Properties

Label 529.4.a.m.1.3
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.35590 q^{2} -1.21507 q^{3} +10.9738 q^{4} +6.90715 q^{5} +5.29273 q^{6} -2.81570 q^{7} -12.9537 q^{8} -25.5236 q^{9} -30.0868 q^{10} +61.2825 q^{11} -13.3340 q^{12} -10.5135 q^{13} +12.2649 q^{14} -8.39268 q^{15} -31.3657 q^{16} -104.181 q^{17} +111.178 q^{18} +70.5546 q^{19} +75.7979 q^{20} +3.42128 q^{21} -266.940 q^{22} +15.7397 q^{24} -77.2913 q^{25} +45.7959 q^{26} +63.8200 q^{27} -30.8990 q^{28} -124.008 q^{29} +36.5576 q^{30} -144.754 q^{31} +240.255 q^{32} -74.4626 q^{33} +453.802 q^{34} -19.4484 q^{35} -280.092 q^{36} +230.338 q^{37} -307.328 q^{38} +12.7747 q^{39} -89.4731 q^{40} +20.1480 q^{41} -14.9027 q^{42} +221.808 q^{43} +672.503 q^{44} -176.295 q^{45} +487.718 q^{47} +38.1116 q^{48} -335.072 q^{49} +336.673 q^{50} +126.588 q^{51} -115.374 q^{52} +377.462 q^{53} -277.993 q^{54} +423.287 q^{55} +36.4737 q^{56} -85.7289 q^{57} +540.167 q^{58} -667.749 q^{59} -92.0999 q^{60} -74.6976 q^{61} +630.531 q^{62} +71.8667 q^{63} -795.601 q^{64} -72.6186 q^{65} +324.351 q^{66} +65.7167 q^{67} -1143.27 q^{68} +84.7154 q^{70} +654.734 q^{71} +330.625 q^{72} -602.684 q^{73} -1003.33 q^{74} +93.9145 q^{75} +774.254 q^{76} -172.553 q^{77} -55.6453 q^{78} -116.793 q^{79} -216.648 q^{80} +611.591 q^{81} -87.7624 q^{82} -311.073 q^{83} +37.5445 q^{84} -719.595 q^{85} -966.174 q^{86} +150.679 q^{87} -793.834 q^{88} -1520.85 q^{89} +767.924 q^{90} +29.6030 q^{91} +175.886 q^{93} -2124.45 q^{94} +487.331 q^{95} -291.927 q^{96} -832.982 q^{97} +1459.54 q^{98} -1564.15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.35590 −1.54004 −0.770021 0.638019i \(-0.779754\pi\)
−0.770021 + 0.638019i \(0.779754\pi\)
\(3\) −1.21507 −0.233841 −0.116920 0.993141i \(-0.537302\pi\)
−0.116920 + 0.993141i \(0.537302\pi\)
\(4\) 10.9738 1.37173
\(5\) 6.90715 0.617794 0.308897 0.951095i \(-0.400040\pi\)
0.308897 + 0.951095i \(0.400040\pi\)
\(6\) 5.29273 0.360124
\(7\) −2.81570 −0.152033 −0.0760167 0.997107i \(-0.524220\pi\)
−0.0760167 + 0.997107i \(0.524220\pi\)
\(8\) −12.9537 −0.572478
\(9\) −25.5236 −0.945319
\(10\) −30.0868 −0.951429
\(11\) 61.2825 1.67976 0.839880 0.542772i \(-0.182625\pi\)
0.839880 + 0.542772i \(0.182625\pi\)
\(12\) −13.3340 −0.320766
\(13\) −10.5135 −0.224303 −0.112151 0.993691i \(-0.535774\pi\)
−0.112151 + 0.993691i \(0.535774\pi\)
\(14\) 12.2649 0.234138
\(15\) −8.39268 −0.144465
\(16\) −31.3657 −0.490089
\(17\) −104.181 −1.48633 −0.743166 0.669107i \(-0.766677\pi\)
−0.743166 + 0.669107i \(0.766677\pi\)
\(18\) 111.178 1.45583
\(19\) 70.5546 0.851912 0.425956 0.904744i \(-0.359938\pi\)
0.425956 + 0.904744i \(0.359938\pi\)
\(20\) 75.7979 0.847446
\(21\) 3.42128 0.0355516
\(22\) −266.940 −2.58690
\(23\) 0 0
\(24\) 15.7397 0.133869
\(25\) −77.2913 −0.618331
\(26\) 45.7959 0.345435
\(27\) 63.8200 0.454895
\(28\) −30.8990 −0.208549
\(29\) −124.008 −0.794061 −0.397031 0.917805i \(-0.629959\pi\)
−0.397031 + 0.917805i \(0.629959\pi\)
\(30\) 36.5576 0.222483
\(31\) −144.754 −0.838661 −0.419331 0.907834i \(-0.637735\pi\)
−0.419331 + 0.907834i \(0.637735\pi\)
\(32\) 240.255 1.32724
\(33\) −74.4626 −0.392796
\(34\) 453.802 2.28901
\(35\) −19.4484 −0.0939253
\(36\) −280.092 −1.29672
\(37\) 230.338 1.02344 0.511721 0.859152i \(-0.329008\pi\)
0.511721 + 0.859152i \(0.329008\pi\)
\(38\) −307.328 −1.31198
\(39\) 12.7747 0.0524511
\(40\) −89.4731 −0.353673
\(41\) 20.1480 0.0767459 0.0383730 0.999263i \(-0.487783\pi\)
0.0383730 + 0.999263i \(0.487783\pi\)
\(42\) −14.9027 −0.0547509
\(43\) 221.808 0.786638 0.393319 0.919402i \(-0.371327\pi\)
0.393319 + 0.919402i \(0.371327\pi\)
\(44\) 672.503 2.30418
\(45\) −176.295 −0.584012
\(46\) 0 0
\(47\) 487.718 1.51364 0.756819 0.653625i \(-0.226753\pi\)
0.756819 + 0.653625i \(0.226753\pi\)
\(48\) 38.1116 0.114603
\(49\) −335.072 −0.976886
\(50\) 336.673 0.952255
\(51\) 126.588 0.347565
\(52\) −115.374 −0.307682
\(53\) 377.462 0.978273 0.489136 0.872207i \(-0.337312\pi\)
0.489136 + 0.872207i \(0.337312\pi\)
\(54\) −277.993 −0.700557
\(55\) 423.287 1.03775
\(56\) 36.4737 0.0870357
\(57\) −85.7289 −0.199212
\(58\) 540.167 1.22289
\(59\) −667.749 −1.47345 −0.736725 0.676193i \(-0.763629\pi\)
−0.736725 + 0.676193i \(0.763629\pi\)
\(60\) −92.0999 −0.198167
\(61\) −74.6976 −0.156788 −0.0783938 0.996922i \(-0.524979\pi\)
−0.0783938 + 0.996922i \(0.524979\pi\)
\(62\) 630.531 1.29157
\(63\) 71.8667 0.143720
\(64\) −795.601 −1.55391
\(65\) −72.6186 −0.138573
\(66\) 324.351 0.604923
\(67\) 65.7167 0.119829 0.0599147 0.998203i \(-0.480917\pi\)
0.0599147 + 0.998203i \(0.480917\pi\)
\(68\) −1143.27 −2.03884
\(69\) 0 0
\(70\) 84.7154 0.144649
\(71\) 654.734 1.09440 0.547202 0.837001i \(-0.315693\pi\)
0.547202 + 0.837001i \(0.315693\pi\)
\(72\) 330.625 0.541174
\(73\) −602.684 −0.966285 −0.483142 0.875542i \(-0.660505\pi\)
−0.483142 + 0.875542i \(0.660505\pi\)
\(74\) −1003.33 −1.57614
\(75\) 93.9145 0.144591
\(76\) 774.254 1.16859
\(77\) −172.553 −0.255380
\(78\) −55.6453 −0.0807768
\(79\) −116.793 −0.166332 −0.0831658 0.996536i \(-0.526503\pi\)
−0.0831658 + 0.996536i \(0.526503\pi\)
\(80\) −216.648 −0.302774
\(81\) 611.591 0.838946
\(82\) −87.7624 −0.118192
\(83\) −311.073 −0.411382 −0.205691 0.978617i \(-0.565944\pi\)
−0.205691 + 0.978617i \(0.565944\pi\)
\(84\) 37.5445 0.0487671
\(85\) −719.595 −0.918247
\(86\) −966.174 −1.21146
\(87\) 150.679 0.185684
\(88\) −793.834 −0.961625
\(89\) −1520.85 −1.81135 −0.905675 0.423974i \(-0.860635\pi\)
−0.905675 + 0.423974i \(0.860635\pi\)
\(90\) 767.924 0.899403
\(91\) 29.6030 0.0341015
\(92\) 0 0
\(93\) 175.886 0.196113
\(94\) −2124.45 −2.33106
\(95\) 487.331 0.526306
\(96\) −291.927 −0.310362
\(97\) −832.982 −0.871922 −0.435961 0.899965i \(-0.643591\pi\)
−0.435961 + 0.899965i \(0.643591\pi\)
\(98\) 1459.54 1.50445
\(99\) −1564.15 −1.58791
\(100\) −848.182 −0.848182
\(101\) −1600.56 −1.57685 −0.788423 0.615133i \(-0.789102\pi\)
−0.788423 + 0.615133i \(0.789102\pi\)
\(102\) −551.403 −0.535265
\(103\) −444.216 −0.424951 −0.212475 0.977166i \(-0.568152\pi\)
−0.212475 + 0.977166i \(0.568152\pi\)
\(104\) 136.189 0.128408
\(105\) 23.6313 0.0219636
\(106\) −1644.19 −1.50658
\(107\) −1083.67 −0.979091 −0.489546 0.871978i \(-0.662837\pi\)
−0.489546 + 0.871978i \(0.662837\pi\)
\(108\) 700.349 0.623992
\(109\) 72.7978 0.0639703 0.0319851 0.999488i \(-0.489817\pi\)
0.0319851 + 0.999488i \(0.489817\pi\)
\(110\) −1843.79 −1.59817
\(111\) −279.877 −0.239322
\(112\) 88.3163 0.0745099
\(113\) −1912.46 −1.59212 −0.796058 0.605221i \(-0.793085\pi\)
−0.796058 + 0.605221i \(0.793085\pi\)
\(114\) 373.426 0.306794
\(115\) 0 0
\(116\) −1360.85 −1.08924
\(117\) 268.344 0.212037
\(118\) 2908.65 2.26917
\(119\) 293.343 0.225972
\(120\) 108.716 0.0827032
\(121\) 2424.54 1.82159
\(122\) 325.375 0.241459
\(123\) −24.4812 −0.0179463
\(124\) −1588.50 −1.15042
\(125\) −1397.26 −0.999795
\(126\) −313.044 −0.221335
\(127\) 1664.03 1.16267 0.581333 0.813666i \(-0.302531\pi\)
0.581333 + 0.813666i \(0.302531\pi\)
\(128\) 1543.51 1.06585
\(129\) −269.513 −0.183948
\(130\) 316.319 0.213408
\(131\) −1258.76 −0.839528 −0.419764 0.907633i \(-0.637887\pi\)
−0.419764 + 0.907633i \(0.637887\pi\)
\(132\) −817.140 −0.538810
\(133\) −198.660 −0.129519
\(134\) −286.255 −0.184542
\(135\) 440.814 0.281031
\(136\) 1349.53 0.850892
\(137\) 393.094 0.245141 0.122570 0.992460i \(-0.460886\pi\)
0.122570 + 0.992460i \(0.460886\pi\)
\(138\) 0 0
\(139\) 1845.42 1.12609 0.563045 0.826426i \(-0.309630\pi\)
0.563045 + 0.826426i \(0.309630\pi\)
\(140\) −213.424 −0.128840
\(141\) −592.612 −0.353950
\(142\) −2851.96 −1.68543
\(143\) −644.296 −0.376774
\(144\) 800.566 0.463290
\(145\) −856.544 −0.490566
\(146\) 2625.23 1.48812
\(147\) 407.136 0.228436
\(148\) 2527.69 1.40388
\(149\) −2855.51 −1.57001 −0.785007 0.619486i \(-0.787341\pi\)
−0.785007 + 0.619486i \(0.787341\pi\)
\(150\) −409.082 −0.222676
\(151\) 49.1327 0.0264792 0.0132396 0.999912i \(-0.495786\pi\)
0.0132396 + 0.999912i \(0.495786\pi\)
\(152\) −913.942 −0.487701
\(153\) 2659.08 1.40506
\(154\) 751.623 0.393295
\(155\) −999.834 −0.518120
\(156\) 140.188 0.0719486
\(157\) 667.957 0.339546 0.169773 0.985483i \(-0.445697\pi\)
0.169773 + 0.985483i \(0.445697\pi\)
\(158\) 508.736 0.256158
\(159\) −458.644 −0.228760
\(160\) 1659.48 0.819958
\(161\) 0 0
\(162\) −2664.03 −1.29201
\(163\) 1160.73 0.557765 0.278882 0.960325i \(-0.410036\pi\)
0.278882 + 0.960325i \(0.410036\pi\)
\(164\) 221.100 0.105275
\(165\) −514.324 −0.242667
\(166\) 1355.00 0.633545
\(167\) −3689.38 −1.70954 −0.854769 0.519009i \(-0.826301\pi\)
−0.854769 + 0.519009i \(0.826301\pi\)
\(168\) −44.3182 −0.0203525
\(169\) −2086.47 −0.949688
\(170\) 3134.48 1.41414
\(171\) −1800.81 −0.805328
\(172\) 2434.09 1.07905
\(173\) −217.205 −0.0954554 −0.0477277 0.998860i \(-0.515198\pi\)
−0.0477277 + 0.998860i \(0.515198\pi\)
\(174\) −656.342 −0.285961
\(175\) 217.629 0.0940069
\(176\) −1922.17 −0.823232
\(177\) 811.363 0.344553
\(178\) 6624.68 2.78955
\(179\) −1207.71 −0.504291 −0.252146 0.967689i \(-0.581136\pi\)
−0.252146 + 0.967689i \(0.581136\pi\)
\(180\) −1934.63 −0.801106
\(181\) −2449.70 −1.00599 −0.502997 0.864288i \(-0.667769\pi\)
−0.502997 + 0.864288i \(0.667769\pi\)
\(182\) −128.947 −0.0525177
\(183\) 90.7629 0.0366633
\(184\) 0 0
\(185\) 1590.98 0.632276
\(186\) −766.141 −0.302022
\(187\) −6384.48 −2.49668
\(188\) 5352.13 2.07630
\(189\) −179.698 −0.0691592
\(190\) −2122.76 −0.810534
\(191\) −770.064 −0.291727 −0.145864 0.989305i \(-0.546596\pi\)
−0.145864 + 0.989305i \(0.546596\pi\)
\(192\) 966.713 0.363367
\(193\) 1399.89 0.522105 0.261053 0.965325i \(-0.415930\pi\)
0.261053 + 0.965325i \(0.415930\pi\)
\(194\) 3628.38 1.34280
\(195\) 88.2368 0.0324040
\(196\) −3677.02 −1.34002
\(197\) −1934.20 −0.699524 −0.349762 0.936839i \(-0.613738\pi\)
−0.349762 + 0.936839i \(0.613738\pi\)
\(198\) 6813.27 2.44545
\(199\) 1830.37 0.652019 0.326009 0.945367i \(-0.394296\pi\)
0.326009 + 0.945367i \(0.394296\pi\)
\(200\) 1001.21 0.353980
\(201\) −79.8506 −0.0280210
\(202\) 6971.87 2.42841
\(203\) 349.170 0.120724
\(204\) 1389.15 0.476765
\(205\) 139.165 0.0474132
\(206\) 1934.96 0.654442
\(207\) 0 0
\(208\) 329.765 0.109928
\(209\) 4323.76 1.43101
\(210\) −102.935 −0.0338248
\(211\) 256.335 0.0836343 0.0418172 0.999125i \(-0.486685\pi\)
0.0418172 + 0.999125i \(0.486685\pi\)
\(212\) 4142.21 1.34192
\(213\) −795.550 −0.255916
\(214\) 4720.37 1.50784
\(215\) 1532.06 0.485980
\(216\) −826.704 −0.260417
\(217\) 407.582 0.127505
\(218\) −317.100 −0.0985169
\(219\) 732.304 0.225957
\(220\) 4645.08 1.42351
\(221\) 1095.31 0.333388
\(222\) 1219.12 0.368566
\(223\) −2476.81 −0.743763 −0.371882 0.928280i \(-0.621287\pi\)
−0.371882 + 0.928280i \(0.621287\pi\)
\(224\) −676.486 −0.201784
\(225\) 1972.75 0.584519
\(226\) 8330.47 2.45192
\(227\) 1231.38 0.360042 0.180021 0.983663i \(-0.442383\pi\)
0.180021 + 0.983663i \(0.442383\pi\)
\(228\) −940.774 −0.273264
\(229\) −1448.21 −0.417906 −0.208953 0.977926i \(-0.567006\pi\)
−0.208953 + 0.977926i \(0.567006\pi\)
\(230\) 0 0
\(231\) 209.664 0.0597182
\(232\) 1606.37 0.454582
\(233\) −3319.77 −0.933415 −0.466707 0.884412i \(-0.654560\pi\)
−0.466707 + 0.884412i \(0.654560\pi\)
\(234\) −1168.88 −0.326546
\(235\) 3368.74 0.935116
\(236\) −7327.77 −2.02117
\(237\) 141.911 0.0388951
\(238\) −1277.77 −0.348007
\(239\) −1895.45 −0.512998 −0.256499 0.966545i \(-0.582569\pi\)
−0.256499 + 0.966545i \(0.582569\pi\)
\(240\) 263.242 0.0708009
\(241\) 6551.95 1.75124 0.875618 0.483004i \(-0.160454\pi\)
0.875618 + 0.483004i \(0.160454\pi\)
\(242\) −10561.1 −2.80533
\(243\) −2466.27 −0.651074
\(244\) −819.718 −0.215070
\(245\) −2314.39 −0.603514
\(246\) 106.638 0.0276381
\(247\) −741.779 −0.191086
\(248\) 1875.09 0.480115
\(249\) 377.976 0.0961978
\(250\) 6086.30 1.53973
\(251\) −5181.59 −1.30302 −0.651512 0.758638i \(-0.725865\pi\)
−0.651512 + 0.758638i \(0.725865\pi\)
\(252\) 788.653 0.197145
\(253\) 0 0
\(254\) −7248.33 −1.79055
\(255\) 874.359 0.214724
\(256\) −358.578 −0.0875435
\(257\) 5889.87 1.42957 0.714786 0.699344i \(-0.246524\pi\)
0.714786 + 0.699344i \(0.246524\pi\)
\(258\) 1173.97 0.283288
\(259\) −648.562 −0.155597
\(260\) −796.904 −0.190084
\(261\) 3165.14 0.750641
\(262\) 5483.02 1.29291
\(263\) −3363.44 −0.788588 −0.394294 0.918984i \(-0.629011\pi\)
−0.394294 + 0.918984i \(0.629011\pi\)
\(264\) 964.566 0.224867
\(265\) 2607.19 0.604371
\(266\) 865.344 0.199465
\(267\) 1847.95 0.423567
\(268\) 721.164 0.164374
\(269\) −894.130 −0.202662 −0.101331 0.994853i \(-0.532310\pi\)
−0.101331 + 0.994853i \(0.532310\pi\)
\(270\) −1920.14 −0.432800
\(271\) 5532.27 1.24008 0.620039 0.784571i \(-0.287117\pi\)
0.620039 + 0.784571i \(0.287117\pi\)
\(272\) 3267.72 0.728435
\(273\) −35.9697 −0.00797431
\(274\) −1712.28 −0.377527
\(275\) −4736.60 −1.03865
\(276\) 0 0
\(277\) 7236.06 1.56958 0.784788 0.619764i \(-0.212772\pi\)
0.784788 + 0.619764i \(0.212772\pi\)
\(278\) −8038.45 −1.73422
\(279\) 3694.63 0.792802
\(280\) 251.929 0.0537702
\(281\) 494.245 0.104926 0.0524629 0.998623i \(-0.483293\pi\)
0.0524629 + 0.998623i \(0.483293\pi\)
\(282\) 2581.36 0.545098
\(283\) −1950.85 −0.409774 −0.204887 0.978786i \(-0.565683\pi\)
−0.204887 + 0.978786i \(0.565683\pi\)
\(284\) 7184.94 1.50123
\(285\) −592.142 −0.123072
\(286\) 2806.49 0.580248
\(287\) −56.7306 −0.0116679
\(288\) −6132.18 −1.25466
\(289\) 5940.72 1.20918
\(290\) 3731.02 0.755492
\(291\) 1012.13 0.203891
\(292\) −6613.75 −1.32548
\(293\) −571.874 −0.114025 −0.0570123 0.998373i \(-0.518157\pi\)
−0.0570123 + 0.998373i \(0.518157\pi\)
\(294\) −1773.44 −0.351801
\(295\) −4612.24 −0.910288
\(296\) −2983.73 −0.585898
\(297\) 3911.05 0.764114
\(298\) 12438.3 2.41789
\(299\) 0 0
\(300\) 1030.60 0.198339
\(301\) −624.545 −0.119595
\(302\) −214.017 −0.0407791
\(303\) 1944.79 0.368731
\(304\) −2212.99 −0.417513
\(305\) −515.947 −0.0968624
\(306\) −11582.7 −2.16385
\(307\) −7821.66 −1.45409 −0.727045 0.686590i \(-0.759107\pi\)
−0.727045 + 0.686590i \(0.759107\pi\)
\(308\) −1893.57 −0.350312
\(309\) 539.755 0.0993707
\(310\) 4355.17 0.797926
\(311\) −1985.57 −0.362031 −0.181015 0.983480i \(-0.557938\pi\)
−0.181015 + 0.983480i \(0.557938\pi\)
\(312\) −165.480 −0.0300271
\(313\) −7292.61 −1.31694 −0.658470 0.752607i \(-0.728796\pi\)
−0.658470 + 0.752607i \(0.728796\pi\)
\(314\) −2909.55 −0.522915
\(315\) 496.394 0.0887893
\(316\) −1281.66 −0.228162
\(317\) 372.809 0.0660537 0.0330269 0.999454i \(-0.489485\pi\)
0.0330269 + 0.999454i \(0.489485\pi\)
\(318\) 1997.81 0.352300
\(319\) −7599.54 −1.33383
\(320\) −5495.34 −0.959996
\(321\) 1316.74 0.228951
\(322\) 0 0
\(323\) −7350.46 −1.26622
\(324\) 6711.50 1.15081
\(325\) 812.606 0.138693
\(326\) −5056.03 −0.858981
\(327\) −88.4545 −0.0149589
\(328\) −260.990 −0.0439353
\(329\) −1373.27 −0.230123
\(330\) 2240.34 0.373718
\(331\) −4472.35 −0.742667 −0.371333 0.928500i \(-0.621099\pi\)
−0.371333 + 0.928500i \(0.621099\pi\)
\(332\) −3413.66 −0.564304
\(333\) −5879.06 −0.967479
\(334\) 16070.6 2.63276
\(335\) 453.915 0.0740299
\(336\) −107.311 −0.0174234
\(337\) 716.498 0.115816 0.0579082 0.998322i \(-0.481557\pi\)
0.0579082 + 0.998322i \(0.481557\pi\)
\(338\) 9088.43 1.46256
\(339\) 2323.78 0.372301
\(340\) −7896.71 −1.25959
\(341\) −8870.85 −1.40875
\(342\) 7844.13 1.24024
\(343\) 1909.25 0.300553
\(344\) −2873.24 −0.450333
\(345\) 0 0
\(346\) 946.122 0.147005
\(347\) 5002.34 0.773890 0.386945 0.922103i \(-0.373530\pi\)
0.386945 + 0.922103i \(0.373530\pi\)
\(348\) 1653.53 0.254708
\(349\) −9318.44 −1.42924 −0.714620 0.699513i \(-0.753400\pi\)
−0.714620 + 0.699513i \(0.753400\pi\)
\(350\) −947.969 −0.144775
\(351\) −670.974 −0.102034
\(352\) 14723.4 2.22944
\(353\) 2698.03 0.406804 0.203402 0.979095i \(-0.434800\pi\)
0.203402 + 0.979095i \(0.434800\pi\)
\(354\) −3534.21 −0.530625
\(355\) 4522.35 0.676116
\(356\) −16689.6 −2.48468
\(357\) −356.433 −0.0528415
\(358\) 5260.64 0.776630
\(359\) −9845.40 −1.44741 −0.723705 0.690109i \(-0.757563\pi\)
−0.723705 + 0.690109i \(0.757563\pi\)
\(360\) 2283.67 0.334334
\(361\) −1881.05 −0.274246
\(362\) 10670.6 1.54927
\(363\) −2945.99 −0.425963
\(364\) 324.858 0.0467780
\(365\) −4162.82 −0.596965
\(366\) −395.354 −0.0564630
\(367\) 614.211 0.0873612 0.0436806 0.999046i \(-0.486092\pi\)
0.0436806 + 0.999046i \(0.486092\pi\)
\(368\) 0 0
\(369\) −514.248 −0.0725493
\(370\) −6930.14 −0.973732
\(371\) −1062.82 −0.148730
\(372\) 1930.14 0.269014
\(373\) 5940.84 0.824679 0.412339 0.911030i \(-0.364712\pi\)
0.412339 + 0.911030i \(0.364712\pi\)
\(374\) 27810.1 3.84499
\(375\) 1697.77 0.233793
\(376\) −6317.75 −0.866523
\(377\) 1303.77 0.178110
\(378\) 782.745 0.106508
\(379\) −9409.56 −1.27529 −0.637647 0.770328i \(-0.720092\pi\)
−0.637647 + 0.770328i \(0.720092\pi\)
\(380\) 5347.89 0.721949
\(381\) −2021.91 −0.271879
\(382\) 3354.32 0.449272
\(383\) 11899.0 1.58749 0.793746 0.608250i \(-0.208128\pi\)
0.793746 + 0.608250i \(0.208128\pi\)
\(384\) −1875.48 −0.249239
\(385\) −1191.85 −0.157772
\(386\) −6097.78 −0.804064
\(387\) −5661.35 −0.743624
\(388\) −9141.00 −1.19604
\(389\) 11759.3 1.53270 0.766348 0.642426i \(-0.222072\pi\)
0.766348 + 0.642426i \(0.222072\pi\)
\(390\) −384.350 −0.0499034
\(391\) 0 0
\(392\) 4340.42 0.559245
\(393\) 1529.48 0.196316
\(394\) 8425.19 1.07730
\(395\) −806.704 −0.102759
\(396\) −17164.7 −2.17818
\(397\) −10853.1 −1.37204 −0.686019 0.727584i \(-0.740643\pi\)
−0.686019 + 0.727584i \(0.740643\pi\)
\(398\) −7972.91 −1.00414
\(399\) 241.387 0.0302868
\(400\) 2424.30 0.303037
\(401\) −1378.13 −0.171623 −0.0858113 0.996311i \(-0.527348\pi\)
−0.0858113 + 0.996311i \(0.527348\pi\)
\(402\) 347.821 0.0431535
\(403\) 1521.87 0.188114
\(404\) −17564.3 −2.16301
\(405\) 4224.35 0.518296
\(406\) −1520.95 −0.185920
\(407\) 14115.7 1.71914
\(408\) −1639.78 −0.198973
\(409\) −11977.0 −1.44799 −0.723993 0.689807i \(-0.757695\pi\)
−0.723993 + 0.689807i \(0.757695\pi\)
\(410\) −606.188 −0.0730183
\(411\) −477.637 −0.0573238
\(412\) −4874.75 −0.582917
\(413\) 1880.18 0.224014
\(414\) 0 0
\(415\) −2148.63 −0.254149
\(416\) −2525.93 −0.297702
\(417\) −2242.32 −0.263326
\(418\) −18833.8 −2.20381
\(419\) −5975.13 −0.696669 −0.348334 0.937370i \(-0.613253\pi\)
−0.348334 + 0.937370i \(0.613253\pi\)
\(420\) 259.325 0.0301281
\(421\) 9072.18 1.05024 0.525120 0.851028i \(-0.324021\pi\)
0.525120 + 0.851028i \(0.324021\pi\)
\(422\) −1116.57 −0.128800
\(423\) −12448.3 −1.43087
\(424\) −4889.53 −0.560039
\(425\) 8052.30 0.919045
\(426\) 3465.33 0.394122
\(427\) 210.326 0.0238369
\(428\) −11892.1 −1.34305
\(429\) 782.866 0.0881052
\(430\) −6673.50 −0.748430
\(431\) −674.927 −0.0754295 −0.0377147 0.999289i \(-0.512008\pi\)
−0.0377147 + 0.999289i \(0.512008\pi\)
\(432\) −2001.76 −0.222939
\(433\) −961.281 −0.106689 −0.0533444 0.998576i \(-0.516988\pi\)
−0.0533444 + 0.998576i \(0.516988\pi\)
\(434\) −1775.39 −0.196362
\(435\) 1040.76 0.114714
\(436\) 798.870 0.0877499
\(437\) 0 0
\(438\) −3189.84 −0.347983
\(439\) −12697.1 −1.38041 −0.690204 0.723615i \(-0.742479\pi\)
−0.690204 + 0.723615i \(0.742479\pi\)
\(440\) −5483.13 −0.594086
\(441\) 8552.24 0.923468
\(442\) −4771.07 −0.513432
\(443\) 3182.99 0.341374 0.170687 0.985325i \(-0.445401\pi\)
0.170687 + 0.985325i \(0.445401\pi\)
\(444\) −3071.33 −0.328285
\(445\) −10504.8 −1.11904
\(446\) 10788.7 1.14543
\(447\) 3469.65 0.367133
\(448\) 2240.17 0.236246
\(449\) 8524.62 0.895995 0.447997 0.894035i \(-0.352137\pi\)
0.447997 + 0.894035i \(0.352137\pi\)
\(450\) −8593.11 −0.900184
\(451\) 1234.72 0.128915
\(452\) −20987.0 −2.18395
\(453\) −59.6997 −0.00619192
\(454\) −5363.77 −0.554480
\(455\) 204.472 0.0210677
\(456\) 1110.51 0.114044
\(457\) 2794.23 0.286015 0.143007 0.989722i \(-0.454323\pi\)
0.143007 + 0.989722i \(0.454323\pi\)
\(458\) 6308.26 0.643593
\(459\) −6648.84 −0.676125
\(460\) 0 0
\(461\) −4244.49 −0.428819 −0.214410 0.976744i \(-0.568783\pi\)
−0.214410 + 0.976744i \(0.568783\pi\)
\(462\) −913.276 −0.0919685
\(463\) 8144.21 0.817480 0.408740 0.912651i \(-0.365968\pi\)
0.408740 + 0.912651i \(0.365968\pi\)
\(464\) 3889.61 0.389161
\(465\) 1214.87 0.121158
\(466\) 14460.6 1.43750
\(467\) −9091.45 −0.900861 −0.450430 0.892812i \(-0.648729\pi\)
−0.450430 + 0.892812i \(0.648729\pi\)
\(468\) 2944.76 0.290858
\(469\) −185.038 −0.0182181
\(470\) −14673.9 −1.44012
\(471\) −811.616 −0.0793997
\(472\) 8649.82 0.843517
\(473\) 13593.0 1.32136
\(474\) −618.151 −0.0599001
\(475\) −5453.26 −0.526763
\(476\) 3219.09 0.309972
\(477\) −9634.20 −0.924779
\(478\) 8256.38 0.790038
\(479\) −15793.5 −1.50652 −0.753259 0.657724i \(-0.771519\pi\)
−0.753259 + 0.657724i \(0.771519\pi\)
\(480\) −2016.39 −0.191740
\(481\) −2421.67 −0.229561
\(482\) −28539.6 −2.69698
\(483\) 0 0
\(484\) 26606.5 2.49873
\(485\) −5753.53 −0.538668
\(486\) 10742.8 1.00268
\(487\) 12182.4 1.13355 0.566775 0.823873i \(-0.308191\pi\)
0.566775 + 0.823873i \(0.308191\pi\)
\(488\) 967.609 0.0897574
\(489\) −1410.37 −0.130428
\(490\) 10081.2 0.929437
\(491\) 7794.55 0.716422 0.358211 0.933641i \(-0.383387\pi\)
0.358211 + 0.933641i \(0.383387\pi\)
\(492\) −268.653 −0.0246175
\(493\) 12919.3 1.18024
\(494\) 3231.11 0.294281
\(495\) −10803.8 −0.981000
\(496\) 4540.29 0.411019
\(497\) −1843.53 −0.166386
\(498\) −1646.42 −0.148149
\(499\) −2936.52 −0.263440 −0.131720 0.991287i \(-0.542050\pi\)
−0.131720 + 0.991287i \(0.542050\pi\)
\(500\) −15333.2 −1.37145
\(501\) 4482.86 0.399760
\(502\) 22570.5 2.00671
\(503\) 12992.3 1.15168 0.575841 0.817561i \(-0.304675\pi\)
0.575841 + 0.817561i \(0.304675\pi\)
\(504\) −930.940 −0.0822765
\(505\) −11055.3 −0.974166
\(506\) 0 0
\(507\) 2535.21 0.222076
\(508\) 18260.8 1.59486
\(509\) 9151.18 0.796894 0.398447 0.917191i \(-0.369549\pi\)
0.398447 + 0.917191i \(0.369549\pi\)
\(510\) −3808.62 −0.330683
\(511\) 1696.97 0.146908
\(512\) −10786.2 −0.931029
\(513\) 4502.79 0.387530
\(514\) −25655.6 −2.20160
\(515\) −3068.27 −0.262532
\(516\) −2957.59 −0.252327
\(517\) 29888.5 2.54255
\(518\) 2825.07 0.239626
\(519\) 263.920 0.0223214
\(520\) 940.679 0.0793298
\(521\) 7732.59 0.650232 0.325116 0.945674i \(-0.394597\pi\)
0.325116 + 0.945674i \(0.394597\pi\)
\(522\) −13787.0 −1.15602
\(523\) −10321.1 −0.862926 −0.431463 0.902131i \(-0.642002\pi\)
−0.431463 + 0.902131i \(0.642002\pi\)
\(524\) −13813.4 −1.15160
\(525\) −264.435 −0.0219826
\(526\) 14650.8 1.21446
\(527\) 15080.6 1.24653
\(528\) 2335.57 0.192505
\(529\) 0 0
\(530\) −11356.6 −0.930757
\(531\) 17043.4 1.39288
\(532\) −2180.07 −0.177665
\(533\) −211.826 −0.0172143
\(534\) −8049.46 −0.652311
\(535\) −7485.10 −0.604877
\(536\) −851.274 −0.0685997
\(537\) 1467.45 0.117924
\(538\) 3894.74 0.312108
\(539\) −20534.0 −1.64093
\(540\) 4837.42 0.385499
\(541\) −4989.41 −0.396509 −0.198255 0.980151i \(-0.563527\pi\)
−0.198255 + 0.980151i \(0.563527\pi\)
\(542\) −24098.0 −1.90977
\(543\) 2976.56 0.235242
\(544\) −25030.1 −1.97271
\(545\) 502.825 0.0395205
\(546\) 156.680 0.0122808
\(547\) 10608.8 0.829250 0.414625 0.909992i \(-0.363913\pi\)
0.414625 + 0.909992i \(0.363913\pi\)
\(548\) 4313.74 0.336266
\(549\) 1906.55 0.148214
\(550\) 20632.2 1.59956
\(551\) −8749.36 −0.676470
\(552\) 0 0
\(553\) 328.853 0.0252880
\(554\) −31519.5 −2.41721
\(555\) −1933.15 −0.147852
\(556\) 20251.3 1.54469
\(557\) 21645.4 1.64658 0.823290 0.567621i \(-0.192136\pi\)
0.823290 + 0.567621i \(0.192136\pi\)
\(558\) −16093.4 −1.22095
\(559\) −2331.99 −0.176445
\(560\) 610.014 0.0460318
\(561\) 7757.60 0.583826
\(562\) −2152.88 −0.161590
\(563\) 5654.04 0.423250 0.211625 0.977351i \(-0.432125\pi\)
0.211625 + 0.977351i \(0.432125\pi\)
\(564\) −6503.22 −0.485523
\(565\) −13209.6 −0.983599
\(566\) 8497.71 0.631069
\(567\) −1722.06 −0.127548
\(568\) −8481.23 −0.626522
\(569\) 6738.40 0.496465 0.248232 0.968701i \(-0.420150\pi\)
0.248232 + 0.968701i \(0.420150\pi\)
\(570\) 2579.31 0.189536
\(571\) 2474.50 0.181357 0.0906783 0.995880i \(-0.471097\pi\)
0.0906783 + 0.995880i \(0.471097\pi\)
\(572\) −7070.40 −0.516832
\(573\) 935.684 0.0682177
\(574\) 247.112 0.0179691
\(575\) 0 0
\(576\) 20306.6 1.46894
\(577\) −2875.12 −0.207440 −0.103720 0.994607i \(-0.533075\pi\)
−0.103720 + 0.994607i \(0.533075\pi\)
\(578\) −25877.1 −1.86219
\(579\) −1700.97 −0.122089
\(580\) −9399.57 −0.672924
\(581\) 875.888 0.0625438
\(582\) −4408.74 −0.314001
\(583\) 23131.8 1.64326
\(584\) 7806.98 0.553176
\(585\) 1853.49 0.130995
\(586\) 2491.02 0.175603
\(587\) −5764.27 −0.405310 −0.202655 0.979250i \(-0.564957\pi\)
−0.202655 + 0.979250i \(0.564957\pi\)
\(588\) 4467.85 0.313352
\(589\) −10213.0 −0.714466
\(590\) 20090.4 1.40188
\(591\) 2350.20 0.163577
\(592\) −7224.72 −0.501578
\(593\) 16156.4 1.11883 0.559414 0.828888i \(-0.311026\pi\)
0.559414 + 0.828888i \(0.311026\pi\)
\(594\) −17036.1 −1.17677
\(595\) 2026.16 0.139604
\(596\) −31335.8 −2.15363
\(597\) −2224.04 −0.152468
\(598\) 0 0
\(599\) −5962.96 −0.406744 −0.203372 0.979102i \(-0.565190\pi\)
−0.203372 + 0.979102i \(0.565190\pi\)
\(600\) −1216.54 −0.0827751
\(601\) −9334.47 −0.633546 −0.316773 0.948501i \(-0.602599\pi\)
−0.316773 + 0.948501i \(0.602599\pi\)
\(602\) 2720.45 0.184182
\(603\) −1677.33 −0.113277
\(604\) 539.173 0.0363223
\(605\) 16746.7 1.12537
\(606\) −8471.32 −0.567861
\(607\) 22294.8 1.49080 0.745402 0.666615i \(-0.232258\pi\)
0.745402 + 0.666615i \(0.232258\pi\)
\(608\) 16951.1 1.13069
\(609\) −424.267 −0.0282301
\(610\) 2247.41 0.149172
\(611\) −5127.64 −0.339513
\(612\) 29180.3 1.92736
\(613\) 2608.93 0.171899 0.0859493 0.996300i \(-0.472608\pi\)
0.0859493 + 0.996300i \(0.472608\pi\)
\(614\) 34070.3 2.23936
\(615\) −169.095 −0.0110871
\(616\) 2235.20 0.146199
\(617\) 14919.0 0.973447 0.486724 0.873556i \(-0.338192\pi\)
0.486724 + 0.873556i \(0.338192\pi\)
\(618\) −2351.11 −0.153035
\(619\) 10937.8 0.710223 0.355112 0.934824i \(-0.384443\pi\)
0.355112 + 0.934824i \(0.384443\pi\)
\(620\) −10972.0 −0.710720
\(621\) 0 0
\(622\) 8648.95 0.557542
\(623\) 4282.26 0.275386
\(624\) −400.688 −0.0257057
\(625\) 10.3632 0.000663242 0
\(626\) 31765.8 2.02814
\(627\) −5253.68 −0.334628
\(628\) 7330.04 0.465765
\(629\) −23996.9 −1.52117
\(630\) −2162.24 −0.136739
\(631\) 10548.7 0.665512 0.332756 0.943013i \(-0.392022\pi\)
0.332756 + 0.943013i \(0.392022\pi\)
\(632\) 1512.90 0.0952211
\(633\) −311.466 −0.0195571
\(634\) −1623.92 −0.101725
\(635\) 11493.7 0.718288
\(636\) −5033.08 −0.313797
\(637\) 3522.79 0.219118
\(638\) 33102.8 2.05416
\(639\) −16711.2 −1.03456
\(640\) 10661.3 0.658475
\(641\) 232.746 0.0143415 0.00717076 0.999974i \(-0.497717\pi\)
0.00717076 + 0.999974i \(0.497717\pi\)
\(642\) −5735.59 −0.352595
\(643\) 23503.0 1.44148 0.720738 0.693207i \(-0.243803\pi\)
0.720738 + 0.693207i \(0.243803\pi\)
\(644\) 0 0
\(645\) −1861.57 −0.113642
\(646\) 32017.8 1.95004
\(647\) −6178.11 −0.375404 −0.187702 0.982226i \(-0.560104\pi\)
−0.187702 + 0.982226i \(0.560104\pi\)
\(648\) −7922.37 −0.480278
\(649\) −40921.3 −2.47504
\(650\) −3539.63 −0.213593
\(651\) −495.242 −0.0298157
\(652\) 12737.7 0.765102
\(653\) −9413.36 −0.564124 −0.282062 0.959396i \(-0.591018\pi\)
−0.282062 + 0.959396i \(0.591018\pi\)
\(654\) 385.299 0.0230373
\(655\) −8694.42 −0.518655
\(656\) −631.955 −0.0376123
\(657\) 15382.7 0.913447
\(658\) 5981.80 0.354400
\(659\) −4233.22 −0.250232 −0.125116 0.992142i \(-0.539930\pi\)
−0.125116 + 0.992142i \(0.539930\pi\)
\(660\) −5644.11 −0.332874
\(661\) 31794.6 1.87090 0.935450 0.353458i \(-0.114994\pi\)
0.935450 + 0.353458i \(0.114994\pi\)
\(662\) 19481.1 1.14374
\(663\) −1330.88 −0.0779597
\(664\) 4029.54 0.235507
\(665\) −1372.18 −0.0800161
\(666\) 25608.6 1.48996
\(667\) 0 0
\(668\) −40486.6 −2.34502
\(669\) 3009.50 0.173922
\(670\) −1977.21 −0.114009
\(671\) −4577.65 −0.263366
\(672\) 821.979 0.0471853
\(673\) −6124.16 −0.350771 −0.175386 0.984500i \(-0.556117\pi\)
−0.175386 + 0.984500i \(0.556117\pi\)
\(674\) −3120.99 −0.178362
\(675\) −4932.73 −0.281275
\(676\) −22896.5 −1.30271
\(677\) 18065.3 1.02556 0.512782 0.858519i \(-0.328615\pi\)
0.512782 + 0.858519i \(0.328615\pi\)
\(678\) −10122.1 −0.573360
\(679\) 2345.42 0.132561
\(680\) 9321.41 0.525676
\(681\) −1496.22 −0.0841926
\(682\) 38640.5 2.16953
\(683\) 1279.84 0.0717007 0.0358503 0.999357i \(-0.488586\pi\)
0.0358503 + 0.999357i \(0.488586\pi\)
\(684\) −19761.7 −1.10469
\(685\) 2715.16 0.151446
\(686\) −8316.47 −0.462864
\(687\) 1759.68 0.0977234
\(688\) −6957.17 −0.385523
\(689\) −3968.47 −0.219429
\(690\) 0 0
\(691\) −5556.99 −0.305930 −0.152965 0.988232i \(-0.548882\pi\)
−0.152965 + 0.988232i \(0.548882\pi\)
\(692\) −2383.57 −0.130939
\(693\) 4404.17 0.241415
\(694\) −21789.7 −1.19182
\(695\) 12746.6 0.695691
\(696\) −1951.85 −0.106300
\(697\) −2099.04 −0.114070
\(698\) 40590.2 2.20109
\(699\) 4033.77 0.218270
\(700\) 2388.22 0.128952
\(701\) −31951.4 −1.72152 −0.860762 0.509007i \(-0.830013\pi\)
−0.860762 + 0.509007i \(0.830013\pi\)
\(702\) 2922.69 0.157137
\(703\) 16251.4 0.871883
\(704\) −48756.4 −2.61019
\(705\) −4093.26 −0.218668
\(706\) −11752.4 −0.626495
\(707\) 4506.69 0.239733
\(708\) 8903.76 0.472633
\(709\) 3547.49 0.187911 0.0939555 0.995576i \(-0.470049\pi\)
0.0939555 + 0.995576i \(0.470049\pi\)
\(710\) −19698.9 −1.04125
\(711\) 2980.97 0.157236
\(712\) 19700.7 1.03696
\(713\) 0 0
\(714\) 1552.58 0.0813781
\(715\) −4450.25 −0.232769
\(716\) −13253.2 −0.691751
\(717\) 2303.11 0.119960
\(718\) 42885.6 2.22907
\(719\) 25203.2 1.30726 0.653630 0.756814i \(-0.273245\pi\)
0.653630 + 0.756814i \(0.273245\pi\)
\(720\) 5529.62 0.286218
\(721\) 1250.78 0.0646067
\(722\) 8193.66 0.422350
\(723\) −7961.09 −0.409510
\(724\) −26882.6 −1.37995
\(725\) 9584.77 0.490992
\(726\) 12832.4 0.656001
\(727\) 21182.3 1.08062 0.540309 0.841467i \(-0.318307\pi\)
0.540309 + 0.841467i \(0.318307\pi\)
\(728\) −383.468 −0.0195223
\(729\) −13516.3 −0.686698
\(730\) 18132.8 0.919351
\(731\) −23108.2 −1.16921
\(732\) 996.017 0.0502921
\(733\) −17463.6 −0.879992 −0.439996 0.898000i \(-0.645020\pi\)
−0.439996 + 0.898000i \(0.645020\pi\)
\(734\) −2675.44 −0.134540
\(735\) 2812.15 0.141126
\(736\) 0 0
\(737\) 4027.28 0.201285
\(738\) 2240.01 0.111729
\(739\) 22488.7 1.11943 0.559715 0.828685i \(-0.310911\pi\)
0.559715 + 0.828685i \(0.310911\pi\)
\(740\) 17459.1 0.867311
\(741\) 901.315 0.0446837
\(742\) 4629.53 0.229051
\(743\) −23783.1 −1.17432 −0.587158 0.809472i \(-0.699753\pi\)
−0.587158 + 0.809472i \(0.699753\pi\)
\(744\) −2278.37 −0.112270
\(745\) −19723.4 −0.969946
\(746\) −25877.7 −1.27004
\(747\) 7939.70 0.388887
\(748\) −70062.2 −3.42477
\(749\) 3051.30 0.148855
\(750\) −7395.29 −0.360051
\(751\) 11747.5 0.570804 0.285402 0.958408i \(-0.407873\pi\)
0.285402 + 0.958408i \(0.407873\pi\)
\(752\) −15297.6 −0.741817
\(753\) 6296.00 0.304700
\(754\) −5679.08 −0.274297
\(755\) 339.367 0.0163587
\(756\) −1971.97 −0.0948676
\(757\) −36703.7 −1.76224 −0.881122 0.472889i \(-0.843211\pi\)
−0.881122 + 0.472889i \(0.843211\pi\)
\(758\) 40987.1 1.96401
\(759\) 0 0
\(760\) −6312.73 −0.301299
\(761\) −28852.6 −1.37438 −0.687191 0.726477i \(-0.741157\pi\)
−0.687191 + 0.726477i \(0.741157\pi\)
\(762\) 8807.25 0.418705
\(763\) −204.977 −0.00972562
\(764\) −8450.56 −0.400171
\(765\) 18366.6 0.868036
\(766\) −51830.7 −2.44480
\(767\) 7020.41 0.330499
\(768\) 435.698 0.0204712
\(769\) −10545.4 −0.494507 −0.247253 0.968951i \(-0.579528\pi\)
−0.247253 + 0.968951i \(0.579528\pi\)
\(770\) 5191.57 0.242975
\(771\) −7156.61 −0.334292
\(772\) 15362.2 0.716187
\(773\) −21237.3 −0.988166 −0.494083 0.869415i \(-0.664496\pi\)
−0.494083 + 0.869415i \(0.664496\pi\)
\(774\) 24660.2 1.14521
\(775\) 11188.2 0.518570
\(776\) 10790.2 0.499156
\(777\) 788.050 0.0363850
\(778\) −51222.2 −2.36042
\(779\) 1421.53 0.0653808
\(780\) 968.296 0.0444494
\(781\) 40123.8 1.83834
\(782\) 0 0
\(783\) −7914.21 −0.361214
\(784\) 10509.8 0.478761
\(785\) 4613.68 0.209770
\(786\) −6662.26 −0.302335
\(787\) −23004.3 −1.04195 −0.520976 0.853571i \(-0.674432\pi\)
−0.520976 + 0.853571i \(0.674432\pi\)
\(788\) −21225.6 −0.959557
\(789\) 4086.82 0.184404
\(790\) 3513.92 0.158253
\(791\) 5384.91 0.242055
\(792\) 20261.5 0.909042
\(793\) 785.336 0.0351679
\(794\) 47274.8 2.11300
\(795\) −3167.92 −0.141327
\(796\) 20086.2 0.894393
\(797\) −26456.8 −1.17584 −0.587921 0.808918i \(-0.700054\pi\)
−0.587921 + 0.808918i \(0.700054\pi\)
\(798\) −1051.46 −0.0466430
\(799\) −50811.0 −2.24977
\(800\) −18569.6 −0.820670
\(801\) 38817.6 1.71230
\(802\) 6003.00 0.264306
\(803\) −36933.9 −1.62313
\(804\) −876.266 −0.0384372
\(805\) 0 0
\(806\) −6629.12 −0.289703
\(807\) 1086.43 0.0473906
\(808\) 20733.1 0.902710
\(809\) −31408.6 −1.36498 −0.682490 0.730895i \(-0.739103\pi\)
−0.682490 + 0.730895i \(0.739103\pi\)
\(810\) −18400.8 −0.798197
\(811\) −1316.70 −0.0570104 −0.0285052 0.999594i \(-0.509075\pi\)
−0.0285052 + 0.999594i \(0.509075\pi\)
\(812\) 3831.73 0.165600
\(813\) −6722.10 −0.289981
\(814\) −61486.5 −2.64754
\(815\) 8017.35 0.344584
\(816\) −3970.51 −0.170338
\(817\) 15649.6 0.670147
\(818\) 52170.7 2.22996
\(819\) −755.574 −0.0322368
\(820\) 1527.17 0.0650380
\(821\) −16201.0 −0.688696 −0.344348 0.938842i \(-0.611900\pi\)
−0.344348 + 0.938842i \(0.611900\pi\)
\(822\) 2080.54 0.0882811
\(823\) 13927.7 0.589901 0.294950 0.955513i \(-0.404697\pi\)
0.294950 + 0.955513i \(0.404697\pi\)
\(824\) 5754.24 0.243275
\(825\) 5755.31 0.242878
\(826\) −8189.87 −0.344990
\(827\) 12580.4 0.528974 0.264487 0.964389i \(-0.414797\pi\)
0.264487 + 0.964389i \(0.414797\pi\)
\(828\) 0 0
\(829\) 12109.2 0.507321 0.253660 0.967293i \(-0.418365\pi\)
0.253660 + 0.967293i \(0.418365\pi\)
\(830\) 9359.20 0.391401
\(831\) −8792.34 −0.367031
\(832\) 8364.59 0.348546
\(833\) 34908.2 1.45198
\(834\) 9767.30 0.405532
\(835\) −25483.1 −1.05614
\(836\) 47448.2 1.96296
\(837\) −9238.16 −0.381503
\(838\) 26027.0 1.07290
\(839\) −20504.9 −0.843753 −0.421877 0.906653i \(-0.638628\pi\)
−0.421877 + 0.906653i \(0.638628\pi\)
\(840\) −306.112 −0.0125737
\(841\) −9010.93 −0.369467
\(842\) −39517.5 −1.61741
\(843\) −600.543 −0.0245359
\(844\) 2812.98 0.114724
\(845\) −14411.5 −0.586712
\(846\) 54223.6 2.20360
\(847\) −6826.78 −0.276943
\(848\) −11839.4 −0.479441
\(849\) 2370.43 0.0958219
\(850\) −35075.0 −1.41537
\(851\) 0 0
\(852\) −8730.23 −0.351048
\(853\) −18615.6 −0.747228 −0.373614 0.927584i \(-0.621882\pi\)
−0.373614 + 0.927584i \(0.621882\pi\)
\(854\) −916.157 −0.0367099
\(855\) −12438.4 −0.497527
\(856\) 14037.6 0.560508
\(857\) 17837.6 0.710992 0.355496 0.934678i \(-0.384312\pi\)
0.355496 + 0.934678i \(0.384312\pi\)
\(858\) −3410.08 −0.135686
\(859\) 32491.0 1.29055 0.645273 0.763952i \(-0.276744\pi\)
0.645273 + 0.763952i \(0.276744\pi\)
\(860\) 16812.6 0.666633
\(861\) 68.9317 0.00272844
\(862\) 2939.91 0.116165
\(863\) −47564.6 −1.87615 −0.938074 0.346434i \(-0.887392\pi\)
−0.938074 + 0.346434i \(0.887392\pi\)
\(864\) 15333.1 0.603752
\(865\) −1500.27 −0.0589718
\(866\) 4187.24 0.164305
\(867\) −7218.40 −0.282756
\(868\) 4472.74 0.174902
\(869\) −7157.34 −0.279397
\(870\) −4533.45 −0.176665
\(871\) −690.916 −0.0268781
\(872\) −943.000 −0.0366216
\(873\) 21260.7 0.824244
\(874\) 0 0
\(875\) 3934.25 0.152002
\(876\) 8036.18 0.309951
\(877\) −12801.2 −0.492893 −0.246447 0.969156i \(-0.579263\pi\)
−0.246447 + 0.969156i \(0.579263\pi\)
\(878\) 55307.2 2.12589
\(879\) 694.868 0.0266636
\(880\) −13276.7 −0.508588
\(881\) 34858.0 1.33303 0.666514 0.745493i \(-0.267786\pi\)
0.666514 + 0.745493i \(0.267786\pi\)
\(882\) −37252.7 −1.42218
\(883\) 15755.6 0.600472 0.300236 0.953865i \(-0.402935\pi\)
0.300236 + 0.953865i \(0.402935\pi\)
\(884\) 12019.8 0.457318
\(885\) 5604.21 0.212862
\(886\) −13864.8 −0.525730
\(887\) −21839.2 −0.826706 −0.413353 0.910571i \(-0.635642\pi\)
−0.413353 + 0.910571i \(0.635642\pi\)
\(888\) 3625.45 0.137007
\(889\) −4685.40 −0.176764
\(890\) 45757.6 1.72337
\(891\) 37479.8 1.40923
\(892\) −27180.1 −1.02024
\(893\) 34410.7 1.28949
\(894\) −15113.4 −0.565401
\(895\) −8341.80 −0.311548
\(896\) −4346.07 −0.162045
\(897\) 0 0
\(898\) −37132.4 −1.37987
\(899\) 17950.6 0.665948
\(900\) 21648.7 0.801802
\(901\) −39324.5 −1.45404
\(902\) −5378.30 −0.198534
\(903\) 758.867 0.0279662
\(904\) 24773.4 0.911451
\(905\) −16920.4 −0.621497
\(906\) 260.046 0.00953581
\(907\) −45581.2 −1.66869 −0.834343 0.551245i \(-0.814153\pi\)
−0.834343 + 0.551245i \(0.814153\pi\)
\(908\) 13513.0 0.493880
\(909\) 40852.0 1.49062
\(910\) −890.659 −0.0324451
\(911\) 30487.3 1.10877 0.554384 0.832261i \(-0.312954\pi\)
0.554384 + 0.832261i \(0.312954\pi\)
\(912\) 2688.95 0.0976315
\(913\) −19063.3 −0.691023
\(914\) −12171.4 −0.440475
\(915\) 626.913 0.0226504
\(916\) −15892.4 −0.573254
\(917\) 3544.28 0.127636
\(918\) 28961.6 1.04126
\(919\) −50947.9 −1.82875 −0.914373 0.404874i \(-0.867315\pi\)
−0.914373 + 0.404874i \(0.867315\pi\)
\(920\) 0 0
\(921\) 9503.88 0.340025
\(922\) 18488.6 0.660400
\(923\) −6883.58 −0.245478
\(924\) 2300.82 0.0819171
\(925\) −17803.1 −0.632825
\(926\) −35475.3 −1.25895
\(927\) 11338.0 0.401714
\(928\) −29793.7 −1.05391
\(929\) 42988.1 1.51819 0.759093 0.650982i \(-0.225643\pi\)
0.759093 + 0.650982i \(0.225643\pi\)
\(930\) −5291.85 −0.186588
\(931\) −23640.9 −0.832221
\(932\) −36430.6 −1.28039
\(933\) 2412.61 0.0846575
\(934\) 39601.4 1.38736
\(935\) −44098.5 −1.54243
\(936\) −3476.04 −0.121387
\(937\) 30733.5 1.07152 0.535762 0.844369i \(-0.320024\pi\)
0.535762 + 0.844369i \(0.320024\pi\)
\(938\) 806.008 0.0280566
\(939\) 8861.04 0.307954
\(940\) 36968.0 1.28273
\(941\) −13558.5 −0.469708 −0.234854 0.972031i \(-0.575461\pi\)
−0.234854 + 0.972031i \(0.575461\pi\)
\(942\) 3535.31 0.122279
\(943\) 0 0
\(944\) 20944.4 0.722122
\(945\) −1241.20 −0.0427261
\(946\) −59209.5 −2.03496
\(947\) 35185.6 1.20737 0.603685 0.797223i \(-0.293699\pi\)
0.603685 + 0.797223i \(0.293699\pi\)
\(948\) 1557.31 0.0533535
\(949\) 6336.34 0.216740
\(950\) 23753.8 0.811238
\(951\) −452.990 −0.0154461
\(952\) −3799.87 −0.129364
\(953\) 3171.12 0.107789 0.0538944 0.998547i \(-0.482837\pi\)
0.0538944 + 0.998547i \(0.482837\pi\)
\(954\) 41965.6 1.42420
\(955\) −5318.95 −0.180227
\(956\) −20800.3 −0.703694
\(957\) 9233.99 0.311904
\(958\) 68794.7 2.32010
\(959\) −1106.83 −0.0372696
\(960\) 6677.23 0.224486
\(961\) −8837.42 −0.296647
\(962\) 10548.5 0.353533
\(963\) 27659.3 0.925553
\(964\) 71900.0 2.40222
\(965\) 9669.25 0.322553
\(966\) 0 0
\(967\) −7514.18 −0.249886 −0.124943 0.992164i \(-0.539875\pi\)
−0.124943 + 0.992164i \(0.539875\pi\)
\(968\) −31406.8 −1.04282
\(969\) 8931.34 0.296095
\(970\) 25061.8 0.829572
\(971\) −22054.6 −0.728903 −0.364452 0.931222i \(-0.618744\pi\)
−0.364452 + 0.931222i \(0.618744\pi\)
\(972\) −27064.4 −0.893097
\(973\) −5196.14 −0.171203
\(974\) −53065.4 −1.74571
\(975\) −987.375 −0.0324321
\(976\) 2342.94 0.0768399
\(977\) −2810.32 −0.0920268 −0.0460134 0.998941i \(-0.514652\pi\)
−0.0460134 + 0.998941i \(0.514652\pi\)
\(978\) 6143.44 0.200865
\(979\) −93201.6 −3.04263
\(980\) −25397.7 −0.827858
\(981\) −1858.06 −0.0604723
\(982\) −33952.3 −1.10332
\(983\) 29820.0 0.967559 0.483780 0.875190i \(-0.339264\pi\)
0.483780 + 0.875190i \(0.339264\pi\)
\(984\) 317.122 0.0102739
\(985\) −13359.8 −0.432162
\(986\) −56275.3 −1.81762
\(987\) 1668.62 0.0538122
\(988\) −8140.16 −0.262118
\(989\) 0 0
\(990\) 47060.3 1.51078
\(991\) 11549.1 0.370201 0.185100 0.982720i \(-0.440739\pi\)
0.185100 + 0.982720i \(0.440739\pi\)
\(992\) −34777.8 −1.11310
\(993\) 5434.23 0.173666
\(994\) 8030.24 0.256241
\(995\) 12642.7 0.402813
\(996\) 4147.85 0.131957
\(997\) 32481.6 1.03180 0.515899 0.856650i \(-0.327458\pi\)
0.515899 + 0.856650i \(0.327458\pi\)
\(998\) 12791.2 0.405709
\(999\) 14700.2 0.465558
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.3 25
23.7 odd 22 23.4.c.a.3.5 50
23.10 odd 22 23.4.c.a.8.5 yes 50
23.22 odd 2 529.4.a.n.1.3 25
69.53 even 22 207.4.i.a.118.1 50
69.56 even 22 207.4.i.a.100.1 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.3.5 50 23.7 odd 22
23.4.c.a.8.5 yes 50 23.10 odd 22
207.4.i.a.100.1 50 69.56 even 22
207.4.i.a.118.1 50 69.53 even 22
529.4.a.m.1.3 25 1.1 even 1 trivial
529.4.a.n.1.3 25 23.22 odd 2