Properties

Label 529.4.a.m.1.20
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,4,Mod(1,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,0,-1,80,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.60724 q^{2} +7.96546 q^{3} +5.01217 q^{4} -17.8878 q^{5} +28.7333 q^{6} -17.9996 q^{7} -10.7778 q^{8} +36.4486 q^{9} -64.5257 q^{10} +24.9879 q^{11} +39.9242 q^{12} -54.6945 q^{13} -64.9288 q^{14} -142.485 q^{15} -78.9755 q^{16} -53.5185 q^{17} +131.479 q^{18} -17.2819 q^{19} -89.6569 q^{20} -143.375 q^{21} +90.1372 q^{22} -85.8504 q^{24} +194.975 q^{25} -197.296 q^{26} +75.2625 q^{27} -90.2169 q^{28} -84.7276 q^{29} -513.977 q^{30} +104.354 q^{31} -198.661 q^{32} +199.040 q^{33} -193.054 q^{34} +321.974 q^{35} +182.687 q^{36} +190.380 q^{37} -62.3398 q^{38} -435.667 q^{39} +192.792 q^{40} -111.494 q^{41} -517.188 q^{42} +291.169 q^{43} +125.243 q^{44} -651.987 q^{45} -504.689 q^{47} -629.077 q^{48} -19.0152 q^{49} +703.322 q^{50} -426.300 q^{51} -274.138 q^{52} +54.5628 q^{53} +271.490 q^{54} -446.979 q^{55} +193.996 q^{56} -137.658 q^{57} -305.633 q^{58} +301.679 q^{59} -714.159 q^{60} -834.342 q^{61} +376.430 q^{62} -656.060 q^{63} -84.8130 q^{64} +978.367 q^{65} +717.985 q^{66} +4.71109 q^{67} -268.244 q^{68} +1161.44 q^{70} +921.618 q^{71} -392.837 q^{72} +252.652 q^{73} +686.747 q^{74} +1553.07 q^{75} -86.6196 q^{76} -449.771 q^{77} -1571.56 q^{78} +249.708 q^{79} +1412.70 q^{80} -384.611 q^{81} -402.185 q^{82} -985.034 q^{83} -718.619 q^{84} +957.331 q^{85} +1050.32 q^{86} -674.895 q^{87} -269.315 q^{88} +146.652 q^{89} -2351.87 q^{90} +984.478 q^{91} +831.228 q^{93} -1820.53 q^{94} +309.135 q^{95} -1582.43 q^{96} -72.7164 q^{97} -68.5923 q^{98} +910.773 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.60724 1.27535 0.637676 0.770305i \(-0.279896\pi\)
0.637676 + 0.770305i \(0.279896\pi\)
\(3\) 7.96546 1.53295 0.766477 0.642272i \(-0.222008\pi\)
0.766477 + 0.642272i \(0.222008\pi\)
\(4\) 5.01217 0.626521
\(5\) −17.8878 −1.59994 −0.799969 0.600041i \(-0.795151\pi\)
−0.799969 + 0.600041i \(0.795151\pi\)
\(6\) 28.7333 1.95506
\(7\) −17.9996 −0.971886 −0.485943 0.873991i \(-0.661524\pi\)
−0.485943 + 0.873991i \(0.661524\pi\)
\(8\) −10.7778 −0.476317
\(9\) 36.4486 1.34995
\(10\) −64.5257 −2.04048
\(11\) 24.9879 0.684921 0.342460 0.939532i \(-0.388740\pi\)
0.342460 + 0.939532i \(0.388740\pi\)
\(12\) 39.9242 0.960428
\(13\) −54.6945 −1.16689 −0.583443 0.812154i \(-0.698295\pi\)
−0.583443 + 0.812154i \(0.698295\pi\)
\(14\) −64.9288 −1.23950
\(15\) −142.485 −2.45263
\(16\) −78.9755 −1.23399
\(17\) −53.5185 −0.763538 −0.381769 0.924258i \(-0.624685\pi\)
−0.381769 + 0.924258i \(0.624685\pi\)
\(18\) 131.479 1.72166
\(19\) −17.2819 −0.208670 −0.104335 0.994542i \(-0.533271\pi\)
−0.104335 + 0.994542i \(0.533271\pi\)
\(20\) −89.6569 −1.00239
\(21\) −143.375 −1.48986
\(22\) 90.1372 0.873515
\(23\) 0 0
\(24\) −85.8504 −0.730172
\(25\) 194.975 1.55980
\(26\) −197.296 −1.48819
\(27\) 75.2625 0.536455
\(28\) −90.2169 −0.608907
\(29\) −84.7276 −0.542535 −0.271268 0.962504i \(-0.587443\pi\)
−0.271268 + 0.962504i \(0.587443\pi\)
\(30\) −513.977 −3.12797
\(31\) 104.354 0.604598 0.302299 0.953213i \(-0.402246\pi\)
0.302299 + 0.953213i \(0.402246\pi\)
\(32\) −198.661 −1.09746
\(33\) 199.040 1.04995
\(34\) −193.054 −0.973779
\(35\) 321.974 1.55496
\(36\) 182.687 0.845771
\(37\) 190.380 0.845901 0.422951 0.906153i \(-0.360994\pi\)
0.422951 + 0.906153i \(0.360994\pi\)
\(38\) −62.3398 −0.266128
\(39\) −435.667 −1.78878
\(40\) 192.792 0.762078
\(41\) −111.494 −0.424693 −0.212347 0.977194i \(-0.568111\pi\)
−0.212347 + 0.977194i \(0.568111\pi\)
\(42\) −517.188 −1.90009
\(43\) 291.169 1.03263 0.516313 0.856400i \(-0.327304\pi\)
0.516313 + 0.856400i \(0.327304\pi\)
\(44\) 125.243 0.429117
\(45\) −651.987 −2.15983
\(46\) 0 0
\(47\) −504.689 −1.56631 −0.783154 0.621828i \(-0.786390\pi\)
−0.783154 + 0.621828i \(0.786390\pi\)
\(48\) −629.077 −1.89165
\(49\) −19.0152 −0.0554378
\(50\) 703.322 1.98929
\(51\) −426.300 −1.17047
\(52\) −274.138 −0.731079
\(53\) 54.5628 0.141411 0.0707054 0.997497i \(-0.477475\pi\)
0.0707054 + 0.997497i \(0.477475\pi\)
\(54\) 271.490 0.684168
\(55\) −446.979 −1.09583
\(56\) 193.996 0.462926
\(57\) −137.658 −0.319882
\(58\) −305.633 −0.691923
\(59\) 301.679 0.665683 0.332841 0.942983i \(-0.391993\pi\)
0.332841 + 0.942983i \(0.391993\pi\)
\(60\) −714.159 −1.53662
\(61\) −834.342 −1.75126 −0.875628 0.482987i \(-0.839552\pi\)
−0.875628 + 0.482987i \(0.839552\pi\)
\(62\) 376.430 0.771074
\(63\) −656.060 −1.31200
\(64\) −84.8130 −0.165650
\(65\) 978.367 1.86695
\(66\) 717.985 1.33906
\(67\) 4.71109 0.00859032 0.00429516 0.999991i \(-0.498633\pi\)
0.00429516 + 0.999991i \(0.498633\pi\)
\(68\) −268.244 −0.478373
\(69\) 0 0
\(70\) 1161.44 1.98312
\(71\) 921.618 1.54051 0.770253 0.637738i \(-0.220130\pi\)
0.770253 + 0.637738i \(0.220130\pi\)
\(72\) −392.837 −0.643004
\(73\) 252.652 0.405077 0.202539 0.979274i \(-0.435081\pi\)
0.202539 + 0.979274i \(0.435081\pi\)
\(74\) 686.747 1.07882
\(75\) 1553.07 2.39110
\(76\) −86.6196 −0.130736
\(77\) −449.771 −0.665665
\(78\) −1571.56 −2.28133
\(79\) 249.708 0.355624 0.177812 0.984064i \(-0.443098\pi\)
0.177812 + 0.984064i \(0.443098\pi\)
\(80\) 1412.70 1.97431
\(81\) −384.611 −0.527588
\(82\) −402.185 −0.541633
\(83\) −985.034 −1.30267 −0.651335 0.758791i \(-0.725791\pi\)
−0.651335 + 0.758791i \(0.725791\pi\)
\(84\) −718.619 −0.933426
\(85\) 957.331 1.22161
\(86\) 1050.32 1.31696
\(87\) −674.895 −0.831682
\(88\) −269.315 −0.326239
\(89\) 146.652 0.174664 0.0873321 0.996179i \(-0.472166\pi\)
0.0873321 + 0.996179i \(0.472166\pi\)
\(90\) −2351.87 −2.75455
\(91\) 984.478 1.13408
\(92\) 0 0
\(93\) 831.228 0.926820
\(94\) −1820.53 −1.99759
\(95\) 309.135 0.333859
\(96\) −1582.43 −1.68235
\(97\) −72.7164 −0.0761158 −0.0380579 0.999276i \(-0.512117\pi\)
−0.0380579 + 0.999276i \(0.512117\pi\)
\(98\) −68.5923 −0.0707027
\(99\) 910.773 0.924608
\(100\) 977.248 0.977248
\(101\) 1355.03 1.33496 0.667479 0.744628i \(-0.267373\pi\)
0.667479 + 0.744628i \(0.267373\pi\)
\(102\) −1537.76 −1.49276
\(103\) 171.710 0.164263 0.0821315 0.996622i \(-0.473827\pi\)
0.0821315 + 0.996622i \(0.473827\pi\)
\(104\) 589.488 0.555808
\(105\) 2564.67 2.38368
\(106\) 196.821 0.180348
\(107\) 414.272 0.374291 0.187146 0.982332i \(-0.440076\pi\)
0.187146 + 0.982332i \(0.440076\pi\)
\(108\) 377.228 0.336100
\(109\) −1177.76 −1.03494 −0.517471 0.855701i \(-0.673126\pi\)
−0.517471 + 0.855701i \(0.673126\pi\)
\(110\) −1612.36 −1.39757
\(111\) 1516.47 1.29673
\(112\) 1421.53 1.19930
\(113\) −466.361 −0.388244 −0.194122 0.980977i \(-0.562186\pi\)
−0.194122 + 0.980977i \(0.562186\pi\)
\(114\) −496.565 −0.407961
\(115\) 0 0
\(116\) −424.669 −0.339910
\(117\) −1993.54 −1.57524
\(118\) 1088.23 0.848979
\(119\) 963.311 0.742072
\(120\) 1535.68 1.16823
\(121\) −706.606 −0.530884
\(122\) −3009.67 −2.23347
\(123\) −888.101 −0.651036
\(124\) 523.039 0.378793
\(125\) −1251.71 −0.895647
\(126\) −2366.56 −1.67326
\(127\) −1895.72 −1.32455 −0.662274 0.749262i \(-0.730408\pi\)
−0.662274 + 0.749262i \(0.730408\pi\)
\(128\) 1283.35 0.886194
\(129\) 2319.30 1.58297
\(130\) 3529.20 2.38101
\(131\) −706.426 −0.471150 −0.235575 0.971856i \(-0.575697\pi\)
−0.235575 + 0.971856i \(0.575697\pi\)
\(132\) 997.622 0.657817
\(133\) 311.066 0.202803
\(134\) 16.9940 0.0109557
\(135\) −1346.28 −0.858294
\(136\) 576.813 0.363686
\(137\) 2636.94 1.64444 0.822221 0.569168i \(-0.192735\pi\)
0.822221 + 0.569168i \(0.192735\pi\)
\(138\) 0 0
\(139\) 630.323 0.384628 0.192314 0.981333i \(-0.438401\pi\)
0.192314 + 0.981333i \(0.438401\pi\)
\(140\) 1613.79 0.974213
\(141\) −4020.08 −2.40108
\(142\) 3324.50 1.96469
\(143\) −1366.70 −0.799225
\(144\) −2878.55 −1.66583
\(145\) 1515.60 0.868023
\(146\) 911.374 0.516616
\(147\) −151.465 −0.0849837
\(148\) 954.218 0.529975
\(149\) −1942.42 −1.06798 −0.533992 0.845489i \(-0.679309\pi\)
−0.533992 + 0.845489i \(0.679309\pi\)
\(150\) 5602.28 3.04950
\(151\) −735.965 −0.396636 −0.198318 0.980138i \(-0.563548\pi\)
−0.198318 + 0.980138i \(0.563548\pi\)
\(152\) 186.261 0.0993931
\(153\) −1950.68 −1.03074
\(154\) −1622.43 −0.848956
\(155\) −1866.67 −0.967319
\(156\) −2183.64 −1.12071
\(157\) 792.880 0.403049 0.201525 0.979483i \(-0.435410\pi\)
0.201525 + 0.979483i \(0.435410\pi\)
\(158\) 900.755 0.453546
\(159\) 434.618 0.216776
\(160\) 3553.62 1.75586
\(161\) 0 0
\(162\) −1387.38 −0.672860
\(163\) 146.251 0.0702776 0.0351388 0.999382i \(-0.488813\pi\)
0.0351388 + 0.999382i \(0.488813\pi\)
\(164\) −558.826 −0.266079
\(165\) −3560.40 −1.67986
\(166\) −3553.25 −1.66136
\(167\) −1180.93 −0.547203 −0.273602 0.961843i \(-0.588215\pi\)
−0.273602 + 0.961843i \(0.588215\pi\)
\(168\) 1545.27 0.709644
\(169\) 794.489 0.361625
\(170\) 3453.32 1.55799
\(171\) −629.900 −0.281694
\(172\) 1459.39 0.646961
\(173\) −4113.54 −1.80779 −0.903893 0.427759i \(-0.859303\pi\)
−0.903893 + 0.427759i \(0.859303\pi\)
\(174\) −2434.51 −1.06069
\(175\) −3509.47 −1.51595
\(176\) −1973.43 −0.845187
\(177\) 2403.01 1.02046
\(178\) 529.010 0.222758
\(179\) 2382.51 0.994845 0.497422 0.867509i \(-0.334280\pi\)
0.497422 + 0.867509i \(0.334280\pi\)
\(180\) −3267.87 −1.35318
\(181\) −3456.31 −1.41937 −0.709685 0.704520i \(-0.751163\pi\)
−0.709685 + 0.704520i \(0.751163\pi\)
\(182\) 3551.25 1.44635
\(183\) −6645.92 −2.68459
\(184\) 0 0
\(185\) −3405.50 −1.35339
\(186\) 2998.44 1.18202
\(187\) −1337.31 −0.522963
\(188\) −2529.58 −0.981324
\(189\) −1354.69 −0.521373
\(190\) 1115.12 0.425788
\(191\) −1924.97 −0.729247 −0.364623 0.931155i \(-0.618802\pi\)
−0.364623 + 0.931155i \(0.618802\pi\)
\(192\) −675.575 −0.253934
\(193\) −1186.63 −0.442566 −0.221283 0.975210i \(-0.571024\pi\)
−0.221283 + 0.975210i \(0.571024\pi\)
\(194\) −262.305 −0.0970744
\(195\) 7793.15 2.86194
\(196\) −95.3073 −0.0347330
\(197\) −3099.74 −1.12105 −0.560526 0.828137i \(-0.689401\pi\)
−0.560526 + 0.828137i \(0.689401\pi\)
\(198\) 3285.38 1.17920
\(199\) −161.324 −0.0574671 −0.0287336 0.999587i \(-0.509147\pi\)
−0.0287336 + 0.999587i \(0.509147\pi\)
\(200\) −2101.41 −0.742960
\(201\) 37.5260 0.0131686
\(202\) 4887.93 1.70254
\(203\) 1525.06 0.527282
\(204\) −2136.69 −0.733323
\(205\) 1994.39 0.679483
\(206\) 619.399 0.209493
\(207\) 0 0
\(208\) 4319.53 1.43993
\(209\) −431.837 −0.142922
\(210\) 9251.38 3.04003
\(211\) 5461.25 1.78184 0.890919 0.454162i \(-0.150061\pi\)
0.890919 + 0.454162i \(0.150061\pi\)
\(212\) 273.478 0.0885968
\(213\) 7341.12 2.36153
\(214\) 1494.38 0.477353
\(215\) −5208.39 −1.65214
\(216\) −811.166 −0.255523
\(217\) −1878.33 −0.587600
\(218\) −4248.45 −1.31991
\(219\) 2012.49 0.620965
\(220\) −2240.34 −0.686561
\(221\) 2927.17 0.890962
\(222\) 5470.26 1.65378
\(223\) 3162.82 0.949768 0.474884 0.880048i \(-0.342490\pi\)
0.474884 + 0.880048i \(0.342490\pi\)
\(224\) 3575.81 1.06660
\(225\) 7106.57 2.10565
\(226\) −1682.28 −0.495147
\(227\) −165.443 −0.0483737 −0.0241868 0.999707i \(-0.507700\pi\)
−0.0241868 + 0.999707i \(0.507700\pi\)
\(228\) −689.965 −0.200412
\(229\) −3260.79 −0.940958 −0.470479 0.882411i \(-0.655919\pi\)
−0.470479 + 0.882411i \(0.655919\pi\)
\(230\) 0 0
\(231\) −3582.64 −1.02043
\(232\) 913.180 0.258419
\(233\) 844.980 0.237581 0.118791 0.992919i \(-0.462098\pi\)
0.118791 + 0.992919i \(0.462098\pi\)
\(234\) −7191.17 −2.00898
\(235\) 9027.80 2.50599
\(236\) 1512.07 0.417064
\(237\) 1989.04 0.545155
\(238\) 3474.89 0.946402
\(239\) −293.669 −0.0794807 −0.0397404 0.999210i \(-0.512653\pi\)
−0.0397404 + 0.999210i \(0.512653\pi\)
\(240\) 11252.8 3.02653
\(241\) −2903.22 −0.775986 −0.387993 0.921662i \(-0.626832\pi\)
−0.387993 + 0.921662i \(0.626832\pi\)
\(242\) −2548.90 −0.677063
\(243\) −5095.70 −1.34522
\(244\) −4181.86 −1.09720
\(245\) 340.141 0.0886971
\(246\) −3203.59 −0.830299
\(247\) 945.223 0.243494
\(248\) −1124.71 −0.287980
\(249\) −7846.25 −1.99693
\(250\) −4515.20 −1.14226
\(251\) −2016.97 −0.507211 −0.253606 0.967308i \(-0.581617\pi\)
−0.253606 + 0.967308i \(0.581617\pi\)
\(252\) −3288.28 −0.821993
\(253\) 0 0
\(254\) −6838.30 −1.68926
\(255\) 7625.59 1.87268
\(256\) 5307.84 1.29586
\(257\) −3725.70 −0.904290 −0.452145 0.891944i \(-0.649341\pi\)
−0.452145 + 0.891944i \(0.649341\pi\)
\(258\) 8366.26 2.01884
\(259\) −3426.77 −0.822119
\(260\) 4903.74 1.16968
\(261\) −3088.20 −0.732395
\(262\) −2548.25 −0.600882
\(263\) 7530.22 1.76553 0.882763 0.469818i \(-0.155681\pi\)
0.882763 + 0.469818i \(0.155681\pi\)
\(264\) −2145.22 −0.500110
\(265\) −976.011 −0.226249
\(266\) 1122.09 0.258646
\(267\) 1168.15 0.267752
\(268\) 23.6128 0.00538201
\(269\) −8722.82 −1.97710 −0.988549 0.150898i \(-0.951784\pi\)
−0.988549 + 0.150898i \(0.951784\pi\)
\(270\) −4856.37 −1.09463
\(271\) −2580.89 −0.578516 −0.289258 0.957251i \(-0.593409\pi\)
−0.289258 + 0.957251i \(0.593409\pi\)
\(272\) 4226.65 0.942200
\(273\) 7841.82 1.73849
\(274\) 9512.05 2.09724
\(275\) 4872.02 1.06834
\(276\) 0 0
\(277\) 7990.19 1.73316 0.866578 0.499042i \(-0.166315\pi\)
0.866578 + 0.499042i \(0.166315\pi\)
\(278\) 2273.73 0.490536
\(279\) 3803.56 0.816176
\(280\) −3470.18 −0.740653
\(281\) −6584.26 −1.39781 −0.698904 0.715215i \(-0.746329\pi\)
−0.698904 + 0.715215i \(0.746329\pi\)
\(282\) −14501.4 −3.06222
\(283\) 4735.87 0.994764 0.497382 0.867532i \(-0.334295\pi\)
0.497382 + 0.867532i \(0.334295\pi\)
\(284\) 4619.30 0.965159
\(285\) 2462.41 0.511791
\(286\) −4930.01 −1.01929
\(287\) 2006.84 0.412754
\(288\) −7240.91 −1.48151
\(289\) −2048.77 −0.417010
\(290\) 5467.11 1.10703
\(291\) −579.220 −0.116682
\(292\) 1266.33 0.253789
\(293\) 5678.18 1.13216 0.566080 0.824351i \(-0.308459\pi\)
0.566080 + 0.824351i \(0.308459\pi\)
\(294\) −546.369 −0.108384
\(295\) −5396.39 −1.06505
\(296\) −2051.89 −0.402917
\(297\) 1880.65 0.367429
\(298\) −7006.79 −1.36206
\(299\) 0 0
\(300\) 7784.23 1.49808
\(301\) −5240.92 −1.00359
\(302\) −2654.80 −0.505850
\(303\) 10793.5 2.04643
\(304\) 1364.84 0.257497
\(305\) 14924.6 2.80190
\(306\) −7036.55 −1.31455
\(307\) −2537.04 −0.471649 −0.235825 0.971796i \(-0.575779\pi\)
−0.235825 + 0.971796i \(0.575779\pi\)
\(308\) −2254.33 −0.417053
\(309\) 1367.75 0.251808
\(310\) −6733.52 −1.23367
\(311\) 5513.84 1.00534 0.502670 0.864478i \(-0.332351\pi\)
0.502670 + 0.864478i \(0.332351\pi\)
\(312\) 4695.54 0.852028
\(313\) −6355.70 −1.14775 −0.573875 0.818943i \(-0.694560\pi\)
−0.573875 + 0.818943i \(0.694560\pi\)
\(314\) 2860.11 0.514029
\(315\) 11735.5 2.09911
\(316\) 1251.58 0.222806
\(317\) −7190.62 −1.27402 −0.637012 0.770854i \(-0.719830\pi\)
−0.637012 + 0.770854i \(0.719830\pi\)
\(318\) 1567.77 0.276466
\(319\) −2117.16 −0.371594
\(320\) 1517.12 0.265030
\(321\) 3299.87 0.573771
\(322\) 0 0
\(323\) 924.900 0.159328
\(324\) −1927.74 −0.330545
\(325\) −10664.1 −1.82011
\(326\) 527.561 0.0896286
\(327\) −9381.38 −1.58652
\(328\) 1201.66 0.202289
\(329\) 9084.19 1.52227
\(330\) −12843.2 −2.14241
\(331\) 10164.5 1.68789 0.843945 0.536429i \(-0.180227\pi\)
0.843945 + 0.536429i \(0.180227\pi\)
\(332\) −4937.16 −0.816149
\(333\) 6939.10 1.14192
\(334\) −4259.89 −0.697877
\(335\) −84.2713 −0.0137440
\(336\) 11323.1 1.83847
\(337\) −8047.79 −1.30086 −0.650432 0.759565i \(-0.725412\pi\)
−0.650432 + 0.759565i \(0.725412\pi\)
\(338\) 2865.91 0.461198
\(339\) −3714.78 −0.595160
\(340\) 4798.30 0.765366
\(341\) 2607.58 0.414101
\(342\) −2272.20 −0.359259
\(343\) 6516.12 1.02577
\(344\) −3138.17 −0.491857
\(345\) 0 0
\(346\) −14838.5 −2.30556
\(347\) 1710.23 0.264581 0.132291 0.991211i \(-0.457767\pi\)
0.132291 + 0.991211i \(0.457767\pi\)
\(348\) −3382.69 −0.521066
\(349\) −3859.21 −0.591916 −0.295958 0.955201i \(-0.595639\pi\)
−0.295958 + 0.955201i \(0.595639\pi\)
\(350\) −12659.5 −1.93337
\(351\) −4116.45 −0.625982
\(352\) −4964.11 −0.751671
\(353\) 7692.33 1.15983 0.579917 0.814676i \(-0.303085\pi\)
0.579917 + 0.814676i \(0.303085\pi\)
\(354\) 8668.24 1.30145
\(355\) −16485.8 −2.46471
\(356\) 735.046 0.109431
\(357\) 7673.22 1.13756
\(358\) 8594.28 1.26878
\(359\) −8290.75 −1.21885 −0.609427 0.792842i \(-0.708601\pi\)
−0.609427 + 0.792842i \(0.708601\pi\)
\(360\) 7027.00 1.02877
\(361\) −6560.34 −0.956457
\(362\) −12467.7 −1.81019
\(363\) −5628.44 −0.813820
\(364\) 4934.37 0.710525
\(365\) −4519.39 −0.648098
\(366\) −23973.4 −3.42380
\(367\) 12121.9 1.72414 0.862071 0.506787i \(-0.169167\pi\)
0.862071 + 0.506787i \(0.169167\pi\)
\(368\) 0 0
\(369\) −4063.80 −0.573314
\(370\) −12284.4 −1.72605
\(371\) −982.107 −0.137435
\(372\) 4166.25 0.580672
\(373\) 7792.45 1.08171 0.540855 0.841116i \(-0.318101\pi\)
0.540855 + 0.841116i \(0.318101\pi\)
\(374\) −4824.01 −0.666962
\(375\) −9970.41 −1.37299
\(376\) 5439.45 0.746059
\(377\) 4634.14 0.633077
\(378\) −4886.70 −0.664934
\(379\) 7384.19 1.00079 0.500396 0.865796i \(-0.333188\pi\)
0.500396 + 0.865796i \(0.333188\pi\)
\(380\) 1549.44 0.209170
\(381\) −15100.3 −2.03047
\(382\) −6943.83 −0.930045
\(383\) 6643.95 0.886397 0.443199 0.896423i \(-0.353844\pi\)
0.443199 + 0.896423i \(0.353844\pi\)
\(384\) 10222.4 1.35850
\(385\) 8045.44 1.06502
\(386\) −4280.44 −0.564427
\(387\) 10612.7 1.39399
\(388\) −364.467 −0.0476882
\(389\) −11183.0 −1.45759 −0.728795 0.684732i \(-0.759919\pi\)
−0.728795 + 0.684732i \(0.759919\pi\)
\(390\) 28111.7 3.64998
\(391\) 0 0
\(392\) 204.942 0.0264060
\(393\) −5627.01 −0.722252
\(394\) −11181.5 −1.42973
\(395\) −4466.73 −0.568976
\(396\) 4564.95 0.579286
\(397\) −10640.0 −1.34510 −0.672552 0.740050i \(-0.734802\pi\)
−0.672552 + 0.740050i \(0.734802\pi\)
\(398\) −581.934 −0.0732908
\(399\) 2477.79 0.310888
\(400\) −15398.3 −1.92478
\(401\) −1399.46 −0.174278 −0.0871390 0.996196i \(-0.527772\pi\)
−0.0871390 + 0.996196i \(0.527772\pi\)
\(402\) 135.365 0.0167945
\(403\) −5707.59 −0.705497
\(404\) 6791.65 0.836379
\(405\) 6879.87 0.844108
\(406\) 5501.26 0.672470
\(407\) 4757.20 0.579375
\(408\) 4594.58 0.557514
\(409\) 14465.1 1.74879 0.874394 0.485217i \(-0.161260\pi\)
0.874394 + 0.485217i \(0.161260\pi\)
\(410\) 7194.23 0.866580
\(411\) 21004.4 2.52085
\(412\) 860.639 0.102914
\(413\) −5430.10 −0.646967
\(414\) 0 0
\(415\) 17620.1 2.08419
\(416\) 10865.7 1.28061
\(417\) 5020.81 0.589617
\(418\) −1557.74 −0.182276
\(419\) 85.7506 0.00999806 0.00499903 0.999988i \(-0.498409\pi\)
0.00499903 + 0.999988i \(0.498409\pi\)
\(420\) 12854.6 1.49342
\(421\) −14663.2 −1.69749 −0.848744 0.528804i \(-0.822641\pi\)
−0.848744 + 0.528804i \(0.822641\pi\)
\(422\) 19700.0 2.27247
\(423\) −18395.2 −2.11443
\(424\) −588.068 −0.0673564
\(425\) −10434.8 −1.19097
\(426\) 26481.2 3.01177
\(427\) 15017.8 1.70202
\(428\) 2076.40 0.234501
\(429\) −10886.4 −1.22518
\(430\) −18787.9 −2.10705
\(431\) −2322.02 −0.259508 −0.129754 0.991546i \(-0.541419\pi\)
−0.129754 + 0.991546i \(0.541419\pi\)
\(432\) −5943.90 −0.661981
\(433\) 8099.49 0.898929 0.449465 0.893298i \(-0.351615\pi\)
0.449465 + 0.893298i \(0.351615\pi\)
\(434\) −6775.57 −0.749396
\(435\) 12072.4 1.33064
\(436\) −5903.12 −0.648413
\(437\) 0 0
\(438\) 7259.52 0.791948
\(439\) −5179.17 −0.563071 −0.281536 0.959551i \(-0.590844\pi\)
−0.281536 + 0.959551i \(0.590844\pi\)
\(440\) 4817.47 0.521963
\(441\) −693.077 −0.0748382
\(442\) 10559.0 1.13629
\(443\) −2338.11 −0.250760 −0.125380 0.992109i \(-0.540015\pi\)
−0.125380 + 0.992109i \(0.540015\pi\)
\(444\) 7600.79 0.812427
\(445\) −2623.30 −0.279452
\(446\) 11409.1 1.21129
\(447\) −15472.3 −1.63717
\(448\) 1526.60 0.160993
\(449\) −3256.35 −0.342264 −0.171132 0.985248i \(-0.554743\pi\)
−0.171132 + 0.985248i \(0.554743\pi\)
\(450\) 25635.1 2.68544
\(451\) −2786.00 −0.290881
\(452\) −2337.48 −0.243243
\(453\) −5862.30 −0.608024
\(454\) −596.792 −0.0616935
\(455\) −17610.2 −1.81446
\(456\) 1483.65 0.152365
\(457\) −11038.7 −1.12991 −0.564957 0.825120i \(-0.691107\pi\)
−0.564957 + 0.825120i \(0.691107\pi\)
\(458\) −11762.5 −1.20005
\(459\) −4027.94 −0.409604
\(460\) 0 0
\(461\) −2802.25 −0.283110 −0.141555 0.989930i \(-0.545210\pi\)
−0.141555 + 0.989930i \(0.545210\pi\)
\(462\) −12923.4 −1.30141
\(463\) 11084.4 1.11260 0.556300 0.830981i \(-0.312220\pi\)
0.556300 + 0.830981i \(0.312220\pi\)
\(464\) 6691.41 0.669485
\(465\) −14868.9 −1.48286
\(466\) 3048.04 0.303000
\(467\) 2673.91 0.264955 0.132478 0.991186i \(-0.457707\pi\)
0.132478 + 0.991186i \(0.457707\pi\)
\(468\) −9991.95 −0.986919
\(469\) −84.7976 −0.00834881
\(470\) 32565.4 3.19602
\(471\) 6315.66 0.617856
\(472\) −3251.44 −0.317076
\(473\) 7275.70 0.707266
\(474\) 7174.93 0.695265
\(475\) −3369.53 −0.325484
\(476\) 4828.27 0.464923
\(477\) 1988.74 0.190897
\(478\) −1059.34 −0.101366
\(479\) −14809.7 −1.41268 −0.706339 0.707873i \(-0.749655\pi\)
−0.706339 + 0.707873i \(0.749655\pi\)
\(480\) 28306.2 2.69166
\(481\) −10412.8 −0.987071
\(482\) −10472.6 −0.989655
\(483\) 0 0
\(484\) −3541.63 −0.332610
\(485\) 1300.74 0.121781
\(486\) −18381.4 −1.71563
\(487\) 646.489 0.0601545 0.0300772 0.999548i \(-0.490425\pi\)
0.0300772 + 0.999548i \(0.490425\pi\)
\(488\) 8992.39 0.834153
\(489\) 1164.96 0.107732
\(490\) 1226.97 0.113120
\(491\) −5608.33 −0.515480 −0.257740 0.966214i \(-0.582978\pi\)
−0.257740 + 0.966214i \(0.582978\pi\)
\(492\) −4451.31 −0.407887
\(493\) 4534.50 0.414246
\(494\) 3409.64 0.310541
\(495\) −16291.8 −1.47931
\(496\) −8241.41 −0.746069
\(497\) −16588.7 −1.49720
\(498\) −28303.3 −2.54679
\(499\) 16920.8 1.51799 0.758997 0.651095i \(-0.225690\pi\)
0.758997 + 0.651095i \(0.225690\pi\)
\(500\) −6273.75 −0.561142
\(501\) −9406.64 −0.838838
\(502\) −7275.69 −0.646872
\(503\) 7925.06 0.702507 0.351254 0.936280i \(-0.385756\pi\)
0.351254 + 0.936280i \(0.385756\pi\)
\(504\) 7070.90 0.624926
\(505\) −24238.6 −2.13585
\(506\) 0 0
\(507\) 6328.48 0.554354
\(508\) −9501.64 −0.829857
\(509\) 12791.2 1.11387 0.556936 0.830556i \(-0.311977\pi\)
0.556936 + 0.830556i \(0.311977\pi\)
\(510\) 27507.3 2.38832
\(511\) −4547.62 −0.393689
\(512\) 8879.87 0.766482
\(513\) −1300.68 −0.111942
\(514\) −13439.5 −1.15329
\(515\) −3071.52 −0.262811
\(516\) 11624.7 0.991762
\(517\) −12611.1 −1.07280
\(518\) −12361.2 −1.04849
\(519\) −32766.3 −2.77125
\(520\) −10544.7 −0.889258
\(521\) −12897.1 −1.08451 −0.542257 0.840213i \(-0.682430\pi\)
−0.542257 + 0.840213i \(0.682430\pi\)
\(522\) −11139.9 −0.934061
\(523\) −13529.3 −1.13116 −0.565579 0.824694i \(-0.691347\pi\)
−0.565579 + 0.824694i \(0.691347\pi\)
\(524\) −3540.72 −0.295186
\(525\) −27954.6 −2.32388
\(526\) 27163.3 2.25167
\(527\) −5584.87 −0.461633
\(528\) −15719.3 −1.29563
\(529\) 0 0
\(530\) −3520.70 −0.288546
\(531\) 10995.8 0.898637
\(532\) 1559.12 0.127061
\(533\) 6098.11 0.495569
\(534\) 4213.81 0.341478
\(535\) −7410.43 −0.598843
\(536\) −50.7753 −0.00409171
\(537\) 18977.8 1.52505
\(538\) −31465.3 −2.52150
\(539\) −475.149 −0.0379705
\(540\) −6747.80 −0.537739
\(541\) 1452.70 0.115446 0.0577230 0.998333i \(-0.481616\pi\)
0.0577230 + 0.998333i \(0.481616\pi\)
\(542\) −9309.89 −0.737812
\(543\) −27531.1 −2.17583
\(544\) 10632.0 0.837950
\(545\) 21067.5 1.65584
\(546\) 28287.3 2.21719
\(547\) 11532.8 0.901475 0.450738 0.892656i \(-0.351161\pi\)
0.450738 + 0.892656i \(0.351161\pi\)
\(548\) 13216.8 1.03028
\(549\) −30410.6 −2.36410
\(550\) 17574.5 1.36251
\(551\) 1464.25 0.113211
\(552\) 0 0
\(553\) −4494.63 −0.345626
\(554\) 28822.5 2.21038
\(555\) −27126.3 −2.07468
\(556\) 3159.28 0.240977
\(557\) −7753.70 −0.589829 −0.294914 0.955524i \(-0.595291\pi\)
−0.294914 + 0.955524i \(0.595291\pi\)
\(558\) 13720.3 1.04091
\(559\) −15925.4 −1.20496
\(560\) −25428.0 −1.91881
\(561\) −10652.3 −0.801678
\(562\) −23751.0 −1.78270
\(563\) −6929.35 −0.518716 −0.259358 0.965781i \(-0.583511\pi\)
−0.259358 + 0.965781i \(0.583511\pi\)
\(564\) −20149.3 −1.50432
\(565\) 8342.20 0.621166
\(566\) 17083.4 1.26867
\(567\) 6922.84 0.512755
\(568\) −9933.04 −0.733769
\(569\) −5737.87 −0.422749 −0.211374 0.977405i \(-0.567794\pi\)
−0.211374 + 0.977405i \(0.567794\pi\)
\(570\) 8882.49 0.652713
\(571\) −12377.9 −0.907179 −0.453590 0.891211i \(-0.649857\pi\)
−0.453590 + 0.891211i \(0.649857\pi\)
\(572\) −6850.13 −0.500731
\(573\) −15333.3 −1.11790
\(574\) 7239.17 0.526406
\(575\) 0 0
\(576\) −3091.32 −0.223620
\(577\) −336.552 −0.0242822 −0.0121411 0.999926i \(-0.503865\pi\)
−0.0121411 + 0.999926i \(0.503865\pi\)
\(578\) −7390.40 −0.531834
\(579\) −9452.03 −0.678433
\(580\) 7596.42 0.543834
\(581\) 17730.2 1.26605
\(582\) −2089.38 −0.148811
\(583\) 1363.41 0.0968552
\(584\) −2723.03 −0.192945
\(585\) 35660.1 2.52028
\(586\) 20482.5 1.44390
\(587\) −21603.9 −1.51906 −0.759530 0.650473i \(-0.774571\pi\)
−0.759530 + 0.650473i \(0.774571\pi\)
\(588\) −759.166 −0.0532440
\(589\) −1803.43 −0.126161
\(590\) −19466.1 −1.35831
\(591\) −24690.8 −1.71852
\(592\) −15035.4 −1.04384
\(593\) −1374.31 −0.0951706 −0.0475853 0.998867i \(-0.515153\pi\)
−0.0475853 + 0.998867i \(0.515153\pi\)
\(594\) 6783.96 0.468601
\(595\) −17231.6 −1.18727
\(596\) −9735.76 −0.669114
\(597\) −1285.02 −0.0880945
\(598\) 0 0
\(599\) −4773.99 −0.325643 −0.162821 0.986656i \(-0.552059\pi\)
−0.162821 + 0.986656i \(0.552059\pi\)
\(600\) −16738.7 −1.13892
\(601\) −931.036 −0.0631909 −0.0315955 0.999501i \(-0.510059\pi\)
−0.0315955 + 0.999501i \(0.510059\pi\)
\(602\) −18905.3 −1.27993
\(603\) 171.713 0.0115965
\(604\) −3688.78 −0.248501
\(605\) 12639.7 0.849381
\(606\) 38934.6 2.60992
\(607\) 5599.19 0.374406 0.187203 0.982321i \(-0.440058\pi\)
0.187203 + 0.982321i \(0.440058\pi\)
\(608\) 3433.23 0.229006
\(609\) 12147.8 0.808300
\(610\) 53836.5 3.57341
\(611\) 27603.7 1.82770
\(612\) −9777.11 −0.645778
\(613\) 3560.82 0.234617 0.117308 0.993096i \(-0.462573\pi\)
0.117308 + 0.993096i \(0.462573\pi\)
\(614\) −9151.69 −0.601518
\(615\) 15886.2 1.04162
\(616\) 4847.56 0.317068
\(617\) 14730.8 0.961167 0.480584 0.876949i \(-0.340425\pi\)
0.480584 + 0.876949i \(0.340425\pi\)
\(618\) 4933.80 0.321143
\(619\) 27103.3 1.75989 0.879945 0.475076i \(-0.157579\pi\)
0.879945 + 0.475076i \(0.157579\pi\)
\(620\) −9356.05 −0.606045
\(621\) 0 0
\(622\) 19889.7 1.28216
\(623\) −2639.68 −0.169754
\(624\) 34407.0 2.20735
\(625\) −1981.58 −0.126821
\(626\) −22926.5 −1.46378
\(627\) −3439.78 −0.219094
\(628\) 3974.05 0.252519
\(629\) −10188.9 −0.645878
\(630\) 42332.7 2.67710
\(631\) 12462.3 0.786238 0.393119 0.919488i \(-0.371396\pi\)
0.393119 + 0.919488i \(0.371396\pi\)
\(632\) −2691.30 −0.169390
\(633\) 43501.4 2.73148
\(634\) −25938.3 −1.62483
\(635\) 33910.3 2.11919
\(636\) 2178.38 0.135815
\(637\) 1040.03 0.0646897
\(638\) −7637.11 −0.473913
\(639\) 33591.7 2.07960
\(640\) −22956.3 −1.41786
\(641\) 8849.87 0.545318 0.272659 0.962111i \(-0.412097\pi\)
0.272659 + 0.962111i \(0.412097\pi\)
\(642\) 11903.4 0.731760
\(643\) 25367.3 1.55581 0.777906 0.628380i \(-0.216282\pi\)
0.777906 + 0.628380i \(0.216282\pi\)
\(644\) 0 0
\(645\) −41487.2 −2.53265
\(646\) 3336.33 0.203199
\(647\) 25619.6 1.55674 0.778371 0.627805i \(-0.216046\pi\)
0.778371 + 0.627805i \(0.216046\pi\)
\(648\) 4145.27 0.251299
\(649\) 7538.32 0.455940
\(650\) −38467.8 −2.32128
\(651\) −14961.7 −0.900764
\(652\) 733.033 0.0440304
\(653\) 5631.72 0.337498 0.168749 0.985659i \(-0.446027\pi\)
0.168749 + 0.985659i \(0.446027\pi\)
\(654\) −33840.9 −2.02337
\(655\) 12636.4 0.753811
\(656\) 8805.29 0.524069
\(657\) 9208.80 0.546833
\(658\) 32768.8 1.94143
\(659\) 7120.69 0.420915 0.210457 0.977603i \(-0.432505\pi\)
0.210457 + 0.977603i \(0.432505\pi\)
\(660\) −17845.3 −1.05247
\(661\) 24152.7 1.42123 0.710613 0.703583i \(-0.248418\pi\)
0.710613 + 0.703583i \(0.248418\pi\)
\(662\) 36665.8 2.15265
\(663\) 23316.3 1.36580
\(664\) 10616.5 0.620484
\(665\) −5564.31 −0.324473
\(666\) 25031.0 1.45635
\(667\) 0 0
\(668\) −5919.01 −0.342834
\(669\) 25193.4 1.45595
\(670\) −303.986 −0.0175284
\(671\) −20848.4 −1.19947
\(672\) 28483.0 1.63505
\(673\) −5852.26 −0.335198 −0.167599 0.985855i \(-0.553601\pi\)
−0.167599 + 0.985855i \(0.553601\pi\)
\(674\) −29030.3 −1.65906
\(675\) 14674.3 0.836763
\(676\) 3982.11 0.226565
\(677\) −24338.0 −1.38166 −0.690832 0.723015i \(-0.742756\pi\)
−0.690832 + 0.723015i \(0.742756\pi\)
\(678\) −13400.1 −0.759038
\(679\) 1308.87 0.0739759
\(680\) −10317.9 −0.581875
\(681\) −1317.83 −0.0741547
\(682\) 9406.18 0.528125
\(683\) 8464.54 0.474212 0.237106 0.971484i \(-0.423801\pi\)
0.237106 + 0.971484i \(0.423801\pi\)
\(684\) −3157.16 −0.176487
\(685\) −47169.1 −2.63101
\(686\) 23505.2 1.30821
\(687\) −25973.7 −1.44245
\(688\) −22995.2 −1.27425
\(689\) −2984.28 −0.165010
\(690\) 0 0
\(691\) −2234.24 −0.123002 −0.0615011 0.998107i \(-0.519589\pi\)
−0.0615011 + 0.998107i \(0.519589\pi\)
\(692\) −20617.8 −1.13262
\(693\) −16393.5 −0.898613
\(694\) 6169.19 0.337434
\(695\) −11275.1 −0.615381
\(696\) 7273.90 0.396144
\(697\) 5966.99 0.324270
\(698\) −13921.1 −0.754901
\(699\) 6730.66 0.364201
\(700\) −17590.1 −0.949774
\(701\) −13502.0 −0.727479 −0.363739 0.931501i \(-0.618500\pi\)
−0.363739 + 0.931501i \(0.618500\pi\)
\(702\) −14849.0 −0.798347
\(703\) −3290.13 −0.176514
\(704\) −2119.30 −0.113457
\(705\) 71910.6 3.84157
\(706\) 27748.1 1.47919
\(707\) −24390.0 −1.29743
\(708\) 12044.3 0.639340
\(709\) 12150.5 0.643612 0.321806 0.946806i \(-0.395710\pi\)
0.321806 + 0.946806i \(0.395710\pi\)
\(710\) −59468.1 −3.14338
\(711\) 9101.49 0.480074
\(712\) −1580.59 −0.0831956
\(713\) 0 0
\(714\) 27679.1 1.45079
\(715\) 24447.3 1.27871
\(716\) 11941.5 0.623291
\(717\) −2339.21 −0.121840
\(718\) −29906.7 −1.55447
\(719\) −19023.2 −0.986712 −0.493356 0.869827i \(-0.664230\pi\)
−0.493356 + 0.869827i \(0.664230\pi\)
\(720\) 51491.0 2.66522
\(721\) −3090.71 −0.159645
\(722\) −23664.7 −1.21982
\(723\) −23125.5 −1.18955
\(724\) −17323.6 −0.889264
\(725\) −16519.8 −0.846247
\(726\) −20303.1 −1.03791
\(727\) 5323.19 0.271563 0.135781 0.990739i \(-0.456646\pi\)
0.135781 + 0.990739i \(0.456646\pi\)
\(728\) −10610.5 −0.540182
\(729\) −30205.1 −1.53458
\(730\) −16302.5 −0.826553
\(731\) −15582.9 −0.788448
\(732\) −33310.5 −1.68195
\(733\) 27879.3 1.40484 0.702420 0.711763i \(-0.252103\pi\)
0.702420 + 0.711763i \(0.252103\pi\)
\(734\) 43726.7 2.19889
\(735\) 2709.38 0.135969
\(736\) 0 0
\(737\) 117.720 0.00588369
\(738\) −14659.1 −0.731177
\(739\) −3163.82 −0.157487 −0.0787437 0.996895i \(-0.525091\pi\)
−0.0787437 + 0.996895i \(0.525091\pi\)
\(740\) −17068.9 −0.847927
\(741\) 7529.14 0.373266
\(742\) −3542.69 −0.175278
\(743\) −15214.0 −0.751208 −0.375604 0.926780i \(-0.622565\pi\)
−0.375604 + 0.926780i \(0.622565\pi\)
\(744\) −8958.83 −0.441460
\(745\) 34745.8 1.70871
\(746\) 28109.2 1.37956
\(747\) −35903.1 −1.75854
\(748\) −6702.84 −0.327647
\(749\) −7456.72 −0.363768
\(750\) −35965.6 −1.75104
\(751\) −23732.0 −1.15312 −0.576560 0.817055i \(-0.695605\pi\)
−0.576560 + 0.817055i \(0.695605\pi\)
\(752\) 39858.1 1.93281
\(753\) −16066.1 −0.777532
\(754\) 16716.4 0.807396
\(755\) 13164.8 0.634592
\(756\) −6789.95 −0.326651
\(757\) −30642.3 −1.47122 −0.735609 0.677407i \(-0.763104\pi\)
−0.735609 + 0.677407i \(0.763104\pi\)
\(758\) 26636.5 1.27636
\(759\) 0 0
\(760\) −3331.81 −0.159023
\(761\) 6637.64 0.316182 0.158091 0.987425i \(-0.449466\pi\)
0.158091 + 0.987425i \(0.449466\pi\)
\(762\) −54470.2 −2.58956
\(763\) 21199.1 1.00585
\(764\) −9648.28 −0.456888
\(765\) 34893.4 1.64912
\(766\) 23966.3 1.13047
\(767\) −16500.2 −0.776776
\(768\) 42279.4 1.98649
\(769\) 25832.8 1.21138 0.605692 0.795699i \(-0.292896\pi\)
0.605692 + 0.795699i \(0.292896\pi\)
\(770\) 29021.8 1.35828
\(771\) −29676.9 −1.38624
\(772\) −5947.57 −0.277277
\(773\) 20840.7 0.969713 0.484856 0.874594i \(-0.338872\pi\)
0.484856 + 0.874594i \(0.338872\pi\)
\(774\) 38282.6 1.77783
\(775\) 20346.4 0.943052
\(776\) 783.725 0.0362553
\(777\) −27295.8 −1.26027
\(778\) −40339.9 −1.85894
\(779\) 1926.82 0.0886208
\(780\) 39060.6 1.79307
\(781\) 23029.3 1.05512
\(782\) 0 0
\(783\) −6376.82 −0.291046
\(784\) 1501.73 0.0684099
\(785\) −14182.9 −0.644854
\(786\) −20298.0 −0.921125
\(787\) 15519.8 0.702948 0.351474 0.936198i \(-0.385681\pi\)
0.351474 + 0.936198i \(0.385681\pi\)
\(788\) −15536.4 −0.702362
\(789\) 59981.7 2.70647
\(790\) −16112.6 −0.725645
\(791\) 8394.30 0.377329
\(792\) −9816.16 −0.440406
\(793\) 45633.9 2.04352
\(794\) −38381.0 −1.71548
\(795\) −7774.38 −0.346829
\(796\) −808.583 −0.0360044
\(797\) 4581.96 0.203640 0.101820 0.994803i \(-0.467533\pi\)
0.101820 + 0.994803i \(0.467533\pi\)
\(798\) 8937.97 0.396492
\(799\) 27010.2 1.19594
\(800\) −38733.9 −1.71181
\(801\) 5345.27 0.235788
\(802\) −5048.17 −0.222266
\(803\) 6313.23 0.277446
\(804\) 188.087 0.00825038
\(805\) 0 0
\(806\) −20588.6 −0.899756
\(807\) −69481.3 −3.03080
\(808\) −14604.3 −0.635864
\(809\) −24783.3 −1.07705 −0.538526 0.842609i \(-0.681019\pi\)
−0.538526 + 0.842609i \(0.681019\pi\)
\(810\) 24817.3 1.07653
\(811\) −5141.97 −0.222638 −0.111319 0.993785i \(-0.535507\pi\)
−0.111319 + 0.993785i \(0.535507\pi\)
\(812\) 7643.86 0.330353
\(813\) −20558.0 −0.886839
\(814\) 17160.4 0.738907
\(815\) −2616.11 −0.112440
\(816\) 33667.2 1.44435
\(817\) −5031.94 −0.215478
\(818\) 52179.1 2.23032
\(819\) 35882.9 1.53095
\(820\) 9996.20 0.425710
\(821\) −288.654 −0.0122705 −0.00613526 0.999981i \(-0.501953\pi\)
−0.00613526 + 0.999981i \(0.501953\pi\)
\(822\) 75767.9 3.21498
\(823\) 28522.8 1.20807 0.604035 0.796958i \(-0.293559\pi\)
0.604035 + 0.796958i \(0.293559\pi\)
\(824\) −1850.66 −0.0782413
\(825\) 38807.9 1.63772
\(826\) −19587.7 −0.825111
\(827\) −30103.4 −1.26578 −0.632889 0.774243i \(-0.718131\pi\)
−0.632889 + 0.774243i \(0.718131\pi\)
\(828\) 0 0
\(829\) 40724.8 1.70619 0.853095 0.521756i \(-0.174723\pi\)
0.853095 + 0.521756i \(0.174723\pi\)
\(830\) 63560.0 2.65807
\(831\) 63645.6 2.65685
\(832\) 4638.81 0.193295
\(833\) 1017.66 0.0423289
\(834\) 18111.3 0.751969
\(835\) 21124.3 0.875492
\(836\) −2164.44 −0.0895439
\(837\) 7853.94 0.324339
\(838\) 309.323 0.0127510
\(839\) −35857.6 −1.47549 −0.737747 0.675077i \(-0.764110\pi\)
−0.737747 + 0.675077i \(0.764110\pi\)
\(840\) −27641.6 −1.13539
\(841\) −17210.2 −0.705655
\(842\) −52893.8 −2.16489
\(843\) −52446.7 −2.14278
\(844\) 27372.7 1.11636
\(845\) −14211.7 −0.578577
\(846\) −66355.9 −2.69665
\(847\) 12718.6 0.515958
\(848\) −4309.12 −0.174500
\(849\) 37723.4 1.52493
\(850\) −37640.7 −1.51890
\(851\) 0 0
\(852\) 36794.9 1.47954
\(853\) −6769.13 −0.271712 −0.135856 0.990729i \(-0.543379\pi\)
−0.135856 + 0.990729i \(0.543379\pi\)
\(854\) 54172.8 2.17067
\(855\) 11267.6 0.450693
\(856\) −4464.95 −0.178281
\(857\) −11441.8 −0.456060 −0.228030 0.973654i \(-0.573228\pi\)
−0.228030 + 0.973654i \(0.573228\pi\)
\(858\) −39269.8 −1.56253
\(859\) 11667.5 0.463433 0.231717 0.972783i \(-0.425566\pi\)
0.231717 + 0.972783i \(0.425566\pi\)
\(860\) −26105.3 −1.03510
\(861\) 15985.4 0.632732
\(862\) −8376.08 −0.330963
\(863\) 24351.0 0.960506 0.480253 0.877130i \(-0.340545\pi\)
0.480253 + 0.877130i \(0.340545\pi\)
\(864\) −14951.7 −0.588736
\(865\) 73582.4 2.89234
\(866\) 29216.8 1.14645
\(867\) −16319.4 −0.639257
\(868\) −9414.49 −0.368144
\(869\) 6239.66 0.243574
\(870\) 43548.1 1.69703
\(871\) −257.671 −0.0100239
\(872\) 12693.7 0.492961
\(873\) −2650.41 −0.102752
\(874\) 0 0
\(875\) 22530.2 0.870467
\(876\) 10086.9 0.389047
\(877\) 27991.1 1.07776 0.538878 0.842384i \(-0.318848\pi\)
0.538878 + 0.842384i \(0.318848\pi\)
\(878\) −18682.5 −0.718114
\(879\) 45229.3 1.73555
\(880\) 35300.4 1.35225
\(881\) 8327.99 0.318476 0.159238 0.987240i \(-0.449096\pi\)
0.159238 + 0.987240i \(0.449096\pi\)
\(882\) −2500.09 −0.0954450
\(883\) −34929.3 −1.33122 −0.665608 0.746302i \(-0.731828\pi\)
−0.665608 + 0.746302i \(0.731828\pi\)
\(884\) 14671.5 0.558207
\(885\) −42984.7 −1.63267
\(886\) −8434.11 −0.319808
\(887\) 29292.1 1.10883 0.554416 0.832240i \(-0.312942\pi\)
0.554416 + 0.832240i \(0.312942\pi\)
\(888\) −16344.2 −0.617653
\(889\) 34122.1 1.28731
\(890\) −9462.85 −0.356399
\(891\) −9610.62 −0.361356
\(892\) 15852.6 0.595050
\(893\) 8721.96 0.326841
\(894\) −55812.3 −2.08797
\(895\) −42618.0 −1.59169
\(896\) −23099.7 −0.861280
\(897\) 0 0
\(898\) −11746.4 −0.436507
\(899\) −8841.66 −0.328016
\(900\) 35619.3 1.31923
\(901\) −2920.12 −0.107973
\(902\) −10049.8 −0.370976
\(903\) −41746.4 −1.53846
\(904\) 5026.36 0.184927
\(905\) 61826.0 2.27090
\(906\) −21146.7 −0.775445
\(907\) 48915.0 1.79074 0.895368 0.445327i \(-0.146913\pi\)
0.895368 + 0.445327i \(0.146913\pi\)
\(908\) −829.227 −0.0303071
\(909\) 49389.1 1.80212
\(910\) −63524.2 −2.31407
\(911\) −36674.2 −1.33378 −0.666888 0.745158i \(-0.732374\pi\)
−0.666888 + 0.745158i \(0.732374\pi\)
\(912\) 10871.6 0.394731
\(913\) −24613.9 −0.892225
\(914\) −39819.4 −1.44104
\(915\) 118881. 4.29518
\(916\) −16343.6 −0.589530
\(917\) 12715.4 0.457904
\(918\) −14529.7 −0.522389
\(919\) 18591.9 0.667345 0.333673 0.942689i \(-0.391712\pi\)
0.333673 + 0.942689i \(0.391712\pi\)
\(920\) 0 0
\(921\) −20208.7 −0.723017
\(922\) −10108.4 −0.361065
\(923\) −50407.4 −1.79760
\(924\) −17956.8 −0.639323
\(925\) 37119.4 1.31944
\(926\) 39983.9 1.41896
\(927\) 6258.59 0.221747
\(928\) 16832.1 0.595409
\(929\) −1425.50 −0.0503434 −0.0251717 0.999683i \(-0.508013\pi\)
−0.0251717 + 0.999683i \(0.508013\pi\)
\(930\) −53635.6 −1.89116
\(931\) 328.618 0.0115682
\(932\) 4235.18 0.148850
\(933\) 43920.3 1.54114
\(934\) 9645.45 0.337911
\(935\) 23921.7 0.836708
\(936\) 21486.0 0.750312
\(937\) −12145.8 −0.423465 −0.211733 0.977328i \(-0.567911\pi\)
−0.211733 + 0.977328i \(0.567911\pi\)
\(938\) −305.885 −0.0106477
\(939\) −50626.1 −1.75945
\(940\) 45248.8 1.57006
\(941\) −9805.30 −0.339685 −0.169843 0.985471i \(-0.554326\pi\)
−0.169843 + 0.985471i \(0.554326\pi\)
\(942\) 22782.1 0.787983
\(943\) 0 0
\(944\) −23825.3 −0.821447
\(945\) 24232.6 0.834164
\(946\) 26245.2 0.902013
\(947\) −18463.8 −0.633571 −0.316786 0.948497i \(-0.602604\pi\)
−0.316786 + 0.948497i \(0.602604\pi\)
\(948\) 9969.38 0.341551
\(949\) −13818.7 −0.472679
\(950\) −12154.7 −0.415106
\(951\) −57276.6 −1.95302
\(952\) −10382.4 −0.353461
\(953\) −44610.8 −1.51635 −0.758177 0.652048i \(-0.773910\pi\)
−0.758177 + 0.652048i \(0.773910\pi\)
\(954\) 7173.85 0.243461
\(955\) 34433.6 1.16675
\(956\) −1471.92 −0.0497963
\(957\) −16864.2 −0.569636
\(958\) −53422.2 −1.80166
\(959\) −47463.7 −1.59821
\(960\) 12084.6 0.406279
\(961\) −18901.2 −0.634462
\(962\) −37561.3 −1.25886
\(963\) 15099.6 0.505274
\(964\) −14551.4 −0.486171
\(965\) 21226.2 0.708078
\(966\) 0 0
\(967\) 17717.8 0.589211 0.294606 0.955619i \(-0.404812\pi\)
0.294606 + 0.955619i \(0.404812\pi\)
\(968\) 7615.68 0.252869
\(969\) 7367.25 0.244242
\(970\) 4692.08 0.155313
\(971\) 12761.2 0.421757 0.210879 0.977512i \(-0.432368\pi\)
0.210879 + 0.977512i \(0.432368\pi\)
\(972\) −25540.5 −0.842810
\(973\) −11345.5 −0.373815
\(974\) 2332.04 0.0767181
\(975\) −84944.3 −2.79015
\(976\) 65892.6 2.16104
\(977\) 58418.8 1.91298 0.956490 0.291765i \(-0.0942426\pi\)
0.956490 + 0.291765i \(0.0942426\pi\)
\(978\) 4202.27 0.137397
\(979\) 3664.53 0.119631
\(980\) 1704.84 0.0555706
\(981\) −42927.6 −1.39712
\(982\) −20230.6 −0.657418
\(983\) −53539.3 −1.73717 −0.868585 0.495540i \(-0.834970\pi\)
−0.868585 + 0.495540i \(0.834970\pi\)
\(984\) 9571.80 0.310099
\(985\) 55447.6 1.79361
\(986\) 16357.0 0.528310
\(987\) 72359.8 2.33357
\(988\) 4737.61 0.152554
\(989\) 0 0
\(990\) −58768.3 −1.88665
\(991\) −30861.6 −0.989255 −0.494628 0.869105i \(-0.664696\pi\)
−0.494628 + 0.869105i \(0.664696\pi\)
\(992\) −20731.1 −0.663520
\(993\) 80965.0 2.58746
\(994\) −59839.5 −1.90945
\(995\) 2885.74 0.0919438
\(996\) −39326.7 −1.25112
\(997\) −17788.1 −0.565050 −0.282525 0.959260i \(-0.591172\pi\)
−0.282525 + 0.959260i \(0.591172\pi\)
\(998\) 61037.3 1.93597
\(999\) 14328.5 0.453788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.20 25
23.11 odd 22 23.4.c.a.6.4 yes 50
23.21 odd 22 23.4.c.a.4.4 50
23.22 odd 2 529.4.a.n.1.20 25
69.11 even 22 207.4.i.a.190.2 50
69.44 even 22 207.4.i.a.73.2 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.4.4 50 23.21 odd 22
23.4.c.a.6.4 yes 50 23.11 odd 22
207.4.i.a.73.2 50 69.44 even 22
207.4.i.a.190.2 50 69.11 even 22
529.4.a.m.1.20 25 1.1 even 1 trivial
529.4.a.n.1.20 25 23.22 odd 2