Properties

Label 529.4.a.m.1.6
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.66204 q^{2} +2.67124 q^{3} +5.41053 q^{4} +4.26056 q^{5} -9.78218 q^{6} +14.5832 q^{7} +9.48276 q^{8} -19.8645 q^{9} -15.6023 q^{10} +14.0673 q^{11} +14.4528 q^{12} -38.2348 q^{13} -53.4043 q^{14} +11.3810 q^{15} -78.0104 q^{16} +45.6230 q^{17} +72.7445 q^{18} -103.879 q^{19} +23.0518 q^{20} +38.9552 q^{21} -51.5150 q^{22} +25.3307 q^{24} -106.848 q^{25} +140.017 q^{26} -125.186 q^{27} +78.9028 q^{28} -149.252 q^{29} -41.6775 q^{30} +237.837 q^{31} +209.815 q^{32} +37.5771 q^{33} -167.073 q^{34} +62.1326 q^{35} -107.477 q^{36} -300.565 q^{37} +380.408 q^{38} -102.134 q^{39} +40.4018 q^{40} +335.440 q^{41} -142.655 q^{42} +386.390 q^{43} +76.1114 q^{44} -84.6338 q^{45} -417.787 q^{47} -208.384 q^{48} -130.330 q^{49} +391.280 q^{50} +121.870 q^{51} -206.870 q^{52} -405.962 q^{53} +458.437 q^{54} +59.9345 q^{55} +138.289 q^{56} -277.485 q^{57} +546.565 q^{58} +37.7222 q^{59} +61.5770 q^{60} -40.1827 q^{61} -870.967 q^{62} -289.688 q^{63} -144.268 q^{64} -162.902 q^{65} -137.609 q^{66} +395.664 q^{67} +246.845 q^{68} -227.532 q^{70} -264.160 q^{71} -188.370 q^{72} +462.739 q^{73} +1100.68 q^{74} -285.415 q^{75} -562.039 q^{76} +205.146 q^{77} +374.020 q^{78} +467.988 q^{79} -332.368 q^{80} +201.939 q^{81} -1228.40 q^{82} -359.161 q^{83} +210.768 q^{84} +194.380 q^{85} -1414.97 q^{86} -398.686 q^{87} +133.397 q^{88} -907.444 q^{89} +309.932 q^{90} -557.586 q^{91} +635.318 q^{93} +1529.95 q^{94} -442.581 q^{95} +560.466 q^{96} -63.4707 q^{97} +477.274 q^{98} -279.440 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.66204 −1.29473 −0.647363 0.762182i \(-0.724128\pi\)
−0.647363 + 0.762182i \(0.724128\pi\)
\(3\) 2.67124 0.514080 0.257040 0.966401i \(-0.417253\pi\)
0.257040 + 0.966401i \(0.417253\pi\)
\(4\) 5.41053 0.676316
\(5\) 4.26056 0.381076 0.190538 0.981680i \(-0.438977\pi\)
0.190538 + 0.981680i \(0.438977\pi\)
\(6\) −9.78218 −0.665593
\(7\) 14.5832 0.787419 0.393710 0.919235i \(-0.371192\pi\)
0.393710 + 0.919235i \(0.371192\pi\)
\(8\) 9.48276 0.419083
\(9\) −19.8645 −0.735722
\(10\) −15.6023 −0.493389
\(11\) 14.0673 0.385586 0.192793 0.981239i \(-0.438245\pi\)
0.192793 + 0.981239i \(0.438245\pi\)
\(12\) 14.4528 0.347680
\(13\) −38.2348 −0.815725 −0.407863 0.913043i \(-0.633726\pi\)
−0.407863 + 0.913043i \(0.633726\pi\)
\(14\) −53.4043 −1.01949
\(15\) 11.3810 0.195903
\(16\) −78.0104 −1.21891
\(17\) 45.6230 0.650895 0.325447 0.945560i \(-0.394485\pi\)
0.325447 + 0.945560i \(0.394485\pi\)
\(18\) 72.7445 0.952558
\(19\) −103.879 −1.25429 −0.627143 0.778904i \(-0.715776\pi\)
−0.627143 + 0.778904i \(0.715776\pi\)
\(20\) 23.0518 0.257727
\(21\) 38.9552 0.404796
\(22\) −51.5150 −0.499229
\(23\) 0 0
\(24\) 25.3307 0.215442
\(25\) −106.848 −0.854781
\(26\) 140.017 1.05614
\(27\) −125.186 −0.892300
\(28\) 78.9028 0.532544
\(29\) −149.252 −0.955701 −0.477850 0.878441i \(-0.658584\pi\)
−0.477850 + 0.878441i \(0.658584\pi\)
\(30\) −41.6775 −0.253641
\(31\) 237.837 1.37796 0.688979 0.724781i \(-0.258059\pi\)
0.688979 + 0.724781i \(0.258059\pi\)
\(32\) 209.815 1.15908
\(33\) 37.5771 0.198222
\(34\) −167.073 −0.842731
\(35\) 62.1326 0.300066
\(36\) −107.477 −0.497580
\(37\) −300.565 −1.33547 −0.667737 0.744397i \(-0.732737\pi\)
−0.667737 + 0.744397i \(0.732737\pi\)
\(38\) 380.408 1.62396
\(39\) −102.134 −0.419348
\(40\) 40.4018 0.159702
\(41\) 335.440 1.27773 0.638865 0.769318i \(-0.279404\pi\)
0.638865 + 0.769318i \(0.279404\pi\)
\(42\) −142.655 −0.524100
\(43\) 386.390 1.37032 0.685161 0.728392i \(-0.259732\pi\)
0.685161 + 0.728392i \(0.259732\pi\)
\(44\) 76.1114 0.260778
\(45\) −84.6338 −0.280366
\(46\) 0 0
\(47\) −417.787 −1.29661 −0.648303 0.761383i \(-0.724521\pi\)
−0.648303 + 0.761383i \(0.724521\pi\)
\(48\) −208.384 −0.626619
\(49\) −130.330 −0.379971
\(50\) 391.280 1.10671
\(51\) 121.870 0.334612
\(52\) −206.870 −0.551688
\(53\) −405.962 −1.05213 −0.526067 0.850443i \(-0.676334\pi\)
−0.526067 + 0.850443i \(0.676334\pi\)
\(54\) 458.437 1.15528
\(55\) 59.9345 0.146938
\(56\) 138.289 0.329994
\(57\) −277.485 −0.644803
\(58\) 546.565 1.23737
\(59\) 37.7222 0.0832375 0.0416187 0.999134i \(-0.486749\pi\)
0.0416187 + 0.999134i \(0.486749\pi\)
\(60\) 61.5770 0.132493
\(61\) −40.1827 −0.0843420 −0.0421710 0.999110i \(-0.513427\pi\)
−0.0421710 + 0.999110i \(0.513427\pi\)
\(62\) −870.967 −1.78408
\(63\) −289.688 −0.579321
\(64\) −144.268 −0.281773
\(65\) −162.902 −0.310853
\(66\) −137.609 −0.256643
\(67\) 395.664 0.721464 0.360732 0.932670i \(-0.382527\pi\)
0.360732 + 0.932670i \(0.382527\pi\)
\(68\) 246.845 0.440210
\(69\) 0 0
\(70\) −227.532 −0.388504
\(71\) −264.160 −0.441550 −0.220775 0.975325i \(-0.570859\pi\)
−0.220775 + 0.975325i \(0.570859\pi\)
\(72\) −188.370 −0.308328
\(73\) 462.739 0.741911 0.370955 0.928651i \(-0.379030\pi\)
0.370955 + 0.928651i \(0.379030\pi\)
\(74\) 1100.68 1.72907
\(75\) −285.415 −0.439426
\(76\) −562.039 −0.848293
\(77\) 205.146 0.303618
\(78\) 374.020 0.542941
\(79\) 467.988 0.666491 0.333246 0.942840i \(-0.391856\pi\)
0.333246 + 0.942840i \(0.391856\pi\)
\(80\) −332.368 −0.464498
\(81\) 201.939 0.277008
\(82\) −1228.40 −1.65431
\(83\) −359.161 −0.474976 −0.237488 0.971390i \(-0.576324\pi\)
−0.237488 + 0.971390i \(0.576324\pi\)
\(84\) 210.768 0.273770
\(85\) 194.380 0.248040
\(86\) −1414.97 −1.77419
\(87\) −398.686 −0.491306
\(88\) 133.397 0.161592
\(89\) −907.444 −1.08077 −0.540387 0.841417i \(-0.681722\pi\)
−0.540387 + 0.841417i \(0.681722\pi\)
\(90\) 309.932 0.362997
\(91\) −557.586 −0.642318
\(92\) 0 0
\(93\) 635.318 0.708381
\(94\) 1529.95 1.67875
\(95\) −442.581 −0.477978
\(96\) 560.466 0.595858
\(97\) −63.4707 −0.0664379 −0.0332190 0.999448i \(-0.510576\pi\)
−0.0332190 + 0.999448i \(0.510576\pi\)
\(98\) 477.274 0.491959
\(99\) −279.440 −0.283684
\(100\) −578.102 −0.578102
\(101\) −329.736 −0.324851 −0.162425 0.986721i \(-0.551932\pi\)
−0.162425 + 0.986721i \(0.551932\pi\)
\(102\) −446.293 −0.433231
\(103\) −1529.93 −1.46358 −0.731788 0.681532i \(-0.761314\pi\)
−0.731788 + 0.681532i \(0.761314\pi\)
\(104\) −362.571 −0.341856
\(105\) 165.971 0.154258
\(106\) 1486.65 1.36223
\(107\) −1511.12 −1.36528 −0.682642 0.730753i \(-0.739169\pi\)
−0.682642 + 0.730753i \(0.739169\pi\)
\(108\) −677.323 −0.603476
\(109\) −2061.41 −1.81144 −0.905719 0.423878i \(-0.860669\pi\)
−0.905719 + 0.423878i \(0.860669\pi\)
\(110\) −219.482 −0.190244
\(111\) −802.880 −0.686541
\(112\) −1137.64 −0.959795
\(113\) −2204.26 −1.83504 −0.917520 0.397690i \(-0.869812\pi\)
−0.917520 + 0.397690i \(0.869812\pi\)
\(114\) 1016.16 0.834843
\(115\) 0 0
\(116\) −807.529 −0.646355
\(117\) 759.515 0.600147
\(118\) −138.140 −0.107770
\(119\) 665.330 0.512527
\(120\) 107.923 0.0820997
\(121\) −1133.11 −0.851323
\(122\) 147.150 0.109200
\(123\) 896.041 0.656856
\(124\) 1286.82 0.931935
\(125\) −987.800 −0.706812
\(126\) 1060.85 0.750062
\(127\) −571.347 −0.399203 −0.199602 0.979877i \(-0.563965\pi\)
−0.199602 + 0.979877i \(0.563965\pi\)
\(128\) −1150.21 −0.794257
\(129\) 1032.14 0.704455
\(130\) 596.552 0.402470
\(131\) 2359.78 1.57385 0.786926 0.617047i \(-0.211671\pi\)
0.786926 + 0.617047i \(0.211671\pi\)
\(132\) 203.312 0.134061
\(133\) −1514.89 −0.987648
\(134\) −1448.94 −0.934098
\(135\) −533.363 −0.340034
\(136\) 432.632 0.272779
\(137\) −2161.67 −1.34806 −0.674028 0.738706i \(-0.735437\pi\)
−0.674028 + 0.738706i \(0.735437\pi\)
\(138\) 0 0
\(139\) 854.209 0.521245 0.260622 0.965441i \(-0.416072\pi\)
0.260622 + 0.965441i \(0.416072\pi\)
\(140\) 336.170 0.202940
\(141\) −1116.01 −0.666559
\(142\) 967.365 0.571687
\(143\) −537.860 −0.314532
\(144\) 1549.64 0.896781
\(145\) −635.895 −0.364194
\(146\) −1694.57 −0.960571
\(147\) −348.143 −0.195336
\(148\) −1626.21 −0.903202
\(149\) −1264.18 −0.695070 −0.347535 0.937667i \(-0.612981\pi\)
−0.347535 + 0.937667i \(0.612981\pi\)
\(150\) 1045.20 0.568936
\(151\) −93.2143 −0.0502362 −0.0251181 0.999684i \(-0.507996\pi\)
−0.0251181 + 0.999684i \(0.507996\pi\)
\(152\) −985.057 −0.525649
\(153\) −906.279 −0.478878
\(154\) −751.253 −0.393102
\(155\) 1013.32 0.525107
\(156\) −552.600 −0.283612
\(157\) 3109.34 1.58059 0.790294 0.612728i \(-0.209928\pi\)
0.790294 + 0.612728i \(0.209928\pi\)
\(158\) −1713.79 −0.862923
\(159\) −1084.42 −0.540881
\(160\) 893.929 0.441696
\(161\) 0 0
\(162\) −739.509 −0.358650
\(163\) −575.568 −0.276576 −0.138288 0.990392i \(-0.544160\pi\)
−0.138288 + 0.990392i \(0.544160\pi\)
\(164\) 1814.91 0.864149
\(165\) 160.099 0.0755376
\(166\) 1315.26 0.614964
\(167\) −5.53768 −0.00256598 −0.00128299 0.999999i \(-0.500408\pi\)
−0.00128299 + 0.999999i \(0.500408\pi\)
\(168\) 369.403 0.169643
\(169\) −735.099 −0.334592
\(170\) −711.825 −0.321144
\(171\) 2063.50 0.922805
\(172\) 2090.57 0.926770
\(173\) −2604.44 −1.14458 −0.572289 0.820052i \(-0.693944\pi\)
−0.572289 + 0.820052i \(0.693944\pi\)
\(174\) 1460.00 0.636107
\(175\) −1558.18 −0.673071
\(176\) −1097.40 −0.469996
\(177\) 100.765 0.0427907
\(178\) 3323.10 1.39931
\(179\) 2695.23 1.12543 0.562713 0.826652i \(-0.309758\pi\)
0.562713 + 0.826652i \(0.309758\pi\)
\(180\) −457.913 −0.189616
\(181\) 4089.19 1.67927 0.839633 0.543155i \(-0.182770\pi\)
0.839633 + 0.543155i \(0.182770\pi\)
\(182\) 2041.90 0.831625
\(183\) −107.337 −0.0433585
\(184\) 0 0
\(185\) −1280.57 −0.508917
\(186\) −2326.56 −0.917159
\(187\) 641.793 0.250976
\(188\) −2260.45 −0.876915
\(189\) −1825.62 −0.702614
\(190\) 1620.75 0.618850
\(191\) 40.9753 0.0155229 0.00776143 0.999970i \(-0.497529\pi\)
0.00776143 + 0.999970i \(0.497529\pi\)
\(192\) −385.373 −0.144854
\(193\) −251.434 −0.0937754 −0.0468877 0.998900i \(-0.514930\pi\)
−0.0468877 + 0.998900i \(0.514930\pi\)
\(194\) 232.432 0.0860189
\(195\) −435.149 −0.159803
\(196\) −705.155 −0.256981
\(197\) 2547.43 0.921304 0.460652 0.887581i \(-0.347616\pi\)
0.460652 + 0.887581i \(0.347616\pi\)
\(198\) 1023.32 0.367293
\(199\) 2392.89 0.852401 0.426200 0.904629i \(-0.359852\pi\)
0.426200 + 0.904629i \(0.359852\pi\)
\(200\) −1013.21 −0.358224
\(201\) 1056.91 0.370890
\(202\) 1207.50 0.420593
\(203\) −2176.57 −0.752537
\(204\) 659.381 0.226303
\(205\) 1429.16 0.486912
\(206\) 5602.66 1.89493
\(207\) 0 0
\(208\) 2982.71 0.994298
\(209\) −1461.29 −0.483635
\(210\) −607.792 −0.199722
\(211\) −3462.41 −1.12968 −0.564839 0.825201i \(-0.691062\pi\)
−0.564839 + 0.825201i \(0.691062\pi\)
\(212\) −2196.47 −0.711575
\(213\) −705.635 −0.226992
\(214\) 5533.78 1.76767
\(215\) 1646.23 0.522197
\(216\) −1187.11 −0.373947
\(217\) 3468.42 1.08503
\(218\) 7548.95 2.34532
\(219\) 1236.09 0.381401
\(220\) 324.277 0.0993762
\(221\) −1744.39 −0.530952
\(222\) 2940.18 0.888882
\(223\) 4138.91 1.24288 0.621440 0.783462i \(-0.286548\pi\)
0.621440 + 0.783462i \(0.286548\pi\)
\(224\) 3059.78 0.912678
\(225\) 2122.47 0.628881
\(226\) 8072.09 2.37587
\(227\) 5304.16 1.55088 0.775439 0.631422i \(-0.217529\pi\)
0.775439 + 0.631422i \(0.217529\pi\)
\(228\) −1501.34 −0.436090
\(229\) −3957.23 −1.14193 −0.570963 0.820976i \(-0.693430\pi\)
−0.570963 + 0.820976i \(0.693430\pi\)
\(230\) 0 0
\(231\) 547.994 0.156084
\(232\) −1415.32 −0.400517
\(233\) 1233.34 0.346775 0.173387 0.984854i \(-0.444529\pi\)
0.173387 + 0.984854i \(0.444529\pi\)
\(234\) −2781.37 −0.777026
\(235\) −1780.00 −0.494105
\(236\) 204.097 0.0562948
\(237\) 1250.11 0.342630
\(238\) −2436.46 −0.663582
\(239\) 1302.39 0.352489 0.176244 0.984346i \(-0.443605\pi\)
0.176244 + 0.984346i \(0.443605\pi\)
\(240\) −887.833 −0.238789
\(241\) −2144.78 −0.573267 −0.286634 0.958040i \(-0.592536\pi\)
−0.286634 + 0.958040i \(0.592536\pi\)
\(242\) 4149.50 1.10223
\(243\) 3919.45 1.03470
\(244\) −217.409 −0.0570418
\(245\) −555.279 −0.144798
\(246\) −3281.34 −0.850448
\(247\) 3971.79 1.02315
\(248\) 2255.35 0.577479
\(249\) −959.403 −0.244176
\(250\) 3617.36 0.915128
\(251\) −797.294 −0.200497 −0.100249 0.994962i \(-0.531964\pi\)
−0.100249 + 0.994962i \(0.531964\pi\)
\(252\) −1567.36 −0.391804
\(253\) 0 0
\(254\) 2092.29 0.516859
\(255\) 519.234 0.127513
\(256\) 5366.24 1.31012
\(257\) −7247.23 −1.75903 −0.879514 0.475874i \(-0.842132\pi\)
−0.879514 + 0.475874i \(0.842132\pi\)
\(258\) −3779.73 −0.912076
\(259\) −4383.20 −1.05158
\(260\) −881.383 −0.210235
\(261\) 2964.81 0.703130
\(262\) −8641.59 −2.03771
\(263\) −1999.08 −0.468703 −0.234351 0.972152i \(-0.575297\pi\)
−0.234351 + 0.972152i \(0.575297\pi\)
\(264\) 356.334 0.0830714
\(265\) −1729.62 −0.400943
\(266\) 5547.57 1.27873
\(267\) −2424.00 −0.555604
\(268\) 2140.75 0.487937
\(269\) 2361.47 0.535246 0.267623 0.963524i \(-0.413762\pi\)
0.267623 + 0.963524i \(0.413762\pi\)
\(270\) 1953.20 0.440251
\(271\) −7756.45 −1.73864 −0.869318 0.494253i \(-0.835442\pi\)
−0.869318 + 0.494253i \(0.835442\pi\)
\(272\) −3559.07 −0.793384
\(273\) −1489.45 −0.330203
\(274\) 7916.10 1.74536
\(275\) −1503.06 −0.329592
\(276\) 0 0
\(277\) 1424.32 0.308949 0.154475 0.987997i \(-0.450632\pi\)
0.154475 + 0.987997i \(0.450632\pi\)
\(278\) −3128.15 −0.674869
\(279\) −4724.50 −1.01379
\(280\) 589.188 0.125753
\(281\) −4790.26 −1.01695 −0.508475 0.861077i \(-0.669791\pi\)
−0.508475 + 0.861077i \(0.669791\pi\)
\(282\) 4086.86 0.863011
\(283\) 2991.24 0.628307 0.314154 0.949372i \(-0.398279\pi\)
0.314154 + 0.949372i \(0.398279\pi\)
\(284\) −1429.25 −0.298627
\(285\) −1182.24 −0.245719
\(286\) 1969.67 0.407233
\(287\) 4891.79 1.00611
\(288\) −4167.87 −0.852757
\(289\) −2831.54 −0.576336
\(290\) 2328.67 0.471532
\(291\) −169.545 −0.0341544
\(292\) 2503.66 0.501766
\(293\) 1997.77 0.398331 0.199166 0.979966i \(-0.436177\pi\)
0.199166 + 0.979966i \(0.436177\pi\)
\(294\) 1274.91 0.252906
\(295\) 160.718 0.0317198
\(296\) −2850.18 −0.559674
\(297\) −1761.03 −0.344058
\(298\) 4629.47 0.899926
\(299\) 0 0
\(300\) −1544.25 −0.297191
\(301\) 5634.80 1.07902
\(302\) 341.354 0.0650421
\(303\) −880.803 −0.166999
\(304\) 8103.63 1.52886
\(305\) −171.200 −0.0321407
\(306\) 3318.83 0.620015
\(307\) 972.558 0.180804 0.0904020 0.995905i \(-0.471185\pi\)
0.0904020 + 0.995905i \(0.471185\pi\)
\(308\) 1109.95 0.205342
\(309\) −4086.80 −0.752395
\(310\) −3710.80 −0.679869
\(311\) −372.641 −0.0679437 −0.0339719 0.999423i \(-0.510816\pi\)
−0.0339719 + 0.999423i \(0.510816\pi\)
\(312\) −968.514 −0.175741
\(313\) 1698.01 0.306636 0.153318 0.988177i \(-0.451004\pi\)
0.153318 + 0.988177i \(0.451004\pi\)
\(314\) −11386.5 −2.04643
\(315\) −1234.23 −0.220765
\(316\) 2532.06 0.450758
\(317\) 1656.38 0.293474 0.146737 0.989176i \(-0.453123\pi\)
0.146737 + 0.989176i \(0.453123\pi\)
\(318\) 3971.19 0.700293
\(319\) −2099.57 −0.368505
\(320\) −614.660 −0.107377
\(321\) −4036.56 −0.701865
\(322\) 0 0
\(323\) −4739.27 −0.816408
\(324\) 1092.60 0.187345
\(325\) 4085.30 0.697267
\(326\) 2107.75 0.358091
\(327\) −5506.50 −0.931224
\(328\) 3180.90 0.535475
\(329\) −6092.67 −1.02097
\(330\) −586.290 −0.0978006
\(331\) 3610.02 0.599471 0.299736 0.954022i \(-0.403102\pi\)
0.299736 + 0.954022i \(0.403102\pi\)
\(332\) −1943.25 −0.321234
\(333\) 5970.57 0.982538
\(334\) 20.2792 0.00332224
\(335\) 1685.75 0.274932
\(336\) −3038.91 −0.493411
\(337\) 7485.75 1.21001 0.605007 0.796220i \(-0.293170\pi\)
0.605007 + 0.796220i \(0.293170\pi\)
\(338\) 2691.96 0.433205
\(339\) −5888.11 −0.943357
\(340\) 1051.70 0.167754
\(341\) 3345.72 0.531322
\(342\) −7556.61 −1.19478
\(343\) −6902.67 −1.08662
\(344\) 3664.04 0.574278
\(345\) 0 0
\(346\) 9537.56 1.48191
\(347\) −2515.40 −0.389146 −0.194573 0.980888i \(-0.562332\pi\)
−0.194573 + 0.980888i \(0.562332\pi\)
\(348\) −2157.10 −0.332278
\(349\) 11639.5 1.78523 0.892617 0.450816i \(-0.148867\pi\)
0.892617 + 0.450816i \(0.148867\pi\)
\(350\) 5706.12 0.871443
\(351\) 4786.47 0.727872
\(352\) 2951.53 0.446924
\(353\) −7474.21 −1.12695 −0.563473 0.826134i \(-0.690535\pi\)
−0.563473 + 0.826134i \(0.690535\pi\)
\(354\) −369.005 −0.0554023
\(355\) −1125.47 −0.168264
\(356\) −4909.75 −0.730944
\(357\) 1777.26 0.263480
\(358\) −9870.05 −1.45712
\(359\) 11817.3 1.73731 0.868656 0.495416i \(-0.164984\pi\)
0.868656 + 0.495416i \(0.164984\pi\)
\(360\) −802.561 −0.117496
\(361\) 3931.80 0.573233
\(362\) −14974.8 −2.17419
\(363\) −3026.81 −0.437648
\(364\) −3016.83 −0.434409
\(365\) 1971.52 0.282724
\(366\) 393.074 0.0561374
\(367\) 1777.53 0.252823 0.126412 0.991978i \(-0.459654\pi\)
0.126412 + 0.991978i \(0.459654\pi\)
\(368\) 0 0
\(369\) −6663.35 −0.940055
\(370\) 4689.51 0.658908
\(371\) −5920.22 −0.828471
\(372\) 3437.41 0.479089
\(373\) 4579.51 0.635705 0.317853 0.948140i \(-0.397038\pi\)
0.317853 + 0.948140i \(0.397038\pi\)
\(374\) −2350.27 −0.324945
\(375\) −2638.65 −0.363358
\(376\) −3961.77 −0.543385
\(377\) 5706.61 0.779589
\(378\) 6685.48 0.909692
\(379\) −8278.99 −1.12207 −0.561033 0.827793i \(-0.689596\pi\)
−0.561033 + 0.827793i \(0.689596\pi\)
\(380\) −2394.60 −0.323264
\(381\) −1526.20 −0.205222
\(382\) −150.053 −0.0200978
\(383\) −11024.4 −1.47081 −0.735404 0.677629i \(-0.763008\pi\)
−0.735404 + 0.677629i \(0.763008\pi\)
\(384\) −3072.48 −0.408312
\(385\) 874.037 0.115701
\(386\) 920.762 0.121413
\(387\) −7675.43 −1.00818
\(388\) −343.410 −0.0449330
\(389\) −7709.12 −1.00480 −0.502401 0.864635i \(-0.667550\pi\)
−0.502401 + 0.864635i \(0.667550\pi\)
\(390\) 1593.53 0.206902
\(391\) 0 0
\(392\) −1235.89 −0.159239
\(393\) 6303.52 0.809086
\(394\) −9328.78 −1.19284
\(395\) 1993.89 0.253984
\(396\) −1511.91 −0.191860
\(397\) −1800.91 −0.227671 −0.113835 0.993500i \(-0.536314\pi\)
−0.113835 + 0.993500i \(0.536314\pi\)
\(398\) −8762.87 −1.10363
\(399\) −4046.62 −0.507730
\(400\) 8335.23 1.04190
\(401\) −635.696 −0.0791650 −0.0395825 0.999216i \(-0.512603\pi\)
−0.0395825 + 0.999216i \(0.512603\pi\)
\(402\) −3870.46 −0.480201
\(403\) −9093.64 −1.12404
\(404\) −1784.04 −0.219702
\(405\) 860.373 0.105561
\(406\) 7970.67 0.974329
\(407\) −4228.13 −0.514941
\(408\) 1155.66 0.140230
\(409\) −14420.0 −1.74333 −0.871665 0.490102i \(-0.836960\pi\)
−0.871665 + 0.490102i \(0.836960\pi\)
\(410\) −5233.65 −0.630418
\(411\) −5774.32 −0.693008
\(412\) −8277.72 −0.989839
\(413\) 550.110 0.0655428
\(414\) 0 0
\(415\) −1530.22 −0.181002
\(416\) −8022.24 −0.945487
\(417\) 2281.80 0.267962
\(418\) 5351.31 0.626175
\(419\) 3719.67 0.433694 0.216847 0.976206i \(-0.430423\pi\)
0.216847 + 0.976206i \(0.430423\pi\)
\(420\) 897.989 0.104327
\(421\) −5136.00 −0.594568 −0.297284 0.954789i \(-0.596081\pi\)
−0.297284 + 0.954789i \(0.596081\pi\)
\(422\) 12679.5 1.46262
\(423\) 8299.12 0.953941
\(424\) −3849.64 −0.440931
\(425\) −4874.72 −0.556373
\(426\) 2584.06 0.293893
\(427\) −585.992 −0.0664125
\(428\) −8175.95 −0.923363
\(429\) −1436.75 −0.161695
\(430\) −6028.57 −0.676102
\(431\) −7349.58 −0.821385 −0.410693 0.911774i \(-0.634713\pi\)
−0.410693 + 0.911774i \(0.634713\pi\)
\(432\) 9765.83 1.08764
\(433\) 8531.96 0.946928 0.473464 0.880813i \(-0.343003\pi\)
0.473464 + 0.880813i \(0.343003\pi\)
\(434\) −12701.5 −1.40482
\(435\) −1698.63 −0.187225
\(436\) −11153.3 −1.22510
\(437\) 0 0
\(438\) −4526.59 −0.493810
\(439\) 10738.0 1.16742 0.583710 0.811962i \(-0.301600\pi\)
0.583710 + 0.811962i \(0.301600\pi\)
\(440\) 568.344 0.0615790
\(441\) 2588.94 0.279553
\(442\) 6388.02 0.687437
\(443\) −6308.26 −0.676557 −0.338278 0.941046i \(-0.609845\pi\)
−0.338278 + 0.941046i \(0.609845\pi\)
\(444\) −4344.00 −0.464318
\(445\) −3866.22 −0.411857
\(446\) −15156.9 −1.60919
\(447\) −3376.92 −0.357322
\(448\) −2103.88 −0.221873
\(449\) 13873.5 1.45820 0.729098 0.684409i \(-0.239940\pi\)
0.729098 + 0.684409i \(0.239940\pi\)
\(450\) −7772.58 −0.814229
\(451\) 4718.74 0.492675
\(452\) −11926.2 −1.24107
\(453\) −248.997 −0.0258254
\(454\) −19424.0 −2.00796
\(455\) −2375.63 −0.244772
\(456\) −2631.32 −0.270226
\(457\) 11793.4 1.20716 0.603579 0.797303i \(-0.293741\pi\)
0.603579 + 0.797303i \(0.293741\pi\)
\(458\) 14491.5 1.47848
\(459\) −5711.38 −0.580793
\(460\) 0 0
\(461\) 984.189 0.0994322 0.0497161 0.998763i \(-0.484168\pi\)
0.0497161 + 0.998763i \(0.484168\pi\)
\(462\) −2006.78 −0.202086
\(463\) 14604.9 1.46598 0.732989 0.680240i \(-0.238125\pi\)
0.732989 + 0.680240i \(0.238125\pi\)
\(464\) 11643.2 1.16492
\(465\) 2706.81 0.269947
\(466\) −4516.52 −0.448978
\(467\) −7928.35 −0.785611 −0.392806 0.919622i \(-0.628495\pi\)
−0.392806 + 0.919622i \(0.628495\pi\)
\(468\) 4109.38 0.405889
\(469\) 5770.05 0.568094
\(470\) 6518.44 0.639731
\(471\) 8305.78 0.812549
\(472\) 357.710 0.0348834
\(473\) 5435.45 0.528377
\(474\) −4577.94 −0.443612
\(475\) 11099.2 1.07214
\(476\) 3599.79 0.346630
\(477\) 8064.23 0.774079
\(478\) −4769.41 −0.456376
\(479\) −10757.2 −1.02612 −0.513058 0.858354i \(-0.671487\pi\)
−0.513058 + 0.858354i \(0.671487\pi\)
\(480\) 2387.90 0.227067
\(481\) 11492.0 1.08938
\(482\) 7854.26 0.742224
\(483\) 0 0
\(484\) −6130.73 −0.575763
\(485\) −270.421 −0.0253179
\(486\) −14353.2 −1.33966
\(487\) −6314.51 −0.587552 −0.293776 0.955874i \(-0.594912\pi\)
−0.293776 + 0.955874i \(0.594912\pi\)
\(488\) −381.042 −0.0353463
\(489\) −1537.48 −0.142182
\(490\) 2033.45 0.187474
\(491\) 7706.00 0.708283 0.354142 0.935192i \(-0.384773\pi\)
0.354142 + 0.935192i \(0.384773\pi\)
\(492\) 4848.05 0.444242
\(493\) −6809.31 −0.622061
\(494\) −14544.8 −1.32470
\(495\) −1190.57 −0.108105
\(496\) −18553.7 −1.67961
\(497\) −3852.30 −0.347685
\(498\) 3513.37 0.316140
\(499\) −9724.80 −0.872428 −0.436214 0.899843i \(-0.643681\pi\)
−0.436214 + 0.899843i \(0.643681\pi\)
\(500\) −5344.52 −0.478028
\(501\) −14.7925 −0.00131912
\(502\) 2919.72 0.259589
\(503\) −2647.59 −0.234693 −0.117346 0.993091i \(-0.537439\pi\)
−0.117346 + 0.993091i \(0.537439\pi\)
\(504\) −2747.04 −0.242783
\(505\) −1404.86 −0.123793
\(506\) 0 0
\(507\) −1963.62 −0.172007
\(508\) −3091.28 −0.269987
\(509\) 6869.56 0.598208 0.299104 0.954220i \(-0.403312\pi\)
0.299104 + 0.954220i \(0.403312\pi\)
\(510\) −1901.45 −0.165094
\(511\) 6748.21 0.584194
\(512\) −10449.7 −0.901987
\(513\) 13004.2 1.11920
\(514\) 26539.6 2.27746
\(515\) −6518.35 −0.557733
\(516\) 5584.41 0.476434
\(517\) −5877.13 −0.499953
\(518\) 16051.4 1.36151
\(519\) −6957.08 −0.588404
\(520\) −1544.76 −0.130273
\(521\) 10400.1 0.874543 0.437272 0.899330i \(-0.355945\pi\)
0.437272 + 0.899330i \(0.355945\pi\)
\(522\) −10857.2 −0.910360
\(523\) 12959.0 1.08348 0.541739 0.840547i \(-0.317766\pi\)
0.541739 + 0.840547i \(0.317766\pi\)
\(524\) 12767.6 1.06442
\(525\) −4162.27 −0.346012
\(526\) 7320.73 0.606842
\(527\) 10850.8 0.896906
\(528\) −2931.40 −0.241615
\(529\) 0 0
\(530\) 6333.95 0.519112
\(531\) −749.332 −0.0612396
\(532\) −8196.33 −0.667962
\(533\) −12825.5 −1.04228
\(534\) 8876.78 0.719355
\(535\) −6438.21 −0.520277
\(536\) 3751.99 0.302353
\(537\) 7199.61 0.578559
\(538\) −8647.78 −0.692997
\(539\) −1833.39 −0.146512
\(540\) −2885.77 −0.229970
\(541\) 5526.65 0.439204 0.219602 0.975590i \(-0.429524\pi\)
0.219602 + 0.975590i \(0.429524\pi\)
\(542\) 28404.4 2.25106
\(543\) 10923.2 0.863277
\(544\) 9572.40 0.754437
\(545\) −8782.73 −0.690295
\(546\) 5454.41 0.427522
\(547\) 18131.0 1.41723 0.708616 0.705594i \(-0.249320\pi\)
0.708616 + 0.705594i \(0.249320\pi\)
\(548\) −11695.7 −0.911711
\(549\) 798.208 0.0620522
\(550\) 5504.25 0.426731
\(551\) 15504.1 1.19872
\(552\) 0 0
\(553\) 6824.77 0.524808
\(554\) −5215.90 −0.400005
\(555\) −3420.72 −0.261624
\(556\) 4621.72 0.352526
\(557\) −5663.69 −0.430841 −0.215420 0.976521i \(-0.569112\pi\)
−0.215420 + 0.976521i \(0.569112\pi\)
\(558\) 17301.3 1.31259
\(559\) −14773.5 −1.11781
\(560\) −4846.99 −0.365755
\(561\) 1714.38 0.129022
\(562\) 17542.1 1.31667
\(563\) 17856.0 1.33666 0.668331 0.743864i \(-0.267009\pi\)
0.668331 + 0.743864i \(0.267009\pi\)
\(564\) −6038.19 −0.450804
\(565\) −9391.38 −0.699289
\(566\) −10954.0 −0.813486
\(567\) 2944.92 0.218122
\(568\) −2504.97 −0.185046
\(569\) −24468.7 −1.80278 −0.901391 0.433007i \(-0.857453\pi\)
−0.901391 + 0.433007i \(0.857453\pi\)
\(570\) 4329.41 0.318139
\(571\) 6365.27 0.466512 0.233256 0.972415i \(-0.425062\pi\)
0.233256 + 0.972415i \(0.425062\pi\)
\(572\) −2910.11 −0.212723
\(573\) 109.455 0.00797999
\(574\) −17913.9 −1.30264
\(575\) 0 0
\(576\) 2865.80 0.207306
\(577\) −15281.7 −1.10257 −0.551286 0.834316i \(-0.685863\pi\)
−0.551286 + 0.834316i \(0.685863\pi\)
\(578\) 10369.2 0.746197
\(579\) −671.641 −0.0482080
\(580\) −3440.52 −0.246310
\(581\) −5237.71 −0.374005
\(582\) 620.882 0.0442206
\(583\) −5710.78 −0.405689
\(584\) 4388.04 0.310922
\(585\) 3235.96 0.228701
\(586\) −7315.91 −0.515730
\(587\) 10436.6 0.733839 0.366920 0.930253i \(-0.380412\pi\)
0.366920 + 0.930253i \(0.380412\pi\)
\(588\) −1883.64 −0.132109
\(589\) −24706.2 −1.72835
\(590\) −588.554 −0.0410684
\(591\) 6804.79 0.473624
\(592\) 23447.2 1.62783
\(593\) −8293.70 −0.574336 −0.287168 0.957880i \(-0.592714\pi\)
−0.287168 + 0.957880i \(0.592714\pi\)
\(594\) 6448.96 0.445461
\(595\) 2834.68 0.195312
\(596\) −6839.86 −0.470087
\(597\) 6391.99 0.438202
\(598\) 0 0
\(599\) −18225.4 −1.24319 −0.621595 0.783339i \(-0.713515\pi\)
−0.621595 + 0.783339i \(0.713515\pi\)
\(600\) −2706.53 −0.184156
\(601\) 13078.9 0.887689 0.443844 0.896104i \(-0.353614\pi\)
0.443844 + 0.896104i \(0.353614\pi\)
\(602\) −20634.8 −1.39703
\(603\) −7859.67 −0.530797
\(604\) −504.338 −0.0339755
\(605\) −4827.68 −0.324419
\(606\) 3225.53 0.216218
\(607\) 14543.0 0.972461 0.486230 0.873831i \(-0.338372\pi\)
0.486230 + 0.873831i \(0.338372\pi\)
\(608\) −21795.3 −1.45381
\(609\) −5814.12 −0.386864
\(610\) 626.943 0.0416134
\(611\) 15974.0 1.05767
\(612\) −4903.44 −0.323872
\(613\) 12455.1 0.820650 0.410325 0.911939i \(-0.365415\pi\)
0.410325 + 0.911939i \(0.365415\pi\)
\(614\) −3561.55 −0.234092
\(615\) 3817.63 0.250312
\(616\) 1945.35 0.127241
\(617\) 6465.47 0.421864 0.210932 0.977501i \(-0.432350\pi\)
0.210932 + 0.977501i \(0.432350\pi\)
\(618\) 14966.0 0.974146
\(619\) −5203.61 −0.337885 −0.168942 0.985626i \(-0.554035\pi\)
−0.168942 + 0.985626i \(0.554035\pi\)
\(620\) 5482.57 0.355138
\(621\) 0 0
\(622\) 1364.62 0.0879685
\(623\) −13233.4 −0.851022
\(624\) 7967.54 0.511149
\(625\) 9147.38 0.585432
\(626\) −6218.17 −0.397009
\(627\) −3903.46 −0.248627
\(628\) 16823.2 1.06898
\(629\) −13712.7 −0.869254
\(630\) 4519.80 0.285831
\(631\) 2632.91 0.166108 0.0830542 0.996545i \(-0.473533\pi\)
0.0830542 + 0.996545i \(0.473533\pi\)
\(632\) 4437.82 0.279315
\(633\) −9248.92 −0.580745
\(634\) −6065.71 −0.379969
\(635\) −2434.25 −0.152127
\(636\) −5867.29 −0.365807
\(637\) 4983.15 0.309952
\(638\) 7688.69 0.477113
\(639\) 5247.41 0.324858
\(640\) −4900.52 −0.302672
\(641\) 26639.5 1.64150 0.820748 0.571291i \(-0.193557\pi\)
0.820748 + 0.571291i \(0.193557\pi\)
\(642\) 14782.0 0.908723
\(643\) 3377.07 0.207121 0.103561 0.994623i \(-0.466976\pi\)
0.103561 + 0.994623i \(0.466976\pi\)
\(644\) 0 0
\(645\) 4397.48 0.268451
\(646\) 17355.4 1.05703
\(647\) −7954.78 −0.483361 −0.241681 0.970356i \(-0.577699\pi\)
−0.241681 + 0.970356i \(0.577699\pi\)
\(648\) 1914.94 0.116089
\(649\) 530.649 0.0320952
\(650\) −14960.5 −0.902769
\(651\) 9264.98 0.557793
\(652\) −3114.12 −0.187053
\(653\) −14035.4 −0.841115 −0.420557 0.907266i \(-0.638165\pi\)
−0.420557 + 0.907266i \(0.638165\pi\)
\(654\) 20165.0 1.20568
\(655\) 10054.0 0.599757
\(656\) −26167.8 −1.55744
\(657\) −9192.07 −0.545840
\(658\) 22311.6 1.32188
\(659\) −16714.4 −0.988011 −0.494005 0.869459i \(-0.664468\pi\)
−0.494005 + 0.869459i \(0.664468\pi\)
\(660\) 866.221 0.0510873
\(661\) 18855.3 1.10951 0.554754 0.832014i \(-0.312812\pi\)
0.554754 + 0.832014i \(0.312812\pi\)
\(662\) −13220.0 −0.776151
\(663\) −4659.68 −0.272952
\(664\) −3405.83 −0.199054
\(665\) −6454.26 −0.376369
\(666\) −21864.4 −1.27212
\(667\) 0 0
\(668\) −29.9617 −0.00173541
\(669\) 11056.0 0.638940
\(670\) −6173.28 −0.355962
\(671\) −565.261 −0.0325211
\(672\) 8173.39 0.469190
\(673\) 22147.8 1.26855 0.634276 0.773106i \(-0.281298\pi\)
0.634276 + 0.773106i \(0.281298\pi\)
\(674\) −27413.1 −1.56664
\(675\) 13375.9 0.762721
\(676\) −3977.27 −0.226290
\(677\) −3446.04 −0.195631 −0.0978155 0.995205i \(-0.531186\pi\)
−0.0978155 + 0.995205i \(0.531186\pi\)
\(678\) 21562.5 1.22139
\(679\) −925.607 −0.0523145
\(680\) 1843.25 0.103949
\(681\) 14168.7 0.797275
\(682\) −12252.1 −0.687916
\(683\) 9564.98 0.535862 0.267931 0.963438i \(-0.413660\pi\)
0.267931 + 0.963438i \(0.413660\pi\)
\(684\) 11164.6 0.624108
\(685\) −9209.90 −0.513711
\(686\) 25277.8 1.40687
\(687\) −10570.7 −0.587041
\(688\) −30142.4 −1.67030
\(689\) 15521.9 0.858253
\(690\) 0 0
\(691\) 6743.85 0.371271 0.185636 0.982619i \(-0.440566\pi\)
0.185636 + 0.982619i \(0.440566\pi\)
\(692\) −14091.4 −0.774095
\(693\) −4075.12 −0.223378
\(694\) 9211.49 0.503838
\(695\) 3639.41 0.198634
\(696\) −3780.65 −0.205898
\(697\) 15303.8 0.831669
\(698\) −42624.2 −2.31139
\(699\) 3294.53 0.178270
\(700\) −8430.58 −0.455208
\(701\) −9873.30 −0.531968 −0.265984 0.963977i \(-0.585697\pi\)
−0.265984 + 0.963977i \(0.585697\pi\)
\(702\) −17528.2 −0.942394
\(703\) 31222.3 1.67507
\(704\) −2029.45 −0.108648
\(705\) −4754.81 −0.254009
\(706\) 27370.8 1.45909
\(707\) −4808.60 −0.255794
\(708\) 545.191 0.0289400
\(709\) −7772.24 −0.411696 −0.205848 0.978584i \(-0.565995\pi\)
−0.205848 + 0.978584i \(0.565995\pi\)
\(710\) 4121.51 0.217856
\(711\) −9296.35 −0.490352
\(712\) −8605.07 −0.452934
\(713\) 0 0
\(714\) −6508.38 −0.341134
\(715\) −2291.58 −0.119861
\(716\) 14582.6 0.761143
\(717\) 3479.00 0.181207
\(718\) −43275.5 −2.24934
\(719\) 15754.5 0.817167 0.408584 0.912721i \(-0.366023\pi\)
0.408584 + 0.912721i \(0.366023\pi\)
\(720\) 6602.32 0.341741
\(721\) −22311.3 −1.15245
\(722\) −14398.4 −0.742180
\(723\) −5729.21 −0.294705
\(724\) 22124.7 1.13571
\(725\) 15947.2 0.816915
\(726\) 11084.3 0.566635
\(727\) −6008.39 −0.306518 −0.153259 0.988186i \(-0.548977\pi\)
−0.153259 + 0.988186i \(0.548977\pi\)
\(728\) −5287.45 −0.269184
\(729\) 5017.44 0.254912
\(730\) −7219.80 −0.366050
\(731\) 17628.3 0.891936
\(732\) −580.752 −0.0293241
\(733\) −32667.1 −1.64609 −0.823047 0.567973i \(-0.807728\pi\)
−0.823047 + 0.567973i \(0.807728\pi\)
\(734\) −6509.37 −0.327337
\(735\) −1483.28 −0.0744377
\(736\) 0 0
\(737\) 5565.93 0.278187
\(738\) 24401.4 1.21711
\(739\) −29263.2 −1.45665 −0.728325 0.685231i \(-0.759701\pi\)
−0.728325 + 0.685231i \(0.759701\pi\)
\(740\) −6928.58 −0.344188
\(741\) 10609.6 0.525982
\(742\) 21680.1 1.07264
\(743\) 11886.5 0.586909 0.293454 0.955973i \(-0.405195\pi\)
0.293454 + 0.955973i \(0.405195\pi\)
\(744\) 6024.57 0.296870
\(745\) −5386.10 −0.264874
\(746\) −16770.3 −0.823064
\(747\) 7134.54 0.349450
\(748\) 3472.44 0.169739
\(749\) −22037.0 −1.07505
\(750\) 9662.83 0.470449
\(751\) −25780.5 −1.25265 −0.626327 0.779561i \(-0.715442\pi\)
−0.626327 + 0.779561i \(0.715442\pi\)
\(752\) 32591.7 1.58045
\(753\) −2129.76 −0.103072
\(754\) −20897.8 −1.00935
\(755\) −397.145 −0.0191438
\(756\) −9877.54 −0.475189
\(757\) 13359.3 0.641416 0.320708 0.947178i \(-0.396079\pi\)
0.320708 + 0.947178i \(0.396079\pi\)
\(758\) 30318.0 1.45277
\(759\) 0 0
\(760\) −4196.89 −0.200312
\(761\) 96.8213 0.00461205 0.00230603 0.999997i \(-0.499266\pi\)
0.00230603 + 0.999997i \(0.499266\pi\)
\(762\) 5589.01 0.265707
\(763\) −30061.9 −1.42636
\(764\) 221.698 0.0104984
\(765\) −3861.25 −0.182489
\(766\) 40371.7 1.90429
\(767\) −1442.30 −0.0678989
\(768\) 14334.5 0.673505
\(769\) −1788.06 −0.0838477 −0.0419239 0.999121i \(-0.513349\pi\)
−0.0419239 + 0.999121i \(0.513349\pi\)
\(770\) −3200.76 −0.149802
\(771\) −19359.1 −0.904281
\(772\) −1360.39 −0.0634217
\(773\) 20117.0 0.936037 0.468018 0.883719i \(-0.344968\pi\)
0.468018 + 0.883719i \(0.344968\pi\)
\(774\) 28107.7 1.30531
\(775\) −25412.3 −1.17785
\(776\) −601.878 −0.0278430
\(777\) −11708.6 −0.540595
\(778\) 28231.1 1.30094
\(779\) −34845.1 −1.60264
\(780\) −2354.38 −0.108078
\(781\) −3716.02 −0.170256
\(782\) 0 0
\(783\) 18684.2 0.852771
\(784\) 10167.1 0.463152
\(785\) 13247.5 0.602324
\(786\) −23083.7 −1.04754
\(787\) −17474.8 −0.791501 −0.395750 0.918358i \(-0.629515\pi\)
−0.395750 + 0.918358i \(0.629515\pi\)
\(788\) 13782.9 0.623092
\(789\) −5340.03 −0.240951
\(790\) −7301.70 −0.328839
\(791\) −32145.2 −1.44494
\(792\) −2649.86 −0.118887
\(793\) 1536.38 0.0687999
\(794\) 6595.01 0.294771
\(795\) −4620.24 −0.206117
\(796\) 12946.8 0.576492
\(797\) −9096.85 −0.404300 −0.202150 0.979355i \(-0.564793\pi\)
−0.202150 + 0.979355i \(0.564793\pi\)
\(798\) 14818.9 0.657372
\(799\) −19060.7 −0.843954
\(800\) −22418.3 −0.990756
\(801\) 18025.9 0.795149
\(802\) 2327.94 0.102497
\(803\) 6509.48 0.286070
\(804\) 5718.46 0.250839
\(805\) 0 0
\(806\) 33301.3 1.45532
\(807\) 6308.04 0.275159
\(808\) −3126.80 −0.136139
\(809\) 32640.3 1.41851 0.709253 0.704954i \(-0.249032\pi\)
0.709253 + 0.704954i \(0.249032\pi\)
\(810\) −3150.72 −0.136673
\(811\) 34031.0 1.47348 0.736738 0.676178i \(-0.236365\pi\)
0.736738 + 0.676178i \(0.236365\pi\)
\(812\) −11776.4 −0.508952
\(813\) −20719.3 −0.893798
\(814\) 15483.6 0.666707
\(815\) −2452.24 −0.105397
\(816\) −9507.13 −0.407863
\(817\) −40137.7 −1.71878
\(818\) 52806.5 2.25714
\(819\) 11076.2 0.472567
\(820\) 7732.52 0.329306
\(821\) 30188.5 1.28330 0.641648 0.767000i \(-0.278251\pi\)
0.641648 + 0.767000i \(0.278251\pi\)
\(822\) 21145.8 0.897256
\(823\) 14632.0 0.619733 0.309867 0.950780i \(-0.399716\pi\)
0.309867 + 0.950780i \(0.399716\pi\)
\(824\) −14507.9 −0.613359
\(825\) −4015.02 −0.169437
\(826\) −2014.53 −0.0848599
\(827\) −16334.2 −0.686816 −0.343408 0.939186i \(-0.611581\pi\)
−0.343408 + 0.939186i \(0.611581\pi\)
\(828\) 0 0
\(829\) 25548.5 1.07037 0.535185 0.844735i \(-0.320242\pi\)
0.535185 + 0.844735i \(0.320242\pi\)
\(830\) 5603.74 0.234348
\(831\) 3804.69 0.158825
\(832\) 5516.05 0.229849
\(833\) −5946.06 −0.247321
\(834\) −8356.02 −0.346937
\(835\) −23.5936 −0.000977832 0
\(836\) −7906.36 −0.327090
\(837\) −29773.9 −1.22955
\(838\) −13621.6 −0.561516
\(839\) −16241.4 −0.668314 −0.334157 0.942517i \(-0.608452\pi\)
−0.334157 + 0.942517i \(0.608452\pi\)
\(840\) 1573.86 0.0646469
\(841\) −2112.98 −0.0866365
\(842\) 18808.2 0.769803
\(843\) −12795.9 −0.522793
\(844\) −18733.5 −0.764019
\(845\) −3131.93 −0.127505
\(846\) −30391.7 −1.23509
\(847\) −16524.4 −0.670348
\(848\) 31669.3 1.28246
\(849\) 7990.32 0.323000
\(850\) 17851.4 0.720350
\(851\) 0 0
\(852\) −3817.86 −0.153518
\(853\) 21888.3 0.878594 0.439297 0.898342i \(-0.355228\pi\)
0.439297 + 0.898342i \(0.355228\pi\)
\(854\) 2145.92 0.0859860
\(855\) 8791.65 0.351659
\(856\) −14329.6 −0.572167
\(857\) −22310.5 −0.889280 −0.444640 0.895709i \(-0.646668\pi\)
−0.444640 + 0.895709i \(0.646668\pi\)
\(858\) 5261.44 0.209351
\(859\) 36284.0 1.44120 0.720602 0.693349i \(-0.243866\pi\)
0.720602 + 0.693349i \(0.243866\pi\)
\(860\) 8906.99 0.353170
\(861\) 13067.1 0.517221
\(862\) 26914.5 1.06347
\(863\) 15966.6 0.629792 0.314896 0.949126i \(-0.398030\pi\)
0.314896 + 0.949126i \(0.398030\pi\)
\(864\) −26266.0 −1.03424
\(865\) −11096.4 −0.436171
\(866\) −31244.4 −1.22601
\(867\) −7563.71 −0.296283
\(868\) 18766.0 0.733823
\(869\) 6583.33 0.256990
\(870\) 6220.43 0.242405
\(871\) −15128.2 −0.588516
\(872\) −19547.8 −0.759142
\(873\) 1260.81 0.0488798
\(874\) 0 0
\(875\) −14405.3 −0.556557
\(876\) 6687.87 0.257948
\(877\) −24553.1 −0.945382 −0.472691 0.881228i \(-0.656717\pi\)
−0.472691 + 0.881228i \(0.656717\pi\)
\(878\) −39323.0 −1.51149
\(879\) 5336.52 0.204774
\(880\) −4675.51 −0.179104
\(881\) 4322.25 0.165290 0.0826450 0.996579i \(-0.473663\pi\)
0.0826450 + 0.996579i \(0.473663\pi\)
\(882\) −9480.81 −0.361945
\(883\) −23333.7 −0.889289 −0.444644 0.895707i \(-0.646670\pi\)
−0.444644 + 0.895707i \(0.646670\pi\)
\(884\) −9438.06 −0.359091
\(885\) 429.315 0.0163065
\(886\) 23101.1 0.875956
\(887\) 7978.16 0.302007 0.151004 0.988533i \(-0.451749\pi\)
0.151004 + 0.988533i \(0.451749\pi\)
\(888\) −7613.52 −0.287717
\(889\) −8332.06 −0.314340
\(890\) 14158.2 0.533242
\(891\) 2840.74 0.106811
\(892\) 22393.7 0.840579
\(893\) 43399.2 1.62631
\(894\) 12366.4 0.462634
\(895\) 11483.2 0.428872
\(896\) −16773.7 −0.625413
\(897\) 0 0
\(898\) −50805.3 −1.88797
\(899\) −35497.5 −1.31692
\(900\) 11483.7 0.425322
\(901\) −18521.2 −0.684829
\(902\) −17280.2 −0.637880
\(903\) 15051.9 0.554701
\(904\) −20902.5 −0.769033
\(905\) 17422.2 0.639927
\(906\) 911.838 0.0334369
\(907\) 45500.6 1.66574 0.832868 0.553472i \(-0.186698\pi\)
0.832868 + 0.553472i \(0.186698\pi\)
\(908\) 28698.3 1.04888
\(909\) 6550.03 0.239000
\(910\) 8699.64 0.316912
\(911\) −54365.5 −1.97718 −0.988590 0.150634i \(-0.951868\pi\)
−0.988590 + 0.150634i \(0.951868\pi\)
\(912\) 21646.7 0.785959
\(913\) −5052.42 −0.183144
\(914\) −43187.9 −1.56294
\(915\) −457.317 −0.0165229
\(916\) −21410.7 −0.772302
\(917\) 34413.1 1.23928
\(918\) 20915.3 0.751968
\(919\) −3342.64 −0.119982 −0.0599910 0.998199i \(-0.519107\pi\)
−0.0599910 + 0.998199i \(0.519107\pi\)
\(920\) 0 0
\(921\) 2597.93 0.0929477
\(922\) −3604.14 −0.128737
\(923\) 10100.1 0.360184
\(924\) 2964.94 0.105562
\(925\) 32114.7 1.14154
\(926\) −53483.8 −1.89804
\(927\) 30391.2 1.07678
\(928\) −31315.2 −1.10773
\(929\) 19662.1 0.694393 0.347197 0.937792i \(-0.387134\pi\)
0.347197 + 0.937792i \(0.387134\pi\)
\(930\) −9912.44 −0.349507
\(931\) 13538.5 0.476593
\(932\) 6672.99 0.234529
\(933\) −995.411 −0.0349285
\(934\) 29033.9 1.01715
\(935\) 2734.39 0.0956409
\(936\) 7202.30 0.251511
\(937\) 12008.4 0.418674 0.209337 0.977844i \(-0.432869\pi\)
0.209337 + 0.977844i \(0.432869\pi\)
\(938\) −21130.2 −0.735527
\(939\) 4535.78 0.157635
\(940\) −9630.76 −0.334171
\(941\) 904.922 0.0313492 0.0156746 0.999877i \(-0.495010\pi\)
0.0156746 + 0.999877i \(0.495010\pi\)
\(942\) −30416.1 −1.05203
\(943\) 0 0
\(944\) −2942.72 −0.101459
\(945\) −7778.14 −0.267749
\(946\) −19904.8 −0.684104
\(947\) 35613.4 1.22205 0.611025 0.791612i \(-0.290758\pi\)
0.611025 + 0.791612i \(0.290758\pi\)
\(948\) 6763.74 0.231726
\(949\) −17692.7 −0.605195
\(950\) −40645.7 −1.38813
\(951\) 4424.57 0.150869
\(952\) 6309.16 0.214791
\(953\) 11832.5 0.402194 0.201097 0.979571i \(-0.435549\pi\)
0.201097 + 0.979571i \(0.435549\pi\)
\(954\) −29531.5 −1.00222
\(955\) 174.577 0.00591538
\(956\) 7046.63 0.238394
\(957\) −5608.44 −0.189441
\(958\) 39393.3 1.32854
\(959\) −31524.0 −1.06148
\(960\) −1641.90 −0.0552002
\(961\) 26775.3 0.898770
\(962\) −42084.3 −1.41045
\(963\) 30017.6 1.00447
\(964\) −11604.4 −0.387710
\(965\) −1071.25 −0.0357355
\(966\) 0 0
\(967\) −28058.1 −0.933078 −0.466539 0.884501i \(-0.654499\pi\)
−0.466539 + 0.884501i \(0.654499\pi\)
\(968\) −10745.0 −0.356775
\(969\) −12659.7 −0.419699
\(970\) 990.291 0.0327797
\(971\) 3658.17 0.120902 0.0604512 0.998171i \(-0.480746\pi\)
0.0604512 + 0.998171i \(0.480746\pi\)
\(972\) 21206.3 0.699787
\(973\) 12457.1 0.410438
\(974\) 23124.0 0.760719
\(975\) 10912.8 0.358451
\(976\) 3134.67 0.102806
\(977\) −15310.6 −0.501360 −0.250680 0.968070i \(-0.580654\pi\)
−0.250680 + 0.968070i \(0.580654\pi\)
\(978\) 5630.30 0.184087
\(979\) −12765.3 −0.416732
\(980\) −3004.35 −0.0979291
\(981\) 40948.8 1.33272
\(982\) −28219.7 −0.917033
\(983\) 58178.9 1.88771 0.943856 0.330358i \(-0.107170\pi\)
0.943856 + 0.330358i \(0.107170\pi\)
\(984\) 8496.94 0.275277
\(985\) 10853.5 0.351086
\(986\) 24936.0 0.805398
\(987\) −16275.0 −0.524861
\(988\) 21489.5 0.691974
\(989\) 0 0
\(990\) 4359.91 0.139967
\(991\) −47516.8 −1.52313 −0.761564 0.648090i \(-0.775568\pi\)
−0.761564 + 0.648090i \(0.775568\pi\)
\(992\) 49901.7 1.59716
\(993\) 9643.23 0.308176
\(994\) 14107.3 0.450157
\(995\) 10195.1 0.324829
\(996\) −5190.88 −0.165140
\(997\) 45782.9 1.45432 0.727161 0.686467i \(-0.240839\pi\)
0.727161 + 0.686467i \(0.240839\pi\)
\(998\) 35612.6 1.12956
\(999\) 37626.6 1.19164
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.6 25
23.15 odd 22 23.4.c.a.18.5 yes 50
23.20 odd 22 23.4.c.a.9.5 50
23.22 odd 2 529.4.a.n.1.6 25
69.20 even 22 207.4.i.a.55.1 50
69.38 even 22 207.4.i.a.64.1 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.9.5 50 23.20 odd 22
23.4.c.a.18.5 yes 50 23.15 odd 22
207.4.i.a.55.1 50 69.20 even 22
207.4.i.a.64.1 50 69.38 even 22
529.4.a.m.1.6 25 1.1 even 1 trivial
529.4.a.n.1.6 25 23.22 odd 2