-0.606696\pi\)
−0.328953 + 0.944346i \(0.606696\pi\)
\(710\) 39102.6 2.06689
\(711\) 17858.2 0.941963
\(712\) −30129.6 −1.58589
\(713\) 0 0
\(714\) −2175.95 −0.114052
\(715\) 12560.6 0.656981
\(716\) 3370.52 0.175925
\(717\) 5905.15 0.307576
\(718\) 41912.6 2.17850
\(719\) −6934.64 −0.359692 −0.179846 0.983695i \(-0.557560\pi\)
−0.179846 + 0.983695i \(0.557560\pi\)
\(720\) −36399.8 −1.88408
\(721\) −20608.8 −1.06451
\(722\) 21737.8 1.12049
\(723\) −4737.76 −0.243706
\(724\) −3060.56 −0.157106
\(725\) 56091.0 2.87333
\(726\) 5115.37 0.261500
\(727\) 10473.0 0.534283 0.267142 0.963657i \(-0.413921\pi\)
0.267142 + 0.963657i \(0.413921\pi\)
\(728\) 13930.5 0.709204
\(729\) −9933.75 −0.504687
\(730\) 21853.8 1.10801
\(731\) −6153.85 −0.311366
\(732\) −122.064 −0.00616340
\(733\) 31375.5 1.58101 0.790504 0.612457i \(-0.209819\pi\)
0.790504 + 0.612457i \(0.209819\pi\)
\(734\) −29959.7 −1.50659
\(735\) −1537.13 −0.0771402
\(736\) 0 0
\(737\) −695.948 −0.0347837
\(738\) −34780.3 −1.73480
\(739\) 27631.1 1.37541 0.687705 0.725991i \(-0.258618\pi\)
0.687705 + 0.725991i \(0.258618\pi\)
\(740\) −4784.36 −0.237671
\(741\) −395.137 −0.0195894
\(742\) −12413.7 −0.614179
\(743\) −30157.8 −1.48908 −0.744538 0.667580i \(-0.767330\pi\)
−0.744538 + 0.667580i \(0.767330\pi\)
\(744\) 8418.43 0.414831
\(745\) −6806.26 −0.334714
\(746\) −40842.6 −2.00450
\(747\) 29279.4 1.43410
\(748\) −831.564 −0.0406484
\(749\) −26403.2 −1.28805
\(750\) 11690.9 0.569187
\(751\) 30644.0 1.48897 0.744483 0.667641i \(-0.232696\pi\)
0.744483 + 0.667641i \(0.232696\pi\)
\(752\) 5765.15 0.279566
\(753\) 1486.36 0.0719337
\(754\) −27314.4 −1.31927
\(755\) −18660.0 −0.899477
\(756\) −3461.34 −0.166518
\(757\) −8621.61 −0.413947 −0.206973 0.978347i \(-0.566361\pi\)
−0.206973 + 0.978347i \(0.566361\pi\)
\(758\) −20982.5 −1.00543
\(759\) 0 0
\(760\) 2418.36 0.115425
\(761\) 7583.96 0.361259 0.180630 0.983551i \(-0.442186\pi\)
0.180630 + 0.983551i \(0.442186\pi\)
\(762\) −2674.91 −0.127168
\(763\) 24282.3 1.15214
\(764\) 6943.36 0.328798
\(765\) 10514.1 0.496915
\(766\) −18354.1 −0.865744
\(767\) −13384.3 −0.630090
\(768\) 4838.92 0.227356
\(769\) −33771.6 −1.58366 −0.791830 0.610742i \(-0.790871\pi\)
−0.791830 + 0.610742i \(0.790871\pi\)
\(770\) −21069.7 −0.986102
\(771\) 5099.51 0.238203
\(772\) −7328.82 −0.341671
\(773\) 26394.7 1.22814 0.614069 0.789252i \(-0.289532\pi\)
0.614069 + 0.789252i \(0.289532\pi\)
\(774\) −21801.3 −1.01244
\(775\) 72341.4 3.35301
\(776\) −11534.9 −0.533607
\(777\) 3503.61 0.161765
\(778\) 18694.5 0.861479
\(779\) 2990.49 0.137542
\(780\) −2462.45 −0.113038
\(781\) −10943.2 −0.501379
\(782\) 0 0
\(783\) −18133.7 −0.827644
\(784\) −3939.07 −0.179440
\(785\) 23398.2 1.06384
\(786\) −240.387 −0.0109088
\(787\) −27561.5 −1.24836 −0.624181 0.781280i \(-0.714567\pi\)
−0.624181 + 0.781280i \(0.714567\pi\)
\(788\) 2233.73 0.100982
\(789\) −3527.55 −0.159169
\(790\) −44705.4 −2.01335
\(791\) −14443.6 −0.649249
\(792\) 7871.36 0.353152
\(793\) −1364.77 −0.0611154
\(794\) −34001.9 −1.51975
\(795\) −5863.00 −0.261559
\(796\) −4193.60 −0.186732
\(797\) −21730.1 −0.965772 −0.482886 0.875683i \(-0.660411\pi\)
−0.482886 + 0.875683i \(0.660411\pi\)
\(798\) 662.817 0.0294029
\(799\) −1665.27 −0.0737336
\(800\) 23773.6 1.05065
\(801\) 39901.6 1.76012
\(802\) 21336.6 0.939428
\(803\) −6115.96 −0.268777
\(804\) 136.437 0.00598479
\(805\) 0 0
\(806\) −35227.8 −1.53951
\(807\) −4499.63 −0.196276
\(808\) −11297.7 −0.491895
\(809\) −32140.5 −1.39679 −0.698393 0.715714i \(-0.746101\pi\)
−0.698393 + 0.715714i \(0.746101\pi\)
\(810\) 33251.8 1.44241
\(811\) 18711.8 0.810185 0.405093 0.914276i \(-0.367239\pi\)
0.405093 + 0.914276i \(0.367239\pi\)
\(812\) 9807.18 0.423848
\(813\) 5198.18 0.224241
\(814\) 6255.40 0.269351
\(815\) −14910.9 −0.640868
\(816\) −2633.60 −0.112984
\(817\) 1874.53 0.0802709
\(818\) −16329.8 −0.697991
\(819\) −18448.7 −0.787117
\(820\) 18636.4 0.793673
\(821\) 28478.0 1.21058 0.605292 0.796003i \(-0.293056\pi\)
0.605292 + 0.796003i \(0.293056\pi\)
\(822\) 8055.63 0.341816
\(823\) −19614.8 −0.830775 −0.415388 0.909645i \(-0.636354\pi\)
−0.415388 + 0.909645i \(0.636354\pi\)
\(824\) −19273.8 −0.814846
\(825\) −6611.50 −0.279010
\(826\) 22451.3 0.945739
\(827\) 1466.89 0.0616793 0.0308396 0.999524i \(-0.490182\pi\)
0.0308396 + 0.999524i \(0.490182\pi\)
\(828\) 0 0
\(829\) 35248.9 1.47677 0.738387 0.674378i \(-0.235588\pi\)
0.738387 + 0.674378i \(0.235588\pi\)
\(830\) −73296.6 −3.06526
\(831\) −9406.76 −0.392680
\(832\) 11593.8 0.483106
\(833\) 1137.81 0.0473262
\(834\) −5654.65 −0.234778
\(835\) 47523.8 1.96962
\(836\) 253.303 0.0104793
\(837\) −23387.3 −0.965812
\(838\) 35948.6 1.48189
\(839\) −5241.54 −0.215683 −0.107842 0.994168i \(-0.534394\pi\)
−0.107842 + 0.994168i \(0.534394\pi\)
\(840\) −11036.5 −0.453329
\(841\) 26990.1 1.10665
\(842\) 31522.0 1.29017
\(843\) 3018.37 0.123319
\(844\) 9059.02 0.369460
\(845\) 14868.0 0.605295
\(846\) −5899.58 −0.239754
\(847\) −20535.4 −0.833065
\(848\) −15024.6 −0.608426
\(849\) −5611.40 −0.226835
\(850\) −17487.2 −0.705654
\(851\) 0 0
\(852\) 2145.35 0.0862660
\(853\) 1078.39 0.0432866 0.0216433 0.999766i \(-0.493110\pi\)
0.0216433 + 0.999766i \(0.493110\pi\)
\(854\) 2289.32 0.0917316
\(855\) −3202.72 −0.128106
\(856\) −24692.8 −0.985961
\(857\) −37733.4 −1.50402 −0.752012 0.659149i \(-0.770917\pi\)
−0.752012 + 0.659149i \(0.770917\pi\)
\(858\) 3219.57 0.128105
\(859\) −14792.4 −0.587555 −0.293778 0.955874i \(-0.594913\pi\)
−0.293778 + 0.955874i \(0.594913\pi\)
\(860\) 11681.8 0.463194
\(861\) −13647.5 −0.540193
\(862\) −11478.1 −0.453533
\(863\) 32572.4 1.28479 0.642396 0.766373i \(-0.277940\pi\)
0.642396 + 0.766373i \(0.277940\pi\)
\(864\) −7685.78 −0.302634
\(865\) −10423.0 −0.409704
\(866\) −45807.5 −1.79746
\(867\) −6857.00 −0.268600
\(868\) 12648.5 0.494605
\(869\) 12511.2 0.488392
\(870\) 21639.9 0.843290
\(871\) 1525.48 0.0593443
\(872\) 22709.4 0.881922
\(873\) 15276.0 0.592229
\(874\) 0 0
\(875\) −46932.4 −1.81326
\(876\) 1199.00 0.0462450
\(877\) −12833.0 −0.494115 −0.247058 0.969001i \(-0.579464\pi\)
−0.247058 + 0.969001i \(0.579464\pi\)
\(878\) 41786.5 1.60618
\(879\) 3669.10 0.140791
\(880\) −25501.1 −0.976866
\(881\) −32284.2 −1.23460 −0.617299 0.786729i \(-0.711773\pi\)
−0.617299 + 0.786729i \(0.711773\pi\)
\(882\) 4030.92 0.153887
\(883\) 19698.0 0.750724 0.375362 0.926878i \(-0.377518\pi\)
0.375362 + 0.926878i \(0.377518\pi\)
\(884\) 1822.74 0.0693500
\(885\) 10603.8 0.402759
\(886\) 31651.6 1.20018
\(887\) 7425.12 0.281072 0.140536 0.990076i \(-0.455117\pi\)
0.140536 + 0.990076i \(0.455117\pi\)
\(888\) 3276.65 0.123826
\(889\) 10738.3 0.405120
\(890\) −99887.8 −3.76207
\(891\) −9305.78 −0.349894
\(892\) −2727.88 −0.102395
\(893\) 507.260 0.0190087
\(894\) −1744.60 −0.0652663
\(895\) −29856.3 −1.11507
\(896\) −34710.8 −1.29420
\(897\) 0 0
\(898\) 37161.0 1.38093
\(899\) 66264.4 2.45833
\(900\) −13260.6 −0.491132
\(901\) 4339.87 0.160468
\(902\) −24366.5 −0.899463
\(903\) −8554.65 −0.315261
\(904\) −13508.0 −0.496978
\(905\) 27110.6 0.995786
\(906\) −4782.96 −0.175390
\(907\) 20674.0 0.756857 0.378428 0.925631i \(-0.376465\pi\)
0.378428 + 0.925631i \(0.376465\pi\)
\(908\) 7676.43 0.280563
\(909\) 14961.9 0.545935
\(910\) 46183.5 1.68238
\(911\) 15326.3 0.557389 0.278695 0.960380i \(-0.410098\pi\)
0.278695 + 0.960380i \(0.410098\pi\)
\(912\) 802.223 0.0291275
\(913\) 20512.6 0.743559
\(914\) 13982.9 0.506033
\(915\) 1081.25 0.0390655
\(916\) 1495.34 0.0539381
\(917\) 965.021 0.0347522
\(918\) 5653.45 0.203259
\(919\) 40794.3 1.46429 0.732143 0.681151i \(-0.238520\pi\)
0.732143 + 0.681151i \(0.238520\pi\)
\(920\) 0 0
\(921\) 505.736 0.0180940
\(922\) 7976.57 0.284918
\(923\) 23986.8 0.855401
\(924\) −1155.98 −0.0411570
\(925\) 28157.0 1.00086
\(926\) 38078.4 1.35133
\(927\) 25524.9 0.904365
\(928\) 21776.5 0.770311
\(929\) −33287.1 −1.17558 −0.587791 0.809013i \(-0.700002\pi\)
−0.587791 + 0.809013i \(0.700002\pi\)
\(930\) 27909.4 0.984069
\(931\) −346.588 −0.0122008
\(932\) −2069.67 −0.0727405
\(933\) −475.189 −0.0166742
\(934\) −47470.9 −1.66306
\(935\) 7366.04 0.257642
\(936\) −17253.6 −0.602512
\(937\) −23880.2 −0.832586 −0.416293 0.909231i \(-0.636671\pi\)
−0.416293 + 0.909231i \(0.636671\pi\)
\(938\) −2558.89 −0.0890734
\(939\) 6912.26 0.240227
\(940\) 3161.19 0.109688
\(941\) 49973.0 1.73121 0.865607 0.500723i \(-0.166933\pi\)
0.865607 + 0.500723i \(0.166933\pi\)
\(942\) 5997.48 0.207440
\(943\) 0 0
\(944\) 27173.3 0.936881
\(945\) 30660.7 1.05544
\(946\) −15273.6 −0.524934
\(947\) 24406.2 0.837482 0.418741 0.908106i \(-0.362472\pi\)
0.418741 + 0.908106i \(0.362472\pi\)
\(948\) −2452.75 −0.0840314
\(949\) 13405.8 0.458559
\(950\) 5326.78 0.181919
\(951\) −13764.7 −0.469349
\(952\) 8169.40 0.278122
\(953\) 34507.8 1.17295 0.586473 0.809969i \(-0.300516\pi\)
0.586473 + 0.809969i \(0.300516\pi\)
\(954\) 15374.9 0.521782
\(955\) −61504.7 −2.08402
\(956\) 8297.60 0.280715
\(957\) −6056.11 −0.204562
\(958\) 44451.2 1.49912
\(959\) −32338.9 −1.08893
\(960\) −9185.27 −0.308806
\(961\) 55671.3 1.86873
\(962\) −13711.5 −0.459538
\(963\) 32701.5 1.09428
\(964\) −6657.25 −0.222423
\(965\) 64919.0 2.16561
\(966\) 0 0
\(967\) −5389.43 −0.179227 −0.0896134 0.995977i \(-0.528563\pi\)
−0.0896134 + 0.995977i \(0.528563\pi\)
\(968\) −19205.2 −0.637684
\(969\) −231.724 −0.00768218
\(970\) −38241.3 −1.26583
\(971\) 3602.54 0.119064 0.0595319 0.998226i \(-0.481039\pi\)
0.0595319 + 0.998226i \(0.481039\pi\)
\(972\) 6530.41 0.215497
\(973\) 22700.3 0.747934
\(974\) 50552.2 1.66304
\(975\) 14492.0 0.476017
\(976\) 2770.81 0.0908725
\(977\) −6831.70 −0.223711 −0.111855 0.993724i \(-0.535679\pi\)
−0.111855 + 0.993724i \(0.535679\pi\)
\(978\) −3822.01 −0.124963
\(979\) 27954.4 0.912590
\(980\) −2159.90 −0.0704035
\(981\) −30074.7 −0.978810
\(982\) 10442.6 0.339345
\(983\) 29777.6 0.966182 0.483091 0.875570i \(-0.339514\pi\)
0.483091 + 0.875570i \(0.339514\pi\)
\(984\) −12763.5 −0.413500
\(985\) −19786.5 −0.640052
\(986\) −16018.2 −0.517366
\(987\) −2314.95 −0.0746562
\(988\) −555.226 −0.0178786
\(989\) 0 0
\(990\) 26095.7 0.837753
\(991\) 26349.2 0.844612 0.422306 0.906453i \(-0.361221\pi\)
0.422306 + 0.906453i \(0.361221\pi\)
\(992\) 28085.5 0.898907
\(993\) −3354.50 −0.107202
\(994\) −40236.3 −1.28392
\(995\) 37147.2 1.18356
\(996\) −4021.40 −0.127935
\(997\) −5799.36 −0.184220 −0.0921101 0.995749i \(-0.529361\pi\)
−0.0921101 + 0.995749i \(0.529361\pi\)
\(998\) 41907.4 1.32922
\(999\) −9102.90 −0.288291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.7 25
23.5 odd 22 23.4.c.a.2.2 50
23.14 odd 22 23.4.c.a.12.2 yes 50
23.22 odd 2 529.4.a.n.1.7 25
69.5 even 22 207.4.i.a.163.4 50
69.14 even 22 207.4.i.a.127.4 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.2.2 50 23.5 odd 22
23.4.c.a.12.2 yes 50 23.14 odd 22
207.4.i.a.127.4 50 69.14 even 22
207.4.i.a.163.4 50 69.5 even 22
529.4.a.m.1.7 25 1.1 even 1 trivial
529.4.a.n.1.7 25 23.22 odd 2