Properties

Label 529.4.a.m.1.2
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.07272 q^{2} -8.78974 q^{3} +17.7325 q^{4} +5.97134 q^{5} +44.5879 q^{6} +21.9327 q^{7} -49.3704 q^{8} +50.2595 q^{9} -30.2909 q^{10} -9.86490 q^{11} -155.864 q^{12} -17.9602 q^{13} -111.259 q^{14} -52.4865 q^{15} +108.582 q^{16} +26.7743 q^{17} -254.952 q^{18} -69.4348 q^{19} +105.887 q^{20} -192.783 q^{21} +50.0419 q^{22} +433.953 q^{24} -89.3431 q^{25} +91.1069 q^{26} -204.445 q^{27} +388.923 q^{28} -40.9508 q^{29} +266.249 q^{30} -89.6126 q^{31} -155.844 q^{32} +86.7099 q^{33} -135.819 q^{34} +130.968 q^{35} +891.227 q^{36} +443.254 q^{37} +352.224 q^{38} +157.865 q^{39} -294.807 q^{40} -283.837 q^{41} +977.935 q^{42} +532.210 q^{43} -174.929 q^{44} +300.116 q^{45} -228.723 q^{47} -954.408 q^{48} +138.045 q^{49} +453.213 q^{50} -235.339 q^{51} -318.479 q^{52} -372.354 q^{53} +1037.09 q^{54} -58.9066 q^{55} -1082.83 q^{56} +610.314 q^{57} +207.732 q^{58} -741.502 q^{59} -930.718 q^{60} +525.402 q^{61} +454.580 q^{62} +1102.33 q^{63} -78.1043 q^{64} -107.246 q^{65} -439.855 q^{66} +45.2081 q^{67} +474.777 q^{68} -664.364 q^{70} +178.587 q^{71} -2481.33 q^{72} +224.659 q^{73} -2248.50 q^{74} +785.302 q^{75} -1231.25 q^{76} -216.364 q^{77} -800.806 q^{78} +60.2745 q^{79} +648.380 q^{80} +440.008 q^{81} +1439.82 q^{82} -461.150 q^{83} -3418.53 q^{84} +159.879 q^{85} -2699.75 q^{86} +359.947 q^{87} +487.034 q^{88} -86.3813 q^{89} -1522.41 q^{90} -393.916 q^{91} +787.671 q^{93} +1160.25 q^{94} -414.619 q^{95} +1369.83 q^{96} +621.689 q^{97} -700.265 q^{98} -495.804 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.07272 −1.79348 −0.896739 0.442559i \(-0.854071\pi\)
−0.896739 + 0.442559i \(0.854071\pi\)
\(3\) −8.78974 −1.69159 −0.845793 0.533512i \(-0.820872\pi\)
−0.845793 + 0.533512i \(0.820872\pi\)
\(4\) 17.7325 2.21656
\(5\) 5.97134 0.534093 0.267046 0.963684i \(-0.413952\pi\)
0.267046 + 0.963684i \(0.413952\pi\)
\(6\) 44.5879 3.03382
\(7\) 21.9327 1.18426 0.592128 0.805844i \(-0.298288\pi\)
0.592128 + 0.805844i \(0.298288\pi\)
\(8\) −49.3704 −2.18188
\(9\) 50.2595 1.86146
\(10\) −30.2909 −0.957884
\(11\) −9.86490 −0.270398 −0.135199 0.990818i \(-0.543167\pi\)
−0.135199 + 0.990818i \(0.543167\pi\)
\(12\) −155.864 −3.74951
\(13\) −17.9602 −0.383173 −0.191587 0.981476i \(-0.561363\pi\)
−0.191587 + 0.981476i \(0.561363\pi\)
\(14\) −111.259 −2.12394
\(15\) −52.4865 −0.903464
\(16\) 108.582 1.69659
\(17\) 26.7743 0.381984 0.190992 0.981592i \(-0.438829\pi\)
0.190992 + 0.981592i \(0.438829\pi\)
\(18\) −254.952 −3.33849
\(19\) −69.4348 −0.838392 −0.419196 0.907896i \(-0.637688\pi\)
−0.419196 + 0.907896i \(0.637688\pi\)
\(20\) 105.887 1.18385
\(21\) −192.783 −2.00327
\(22\) 50.0419 0.484953
\(23\) 0 0
\(24\) 433.953 3.69084
\(25\) −89.3431 −0.714745
\(26\) 91.1069 0.687213
\(27\) −204.445 −1.45724
\(28\) 388.923 2.62498
\(29\) −40.9508 −0.262220 −0.131110 0.991368i \(-0.541854\pi\)
−0.131110 + 0.991368i \(0.541854\pi\)
\(30\) 266.249 1.62034
\(31\) −89.6126 −0.519190 −0.259595 0.965718i \(-0.583589\pi\)
−0.259595 + 0.965718i \(0.583589\pi\)
\(32\) −155.844 −0.860923
\(33\) 86.7099 0.457401
\(34\) −135.819 −0.685081
\(35\) 130.968 0.632503
\(36\) 891.227 4.12605
\(37\) 443.254 1.96947 0.984736 0.174052i \(-0.0556861\pi\)
0.984736 + 0.174052i \(0.0556861\pi\)
\(38\) 352.224 1.50364
\(39\) 157.865 0.648170
\(40\) −294.807 −1.16533
\(41\) −283.837 −1.08117 −0.540583 0.841291i \(-0.681796\pi\)
−0.540583 + 0.841291i \(0.681796\pi\)
\(42\) 977.935 3.59282
\(43\) 532.210 1.88747 0.943735 0.330702i \(-0.107285\pi\)
0.943735 + 0.330702i \(0.107285\pi\)
\(44\) −174.929 −0.599355
\(45\) 300.116 0.994193
\(46\) 0 0
\(47\) −228.723 −0.709845 −0.354922 0.934896i \(-0.615493\pi\)
−0.354922 + 0.934896i \(0.615493\pi\)
\(48\) −954.408 −2.86993
\(49\) 138.045 0.402464
\(50\) 453.213 1.28188
\(51\) −235.339 −0.646159
\(52\) −318.479 −0.849328
\(53\) −372.354 −0.965032 −0.482516 0.875887i \(-0.660277\pi\)
−0.482516 + 0.875887i \(0.660277\pi\)
\(54\) 1037.09 2.61352
\(55\) −58.9066 −0.144418
\(56\) −1082.83 −2.58391
\(57\) 610.314 1.41821
\(58\) 207.732 0.470286
\(59\) −741.502 −1.63619 −0.818096 0.575081i \(-0.804970\pi\)
−0.818096 + 0.575081i \(0.804970\pi\)
\(60\) −930.718 −2.00259
\(61\) 525.402 1.10280 0.551400 0.834241i \(-0.314094\pi\)
0.551400 + 0.834241i \(0.314094\pi\)
\(62\) 454.580 0.931156
\(63\) 1102.33 2.20445
\(64\) −78.1043 −0.152548
\(65\) −107.246 −0.204650
\(66\) −439.855 −0.820340
\(67\) 45.2081 0.0824335 0.0412168 0.999150i \(-0.486877\pi\)
0.0412168 + 0.999150i \(0.486877\pi\)
\(68\) 474.777 0.846693
\(69\) 0 0
\(70\) −664.364 −1.13438
\(71\) 178.587 0.298513 0.149257 0.988799i \(-0.452312\pi\)
0.149257 + 0.988799i \(0.452312\pi\)
\(72\) −2481.33 −4.06149
\(73\) 224.659 0.360197 0.180098 0.983649i \(-0.442358\pi\)
0.180098 + 0.983649i \(0.442358\pi\)
\(74\) −2248.50 −3.53221
\(75\) 785.302 1.20905
\(76\) −1231.25 −1.85835
\(77\) −216.364 −0.320221
\(78\) −800.806 −1.16248
\(79\) 60.2745 0.0858406 0.0429203 0.999078i \(-0.486334\pi\)
0.0429203 + 0.999078i \(0.486334\pi\)
\(80\) 648.380 0.906139
\(81\) 440.008 0.603577
\(82\) 1439.82 1.93905
\(83\) −461.150 −0.609853 −0.304927 0.952376i \(-0.598632\pi\)
−0.304927 + 0.952376i \(0.598632\pi\)
\(84\) −3418.53 −4.44038
\(85\) 159.879 0.204015
\(86\) −2699.75 −3.38514
\(87\) 359.947 0.443567
\(88\) 487.034 0.589977
\(89\) −86.3813 −0.102881 −0.0514405 0.998676i \(-0.516381\pi\)
−0.0514405 + 0.998676i \(0.516381\pi\)
\(90\) −1522.41 −1.78306
\(91\) −393.916 −0.453776
\(92\) 0 0
\(93\) 787.671 0.878254
\(94\) 1160.25 1.27309
\(95\) −414.619 −0.447779
\(96\) 1369.83 1.45633
\(97\) 621.689 0.650752 0.325376 0.945585i \(-0.394509\pi\)
0.325376 + 0.945585i \(0.394509\pi\)
\(98\) −700.265 −0.721811
\(99\) −495.804 −0.503336
\(100\) −1584.28 −1.58428
\(101\) 666.228 0.656358 0.328179 0.944616i \(-0.393565\pi\)
0.328179 + 0.944616i \(0.393565\pi\)
\(102\) 1193.81 1.15887
\(103\) −828.548 −0.792614 −0.396307 0.918118i \(-0.629708\pi\)
−0.396307 + 0.918118i \(0.629708\pi\)
\(104\) 886.700 0.836039
\(105\) −1151.17 −1.06993
\(106\) 1888.85 1.73076
\(107\) −805.788 −0.728023 −0.364012 0.931394i \(-0.618593\pi\)
−0.364012 + 0.931394i \(0.618593\pi\)
\(108\) −3625.32 −3.23006
\(109\) 1399.41 1.22972 0.614861 0.788636i \(-0.289212\pi\)
0.614861 + 0.788636i \(0.289212\pi\)
\(110\) 298.817 0.259010
\(111\) −3896.09 −3.33153
\(112\) 2381.50 2.00920
\(113\) 92.0086 0.0765968 0.0382984 0.999266i \(-0.487806\pi\)
0.0382984 + 0.999266i \(0.487806\pi\)
\(114\) −3095.95 −2.54353
\(115\) 0 0
\(116\) −726.161 −0.581227
\(117\) −902.668 −0.713262
\(118\) 3761.43 2.93448
\(119\) 587.235 0.452368
\(120\) 2591.28 1.97125
\(121\) −1233.68 −0.926885
\(122\) −2665.22 −1.97785
\(123\) 2494.85 1.82889
\(124\) −1589.06 −1.15082
\(125\) −1279.92 −0.915833
\(126\) −5591.80 −3.95363
\(127\) 289.712 0.202424 0.101212 0.994865i \(-0.467728\pi\)
0.101212 + 0.994865i \(0.467728\pi\)
\(128\) 1642.95 1.13451
\(129\) −4677.98 −3.19282
\(130\) 544.030 0.367035
\(131\) −1628.42 −1.08607 −0.543036 0.839710i \(-0.682725\pi\)
−0.543036 + 0.839710i \(0.682725\pi\)
\(132\) 1537.58 1.01386
\(133\) −1522.90 −0.992871
\(134\) −229.328 −0.147843
\(135\) −1220.81 −0.778299
\(136\) −1321.86 −0.833445
\(137\) 1600.56 0.998138 0.499069 0.866562i \(-0.333675\pi\)
0.499069 + 0.866562i \(0.333675\pi\)
\(138\) 0 0
\(139\) 1117.61 0.681976 0.340988 0.940068i \(-0.389238\pi\)
0.340988 + 0.940068i \(0.389238\pi\)
\(140\) 2322.39 1.40198
\(141\) 2010.42 1.20076
\(142\) −905.924 −0.535377
\(143\) 177.175 0.103609
\(144\) 5457.28 3.15815
\(145\) −244.531 −0.140050
\(146\) −1139.63 −0.646005
\(147\) −1213.38 −0.680803
\(148\) 7860.01 4.36546
\(149\) 2612.21 1.43624 0.718122 0.695918i \(-0.245002\pi\)
0.718122 + 0.695918i \(0.245002\pi\)
\(150\) −3983.62 −2.16841
\(151\) −2150.78 −1.15913 −0.579563 0.814927i \(-0.696777\pi\)
−0.579563 + 0.814927i \(0.696777\pi\)
\(152\) 3428.02 1.82927
\(153\) 1345.66 0.711049
\(154\) 1097.56 0.574309
\(155\) −535.107 −0.277296
\(156\) 2799.35 1.43671
\(157\) 73.8242 0.0375275 0.0187637 0.999824i \(-0.494027\pi\)
0.0187637 + 0.999824i \(0.494027\pi\)
\(158\) −305.756 −0.153953
\(159\) 3272.89 1.63243
\(160\) −930.596 −0.459813
\(161\) 0 0
\(162\) −2232.04 −1.08250
\(163\) 371.145 0.178346 0.0891728 0.996016i \(-0.471578\pi\)
0.0891728 + 0.996016i \(0.471578\pi\)
\(164\) −5033.14 −2.39648
\(165\) 517.774 0.244295
\(166\) 2339.29 1.09376
\(167\) −2677.42 −1.24063 −0.620314 0.784353i \(-0.712995\pi\)
−0.620314 + 0.784353i \(0.712995\pi\)
\(168\) 9517.77 4.37090
\(169\) −1874.43 −0.853178
\(170\) −811.020 −0.365897
\(171\) −3489.76 −1.56063
\(172\) 9437.42 4.18370
\(173\) −235.491 −0.103491 −0.0517457 0.998660i \(-0.516479\pi\)
−0.0517457 + 0.998660i \(0.516479\pi\)
\(174\) −1825.91 −0.795528
\(175\) −1959.54 −0.846442
\(176\) −1071.15 −0.458756
\(177\) 6517.61 2.76776
\(178\) 438.189 0.184515
\(179\) 2866.65 1.19700 0.598501 0.801122i \(-0.295763\pi\)
0.598501 + 0.801122i \(0.295763\pi\)
\(180\) 5321.82 2.20369
\(181\) 1398.87 0.574459 0.287229 0.957862i \(-0.407266\pi\)
0.287229 + 0.957862i \(0.407266\pi\)
\(182\) 1998.22 0.813837
\(183\) −4618.14 −1.86548
\(184\) 0 0
\(185\) 2646.82 1.05188
\(186\) −3995.64 −1.57513
\(187\) −264.126 −0.103288
\(188\) −4055.84 −1.57342
\(189\) −4484.03 −1.72574
\(190\) 2103.25 0.803082
\(191\) −2944.71 −1.11556 −0.557779 0.829989i \(-0.688346\pi\)
−0.557779 + 0.829989i \(0.688346\pi\)
\(192\) 686.516 0.258047
\(193\) −2262.19 −0.843711 −0.421855 0.906663i \(-0.638621\pi\)
−0.421855 + 0.906663i \(0.638621\pi\)
\(194\) −3153.66 −1.16711
\(195\) 942.666 0.346183
\(196\) 2447.89 0.892088
\(197\) −548.702 −0.198444 −0.0992218 0.995065i \(-0.531635\pi\)
−0.0992218 + 0.995065i \(0.531635\pi\)
\(198\) 2515.08 0.902722
\(199\) −3534.06 −1.25891 −0.629455 0.777037i \(-0.716722\pi\)
−0.629455 + 0.777037i \(0.716722\pi\)
\(200\) 4410.90 1.55949
\(201\) −397.367 −0.139443
\(202\) −3379.59 −1.17716
\(203\) −898.164 −0.310536
\(204\) −4173.16 −1.43225
\(205\) −1694.88 −0.577443
\(206\) 4202.99 1.42154
\(207\) 0 0
\(208\) −1950.15 −0.650090
\(209\) 684.968 0.226700
\(210\) 5839.58 1.91890
\(211\) −3665.91 −1.19607 −0.598037 0.801469i \(-0.704052\pi\)
−0.598037 + 0.801469i \(0.704052\pi\)
\(212\) −6602.77 −2.13906
\(213\) −1569.74 −0.504960
\(214\) 4087.54 1.30569
\(215\) 3178.00 1.00808
\(216\) 10093.5 3.17952
\(217\) −1965.45 −0.614854
\(218\) −7098.84 −2.20548
\(219\) −1974.69 −0.609303
\(220\) −1044.56 −0.320111
\(221\) −480.872 −0.146366
\(222\) 19763.8 5.97503
\(223\) 1945.04 0.584078 0.292039 0.956406i \(-0.405666\pi\)
0.292039 + 0.956406i \(0.405666\pi\)
\(224\) −3418.08 −1.01955
\(225\) −4490.34 −1.33047
\(226\) −466.734 −0.137375
\(227\) −5598.62 −1.63698 −0.818488 0.574524i \(-0.805187\pi\)
−0.818488 + 0.574524i \(0.805187\pi\)
\(228\) 10822.4 3.14356
\(229\) 2059.72 0.594367 0.297183 0.954820i \(-0.403953\pi\)
0.297183 + 0.954820i \(0.403953\pi\)
\(230\) 0 0
\(231\) 1901.78 0.541681
\(232\) 2021.76 0.572133
\(233\) 2585.00 0.726820 0.363410 0.931629i \(-0.381612\pi\)
0.363410 + 0.931629i \(0.381612\pi\)
\(234\) 4578.98 1.27922
\(235\) −1365.78 −0.379123
\(236\) −13148.7 −3.62673
\(237\) −529.797 −0.145207
\(238\) −2978.88 −0.811311
\(239\) 3668.76 0.992939 0.496469 0.868054i \(-0.334630\pi\)
0.496469 + 0.868054i \(0.334630\pi\)
\(240\) −5699.09 −1.53281
\(241\) −2676.73 −0.715449 −0.357724 0.933827i \(-0.616447\pi\)
−0.357724 + 0.933827i \(0.616447\pi\)
\(242\) 6258.14 1.66235
\(243\) 1652.45 0.436233
\(244\) 9316.69 2.44443
\(245\) 824.315 0.214953
\(246\) −12655.7 −3.28007
\(247\) 1247.06 0.321249
\(248\) 4424.21 1.13281
\(249\) 4053.39 1.03162
\(250\) 6492.66 1.64253
\(251\) −5487.38 −1.37992 −0.689961 0.723847i \(-0.742372\pi\)
−0.689961 + 0.723847i \(0.742372\pi\)
\(252\) 19547.0 4.88630
\(253\) 0 0
\(254\) −1469.63 −0.363042
\(255\) −1405.29 −0.345109
\(256\) −7709.40 −1.88218
\(257\) −506.268 −0.122880 −0.0614400 0.998111i \(-0.519569\pi\)
−0.0614400 + 0.998111i \(0.519569\pi\)
\(258\) 23730.1 5.72625
\(259\) 9721.77 2.33236
\(260\) −1901.74 −0.453620
\(261\) −2058.17 −0.488112
\(262\) 8260.50 1.94785
\(263\) 1667.24 0.390900 0.195450 0.980714i \(-0.437383\pi\)
0.195450 + 0.980714i \(0.437383\pi\)
\(264\) −4280.90 −0.997996
\(265\) −2223.45 −0.515417
\(266\) 7725.23 1.78069
\(267\) 759.269 0.174032
\(268\) 801.653 0.182719
\(269\) −5139.36 −1.16488 −0.582440 0.812874i \(-0.697902\pi\)
−0.582440 + 0.812874i \(0.697902\pi\)
\(270\) 6192.82 1.39586
\(271\) −4468.71 −1.00168 −0.500839 0.865541i \(-0.666975\pi\)
−0.500839 + 0.865541i \(0.666975\pi\)
\(272\) 2907.21 0.648073
\(273\) 3462.41 0.767600
\(274\) −8119.19 −1.79014
\(275\) 881.361 0.193266
\(276\) 0 0
\(277\) −6185.57 −1.34172 −0.670858 0.741586i \(-0.734074\pi\)
−0.670858 + 0.741586i \(0.734074\pi\)
\(278\) −5669.34 −1.22311
\(279\) −4503.88 −0.966452
\(280\) −6465.93 −1.38005
\(281\) −3127.99 −0.664059 −0.332029 0.943269i \(-0.607733\pi\)
−0.332029 + 0.943269i \(0.607733\pi\)
\(282\) −10198.3 −2.15354
\(283\) 6610.70 1.38857 0.694285 0.719700i \(-0.255721\pi\)
0.694285 + 0.719700i \(0.255721\pi\)
\(284\) 3166.80 0.661673
\(285\) 3644.39 0.757456
\(286\) −898.760 −0.185821
\(287\) −6225.32 −1.28038
\(288\) −7832.62 −1.60258
\(289\) −4196.13 −0.854088
\(290\) 1240.44 0.251176
\(291\) −5464.48 −1.10080
\(292\) 3983.77 0.798399
\(293\) −3551.25 −0.708075 −0.354038 0.935231i \(-0.615191\pi\)
−0.354038 + 0.935231i \(0.615191\pi\)
\(294\) 6155.15 1.22100
\(295\) −4427.76 −0.873879
\(296\) −21883.6 −4.29716
\(297\) 2016.82 0.394034
\(298\) −13251.0 −2.57587
\(299\) 0 0
\(300\) 13925.4 2.67994
\(301\) 11672.8 2.23525
\(302\) 10910.3 2.07887
\(303\) −5855.97 −1.11029
\(304\) −7539.38 −1.42241
\(305\) 3137.35 0.588997
\(306\) −6826.18 −1.27525
\(307\) −5575.87 −1.03659 −0.518293 0.855203i \(-0.673432\pi\)
−0.518293 + 0.855203i \(0.673432\pi\)
\(308\) −3836.68 −0.709790
\(309\) 7282.72 1.34077
\(310\) 2714.45 0.497324
\(311\) −3627.73 −0.661447 −0.330723 0.943728i \(-0.607293\pi\)
−0.330723 + 0.943728i \(0.607293\pi\)
\(312\) −7793.86 −1.41423
\(313\) 2818.02 0.508894 0.254447 0.967087i \(-0.418107\pi\)
0.254447 + 0.967087i \(0.418107\pi\)
\(314\) −374.490 −0.0673047
\(315\) 6582.37 1.17738
\(316\) 1068.82 0.190271
\(317\) −6095.86 −1.08006 −0.540028 0.841647i \(-0.681586\pi\)
−0.540028 + 0.841647i \(0.681586\pi\)
\(318\) −16602.5 −2.92774
\(319\) 403.976 0.0709037
\(320\) −466.387 −0.0814745
\(321\) 7082.67 1.23151
\(322\) 0 0
\(323\) −1859.07 −0.320253
\(324\) 7802.45 1.33787
\(325\) 1604.62 0.273871
\(326\) −1882.72 −0.319859
\(327\) −12300.5 −2.08018
\(328\) 14013.1 2.35898
\(329\) −5016.53 −0.840639
\(330\) −2626.52 −0.438137
\(331\) 7093.62 1.17795 0.588973 0.808152i \(-0.299532\pi\)
0.588973 + 0.808152i \(0.299532\pi\)
\(332\) −8177.36 −1.35178
\(333\) 22277.7 3.66610
\(334\) 13581.8 2.22504
\(335\) 269.953 0.0440271
\(336\) −20932.8 −3.39874
\(337\) −5475.78 −0.885119 −0.442559 0.896739i \(-0.645929\pi\)
−0.442559 + 0.896739i \(0.645929\pi\)
\(338\) 9508.48 1.53016
\(339\) −808.731 −0.129570
\(340\) 2835.05 0.452213
\(341\) 884.019 0.140388
\(342\) 17702.6 2.79896
\(343\) −4495.22 −0.707636
\(344\) −26275.4 −4.11824
\(345\) 0 0
\(346\) 1194.58 0.185610
\(347\) −4019.09 −0.621776 −0.310888 0.950447i \(-0.600626\pi\)
−0.310888 + 0.950447i \(0.600626\pi\)
\(348\) 6382.76 0.983195
\(349\) 11190.2 1.71633 0.858166 0.513373i \(-0.171604\pi\)
0.858166 + 0.513373i \(0.171604\pi\)
\(350\) 9940.20 1.51807
\(351\) 3671.86 0.558374
\(352\) 1537.38 0.232792
\(353\) −10611.8 −1.60003 −0.800014 0.599981i \(-0.795175\pi\)
−0.800014 + 0.599981i \(0.795175\pi\)
\(354\) −33062.0 −4.96392
\(355\) 1066.41 0.159434
\(356\) −1531.76 −0.228042
\(357\) −5161.64 −0.765218
\(358\) −14541.7 −2.14680
\(359\) −7061.44 −1.03813 −0.519065 0.854735i \(-0.673720\pi\)
−0.519065 + 0.854735i \(0.673720\pi\)
\(360\) −14816.8 −2.16921
\(361\) −2037.80 −0.297099
\(362\) −7096.07 −1.03028
\(363\) 10843.8 1.56791
\(364\) −6985.12 −1.00582
\(365\) 1341.52 0.192378
\(366\) 23426.5 3.34570
\(367\) −3185.45 −0.453077 −0.226538 0.974002i \(-0.572741\pi\)
−0.226538 + 0.974002i \(0.572741\pi\)
\(368\) 0 0
\(369\) −14265.5 −2.01255
\(370\) −13426.6 −1.88653
\(371\) −8166.74 −1.14285
\(372\) 13967.4 1.94671
\(373\) −3217.73 −0.446670 −0.223335 0.974742i \(-0.571694\pi\)
−0.223335 + 0.974742i \(0.571694\pi\)
\(374\) 1339.84 0.185244
\(375\) 11250.1 1.54921
\(376\) 11292.1 1.54880
\(377\) 735.483 0.100476
\(378\) 22746.2 3.09508
\(379\) −8097.47 −1.09746 −0.548732 0.835998i \(-0.684889\pi\)
−0.548732 + 0.835998i \(0.684889\pi\)
\(380\) −7352.24 −0.992531
\(381\) −2546.49 −0.342417
\(382\) 14937.7 2.00073
\(383\) −19.9691 −0.00266416 −0.00133208 0.999999i \(-0.500424\pi\)
−0.00133208 + 0.999999i \(0.500424\pi\)
\(384\) −14441.1 −1.91913
\(385\) −1291.98 −0.171028
\(386\) 11475.5 1.51318
\(387\) 26748.6 3.51345
\(388\) 11024.1 1.44243
\(389\) 7857.59 1.02415 0.512077 0.858940i \(-0.328876\pi\)
0.512077 + 0.858940i \(0.328876\pi\)
\(390\) −4781.88 −0.620872
\(391\) 0 0
\(392\) −6815.34 −0.878130
\(393\) 14313.3 1.83718
\(394\) 2783.41 0.355904
\(395\) 359.919 0.0458468
\(396\) −8791.86 −1.11568
\(397\) 6626.11 0.837670 0.418835 0.908062i \(-0.362439\pi\)
0.418835 + 0.908062i \(0.362439\pi\)
\(398\) 17927.3 2.25783
\(399\) 13385.9 1.67953
\(400\) −9701.06 −1.21263
\(401\) 6126.94 0.763005 0.381502 0.924368i \(-0.375407\pi\)
0.381502 + 0.924368i \(0.375407\pi\)
\(402\) 2015.73 0.250089
\(403\) 1609.46 0.198940
\(404\) 11813.9 1.45486
\(405\) 2627.44 0.322366
\(406\) 4556.14 0.556939
\(407\) −4372.66 −0.532542
\(408\) 11618.8 1.40984
\(409\) 4057.92 0.490590 0.245295 0.969448i \(-0.421115\pi\)
0.245295 + 0.969448i \(0.421115\pi\)
\(410\) 8597.68 1.03563
\(411\) −14068.5 −1.68844
\(412\) −14692.2 −1.75688
\(413\) −16263.2 −1.93767
\(414\) 0 0
\(415\) −2753.69 −0.325718
\(416\) 2798.98 0.329883
\(417\) −9823.52 −1.15362
\(418\) −3474.65 −0.406581
\(419\) 13990.6 1.63123 0.815615 0.578595i \(-0.196399\pi\)
0.815615 + 0.578595i \(0.196399\pi\)
\(420\) −20413.2 −2.37158
\(421\) −9345.16 −1.08184 −0.540921 0.841074i \(-0.681924\pi\)
−0.540921 + 0.841074i \(0.681924\pi\)
\(422\) 18596.1 2.14513
\(423\) −11495.5 −1.32135
\(424\) 18383.2 2.10559
\(425\) −2392.10 −0.273021
\(426\) 7962.84 0.905635
\(427\) 11523.5 1.30600
\(428\) −14288.7 −1.61371
\(429\) −1557.32 −0.175264
\(430\) −16121.1 −1.80798
\(431\) −1039.90 −0.116219 −0.0581095 0.998310i \(-0.518507\pi\)
−0.0581095 + 0.998310i \(0.518507\pi\)
\(432\) −22199.0 −2.47234
\(433\) −10363.9 −1.15024 −0.575122 0.818068i \(-0.695045\pi\)
−0.575122 + 0.818068i \(0.695045\pi\)
\(434\) 9970.18 1.10273
\(435\) 2149.36 0.236906
\(436\) 24815.1 2.72576
\(437\) 0 0
\(438\) 10017.1 1.09277
\(439\) −11713.7 −1.27349 −0.636745 0.771074i \(-0.719720\pi\)
−0.636745 + 0.771074i \(0.719720\pi\)
\(440\) 2908.24 0.315102
\(441\) 6938.08 0.749172
\(442\) 2439.33 0.262505
\(443\) 4658.33 0.499603 0.249801 0.968297i \(-0.419635\pi\)
0.249801 + 0.968297i \(0.419635\pi\)
\(444\) −69087.4 −7.38456
\(445\) −515.812 −0.0549479
\(446\) −9866.65 −1.04753
\(447\) −22960.6 −2.42953
\(448\) −1713.04 −0.180655
\(449\) −3186.23 −0.334895 −0.167447 0.985881i \(-0.553552\pi\)
−0.167447 + 0.985881i \(0.553552\pi\)
\(450\) 22778.2 2.38617
\(451\) 2800.02 0.292345
\(452\) 1631.54 0.169782
\(453\) 18904.8 1.96076
\(454\) 28400.2 2.93588
\(455\) −2352.20 −0.242358
\(456\) −30131.4 −3.09437
\(457\) 6547.13 0.670157 0.335079 0.942190i \(-0.391237\pi\)
0.335079 + 0.942190i \(0.391237\pi\)
\(458\) −10448.4 −1.06598
\(459\) −5473.87 −0.556641
\(460\) 0 0
\(461\) 16345.4 1.65137 0.825684 0.564132i \(-0.190789\pi\)
0.825684 + 0.564132i \(0.190789\pi\)
\(462\) −9647.23 −0.971493
\(463\) 3614.21 0.362778 0.181389 0.983411i \(-0.441941\pi\)
0.181389 + 0.983411i \(0.441941\pi\)
\(464\) −4446.52 −0.444881
\(465\) 4703.45 0.469069
\(466\) −13113.0 −1.30354
\(467\) 19296.2 1.91204 0.956020 0.293302i \(-0.0947542\pi\)
0.956020 + 0.293302i \(0.0947542\pi\)
\(468\) −16006.6 −1.58099
\(469\) 991.537 0.0976225
\(470\) 6928.24 0.679949
\(471\) −648.895 −0.0634809
\(472\) 36608.2 3.56998
\(473\) −5250.20 −0.510368
\(474\) 2687.51 0.260425
\(475\) 6203.53 0.599236
\(476\) 10413.2 1.00270
\(477\) −18714.3 −1.79637
\(478\) −18610.6 −1.78081
\(479\) −12947.0 −1.23500 −0.617500 0.786571i \(-0.711854\pi\)
−0.617500 + 0.786571i \(0.711854\pi\)
\(480\) 8179.69 0.777813
\(481\) −7960.91 −0.754649
\(482\) 13578.3 1.28314
\(483\) 0 0
\(484\) −21876.3 −2.05450
\(485\) 3712.32 0.347562
\(486\) −8382.41 −0.782375
\(487\) −6878.46 −0.640026 −0.320013 0.947413i \(-0.603687\pi\)
−0.320013 + 0.947413i \(0.603687\pi\)
\(488\) −25939.3 −2.40618
\(489\) −3262.27 −0.301687
\(490\) −4181.52 −0.385514
\(491\) −11985.7 −1.10164 −0.550820 0.834624i \(-0.685685\pi\)
−0.550820 + 0.834624i \(0.685685\pi\)
\(492\) 44240.0 4.05384
\(493\) −1096.43 −0.100164
\(494\) −6325.99 −0.576154
\(495\) −2960.62 −0.268828
\(496\) −9730.32 −0.880855
\(497\) 3916.91 0.353516
\(498\) −20561.7 −1.85019
\(499\) −18723.3 −1.67970 −0.839851 0.542817i \(-0.817358\pi\)
−0.839851 + 0.542817i \(0.817358\pi\)
\(500\) −22696.1 −2.03000
\(501\) 23533.8 2.09863
\(502\) 27836.0 2.47486
\(503\) −18125.4 −1.60670 −0.803350 0.595507i \(-0.796951\pi\)
−0.803350 + 0.595507i \(0.796951\pi\)
\(504\) −54422.3 −4.80985
\(505\) 3978.27 0.350556
\(506\) 0 0
\(507\) 16475.8 1.44322
\(508\) 5137.33 0.448685
\(509\) −2750.25 −0.239495 −0.119747 0.992804i \(-0.538208\pi\)
−0.119747 + 0.992804i \(0.538208\pi\)
\(510\) 7128.65 0.618945
\(511\) 4927.39 0.426565
\(512\) 25964.1 2.24113
\(513\) 14195.6 1.22173
\(514\) 2568.16 0.220383
\(515\) −4947.54 −0.423330
\(516\) −82952.4 −7.07709
\(517\) 2256.33 0.191941
\(518\) −49315.9 −4.18304
\(519\) 2069.90 0.175065
\(520\) 5294.78 0.446522
\(521\) −21534.4 −1.81082 −0.905412 0.424533i \(-0.860438\pi\)
−0.905412 + 0.424533i \(0.860438\pi\)
\(522\) 10440.5 0.875418
\(523\) −22861.7 −1.91142 −0.955710 0.294309i \(-0.904911\pi\)
−0.955710 + 0.294309i \(0.904911\pi\)
\(524\) −28875.9 −2.40735
\(525\) 17223.8 1.43183
\(526\) −8457.47 −0.701071
\(527\) −2399.32 −0.198322
\(528\) 9415.13 0.776025
\(529\) 0 0
\(530\) 11278.9 0.924389
\(531\) −37267.5 −3.04571
\(532\) −27004.8 −2.20076
\(533\) 5097.75 0.414274
\(534\) −3851.56 −0.312122
\(535\) −4811.63 −0.388832
\(536\) −2231.94 −0.179860
\(537\) −25197.1 −2.02483
\(538\) 26070.6 2.08919
\(539\) −1361.80 −0.108826
\(540\) −21648.0 −1.72515
\(541\) −1434.30 −0.113984 −0.0569922 0.998375i \(-0.518151\pi\)
−0.0569922 + 0.998375i \(0.518151\pi\)
\(542\) 22668.5 1.79649
\(543\) −12295.7 −0.971746
\(544\) −4172.61 −0.328859
\(545\) 8356.38 0.656785
\(546\) −17563.9 −1.37667
\(547\) 3469.68 0.271212 0.135606 0.990763i \(-0.456702\pi\)
0.135606 + 0.990763i \(0.456702\pi\)
\(548\) 28381.9 2.21244
\(549\) 26406.4 2.05282
\(550\) −4470.90 −0.346618
\(551\) 2843.41 0.219843
\(552\) 0 0
\(553\) 1321.98 0.101657
\(554\) 31377.7 2.40634
\(555\) −23264.8 −1.77935
\(556\) 19818.1 1.51164
\(557\) 8589.05 0.653375 0.326687 0.945132i \(-0.394068\pi\)
0.326687 + 0.945132i \(0.394068\pi\)
\(558\) 22846.9 1.73331
\(559\) −9558.57 −0.723228
\(560\) 14220.8 1.07310
\(561\) 2321.60 0.174720
\(562\) 15867.4 1.19097
\(563\) 16237.2 1.21548 0.607739 0.794137i \(-0.292077\pi\)
0.607739 + 0.794137i \(0.292077\pi\)
\(564\) 35649.7 2.66157
\(565\) 549.415 0.0409098
\(566\) −33534.2 −2.49037
\(567\) 9650.58 0.714791
\(568\) −8816.93 −0.651320
\(569\) 16517.9 1.21699 0.608496 0.793557i \(-0.291773\pi\)
0.608496 + 0.793557i \(0.291773\pi\)
\(570\) −18487.0 −1.35848
\(571\) −1811.50 −0.132766 −0.0663828 0.997794i \(-0.521146\pi\)
−0.0663828 + 0.997794i \(0.521146\pi\)
\(572\) 3141.76 0.229657
\(573\) 25883.2 1.88706
\(574\) 31579.3 2.29633
\(575\) 0 0
\(576\) −3925.48 −0.283961
\(577\) 10058.8 0.725743 0.362871 0.931839i \(-0.381796\pi\)
0.362871 + 0.931839i \(0.381796\pi\)
\(578\) 21285.8 1.53179
\(579\) 19884.1 1.42721
\(580\) −4336.15 −0.310429
\(581\) −10114.3 −0.722223
\(582\) 27719.8 1.97427
\(583\) 3673.23 0.260943
\(584\) −11091.5 −0.785907
\(585\) −5390.14 −0.380948
\(586\) 18014.5 1.26992
\(587\) −8786.09 −0.617787 −0.308893 0.951097i \(-0.599959\pi\)
−0.308893 + 0.951097i \(0.599959\pi\)
\(588\) −21516.3 −1.50904
\(589\) 6222.23 0.435285
\(590\) 22460.8 1.56728
\(591\) 4822.95 0.335684
\(592\) 48129.4 3.34140
\(593\) −6423.07 −0.444795 −0.222398 0.974956i \(-0.571388\pi\)
−0.222398 + 0.974956i \(0.571388\pi\)
\(594\) −10230.8 −0.706691
\(595\) 3506.58 0.241606
\(596\) 46321.0 3.18353
\(597\) 31063.5 2.12955
\(598\) 0 0
\(599\) 18413.1 1.25599 0.627995 0.778217i \(-0.283876\pi\)
0.627995 + 0.778217i \(0.283876\pi\)
\(600\) −38770.7 −2.63801
\(601\) 12919.9 0.876898 0.438449 0.898756i \(-0.355528\pi\)
0.438449 + 0.898756i \(0.355528\pi\)
\(602\) −59213.0 −4.00887
\(603\) 2272.13 0.153447
\(604\) −38138.8 −2.56928
\(605\) −7366.74 −0.495042
\(606\) 29705.7 1.99127
\(607\) 12746.6 0.852339 0.426170 0.904643i \(-0.359863\pi\)
0.426170 + 0.904643i \(0.359863\pi\)
\(608\) 10821.0 0.721791
\(609\) 7894.62 0.525298
\(610\) −15914.9 −1.05635
\(611\) 4107.91 0.271994
\(612\) 23862.0 1.57609
\(613\) 15045.4 0.991318 0.495659 0.868517i \(-0.334927\pi\)
0.495659 + 0.868517i \(0.334927\pi\)
\(614\) 28284.9 1.85909
\(615\) 14897.6 0.976795
\(616\) 10682.0 0.698684
\(617\) −4013.47 −0.261874 −0.130937 0.991391i \(-0.541799\pi\)
−0.130937 + 0.991391i \(0.541799\pi\)
\(618\) −36943.2 −2.40465
\(619\) 8639.85 0.561009 0.280505 0.959853i \(-0.409498\pi\)
0.280505 + 0.959853i \(0.409498\pi\)
\(620\) −9488.79 −0.614644
\(621\) 0 0
\(622\) 18402.5 1.18629
\(623\) −1894.58 −0.121837
\(624\) 17141.3 1.09968
\(625\) 3525.08 0.225605
\(626\) −14295.0 −0.912690
\(627\) −6020.69 −0.383482
\(628\) 1309.09 0.0831821
\(629\) 11867.8 0.752308
\(630\) −33390.6 −2.11161
\(631\) 4277.53 0.269866 0.134933 0.990855i \(-0.456918\pi\)
0.134933 + 0.990855i \(0.456918\pi\)
\(632\) −2975.77 −0.187294
\(633\) 32222.4 2.02326
\(634\) 30922.6 1.93706
\(635\) 1729.97 0.108113
\(636\) 58036.6 3.61840
\(637\) −2479.31 −0.154214
\(638\) −2049.26 −0.127164
\(639\) 8975.71 0.555670
\(640\) 9810.62 0.605936
\(641\) 16785.9 1.03433 0.517163 0.855887i \(-0.326988\pi\)
0.517163 + 0.855887i \(0.326988\pi\)
\(642\) −35928.4 −2.20869
\(643\) −9599.04 −0.588723 −0.294362 0.955694i \(-0.595107\pi\)
−0.294362 + 0.955694i \(0.595107\pi\)
\(644\) 0 0
\(645\) −27933.8 −1.70526
\(646\) 9430.56 0.574366
\(647\) 7758.84 0.471455 0.235728 0.971819i \(-0.424253\pi\)
0.235728 + 0.971819i \(0.424253\pi\)
\(648\) −21723.4 −1.31693
\(649\) 7314.84 0.442423
\(650\) −8139.78 −0.491182
\(651\) 17275.8 1.04008
\(652\) 6581.34 0.395314
\(653\) −4874.07 −0.292094 −0.146047 0.989278i \(-0.546655\pi\)
−0.146047 + 0.989278i \(0.546655\pi\)
\(654\) 62397.0 3.73076
\(655\) −9723.82 −0.580063
\(656\) −30819.6 −1.83430
\(657\) 11291.2 0.670492
\(658\) 25447.5 1.50767
\(659\) −17267.0 −1.02068 −0.510339 0.859973i \(-0.670480\pi\)
−0.510339 + 0.859973i \(0.670480\pi\)
\(660\) 9181.43 0.541495
\(661\) 4230.17 0.248918 0.124459 0.992225i \(-0.460281\pi\)
0.124459 + 0.992225i \(0.460281\pi\)
\(662\) −35983.9 −2.11262
\(663\) 4226.73 0.247591
\(664\) 22767.2 1.33063
\(665\) −9093.73 −0.530285
\(666\) −113009. −6.57507
\(667\) 0 0
\(668\) −47477.4 −2.74993
\(669\) −17096.4 −0.988019
\(670\) −1369.40 −0.0789617
\(671\) −5183.03 −0.298195
\(672\) 30044.0 1.72466
\(673\) 19067.5 1.09212 0.546061 0.837745i \(-0.316127\pi\)
0.546061 + 0.837745i \(0.316127\pi\)
\(674\) 27777.1 1.58744
\(675\) 18265.7 1.04155
\(676\) −33238.4 −1.89112
\(677\) 16952.8 0.962405 0.481203 0.876609i \(-0.340200\pi\)
0.481203 + 0.876609i \(0.340200\pi\)
\(678\) 4102.47 0.232381
\(679\) 13635.4 0.770658
\(680\) −7893.27 −0.445137
\(681\) 49210.4 2.76908
\(682\) −4484.38 −0.251783
\(683\) −30621.7 −1.71553 −0.857764 0.514043i \(-0.828147\pi\)
−0.857764 + 0.514043i \(0.828147\pi\)
\(684\) −61882.2 −3.45925
\(685\) 9557.47 0.533098
\(686\) 22803.0 1.26913
\(687\) −18104.4 −1.00542
\(688\) 57788.4 3.20227
\(689\) 6687.53 0.369775
\(690\) 0 0
\(691\) −11836.4 −0.651631 −0.325816 0.945433i \(-0.605639\pi\)
−0.325816 + 0.945433i \(0.605639\pi\)
\(692\) −4175.84 −0.229395
\(693\) −10874.4 −0.596079
\(694\) 20387.7 1.11514
\(695\) 6673.65 0.364239
\(696\) −17770.7 −0.967812
\(697\) −7599.54 −0.412989
\(698\) −56765.0 −3.07820
\(699\) −22721.5 −1.22948
\(700\) −34747.6 −1.87619
\(701\) −4320.64 −0.232793 −0.116397 0.993203i \(-0.537134\pi\)
−0.116397 + 0.993203i \(0.537134\pi\)
\(702\) −18626.3 −1.00143
\(703\) −30777.3 −1.65119
\(704\) 770.491 0.0412486
\(705\) 12004.9 0.641319
\(706\) 53830.8 2.86962
\(707\) 14612.2 0.777296
\(708\) 115574. 6.13492
\(709\) −5277.45 −0.279547 −0.139774 0.990183i \(-0.544637\pi\)
−0.139774 + 0.990183i \(0.544637\pi\)
\(710\) −5409.58 −0.285941
\(711\) 3029.36 0.159789
\(712\) 4264.68 0.224474
\(713\) 0 0
\(714\) 26183.6 1.37240
\(715\) 1057.97 0.0553370
\(716\) 50832.9 2.65323
\(717\) −32247.4 −1.67964
\(718\) 35820.7 1.86186
\(719\) 26356.5 1.36708 0.683539 0.729914i \(-0.260440\pi\)
0.683539 + 0.729914i \(0.260440\pi\)
\(720\) 32587.2 1.68674
\(721\) −18172.3 −0.938659
\(722\) 10337.2 0.532841
\(723\) 23527.7 1.21024
\(724\) 24805.5 1.27333
\(725\) 3658.67 0.187420
\(726\) −55007.4 −2.81200
\(727\) −26836.5 −1.36906 −0.684532 0.728983i \(-0.739994\pi\)
−0.684532 + 0.728983i \(0.739994\pi\)
\(728\) 19447.8 0.990085
\(729\) −26404.8 −1.34150
\(730\) −6805.13 −0.345026
\(731\) 14249.6 0.720984
\(732\) −81891.3 −4.13496
\(733\) 30290.7 1.52635 0.763174 0.646194i \(-0.223640\pi\)
0.763174 + 0.646194i \(0.223640\pi\)
\(734\) 16158.9 0.812583
\(735\) −7245.51 −0.363612
\(736\) 0 0
\(737\) −445.973 −0.0222899
\(738\) 72364.8 3.60946
\(739\) −3077.59 −0.153195 −0.0765975 0.997062i \(-0.524406\pi\)
−0.0765975 + 0.997062i \(0.524406\pi\)
\(740\) 46934.8 2.33156
\(741\) −10961.3 −0.543421
\(742\) 41427.6 2.04967
\(743\) −21917.7 −1.08221 −0.541106 0.840954i \(-0.681994\pi\)
−0.541106 + 0.840954i \(0.681994\pi\)
\(744\) −38887.6 −1.91625
\(745\) 15598.4 0.767087
\(746\) 16322.7 0.801093
\(747\) −23177.2 −1.13522
\(748\) −4683.62 −0.228944
\(749\) −17673.1 −0.862167
\(750\) −57068.7 −2.77847
\(751\) 448.256 0.0217804 0.0108902 0.999941i \(-0.496533\pi\)
0.0108902 + 0.999941i \(0.496533\pi\)
\(752\) −24835.2 −1.20432
\(753\) 48232.6 2.33426
\(754\) −3730.90 −0.180201
\(755\) −12843.0 −0.619081
\(756\) −79513.1 −3.82522
\(757\) −26761.0 −1.28487 −0.642434 0.766341i \(-0.722075\pi\)
−0.642434 + 0.766341i \(0.722075\pi\)
\(758\) 41076.2 1.96828
\(759\) 0 0
\(760\) 20469.9 0.977001
\(761\) 23044.3 1.09771 0.548854 0.835919i \(-0.315064\pi\)
0.548854 + 0.835919i \(0.315064\pi\)
\(762\) 12917.7 0.614117
\(763\) 30693.0 1.45631
\(764\) −52217.1 −2.47271
\(765\) 8035.42 0.379766
\(766\) 101.298 0.00477812
\(767\) 13317.5 0.626945
\(768\) 67763.6 3.18387
\(769\) −27535.6 −1.29123 −0.645617 0.763661i \(-0.723400\pi\)
−0.645617 + 0.763661i \(0.723400\pi\)
\(770\) 6553.88 0.306734
\(771\) 4449.97 0.207862
\(772\) −40114.4 −1.87014
\(773\) 13662.9 0.635731 0.317865 0.948136i \(-0.397034\pi\)
0.317865 + 0.948136i \(0.397034\pi\)
\(774\) −135688. −6.30130
\(775\) 8006.27 0.371088
\(776\) −30693.0 −1.41987
\(777\) −85451.8 −3.94539
\(778\) −39859.4 −1.83680
\(779\) 19708.1 0.906441
\(780\) 16715.8 0.767337
\(781\) −1761.75 −0.0807173
\(782\) 0 0
\(783\) 8372.17 0.382116
\(784\) 14989.2 0.682819
\(785\) 440.829 0.0200431
\(786\) −72607.6 −3.29495
\(787\) −10422.7 −0.472082 −0.236041 0.971743i \(-0.575850\pi\)
−0.236041 + 0.971743i \(0.575850\pi\)
\(788\) −9729.87 −0.439863
\(789\) −14654.6 −0.661241
\(790\) −1825.77 −0.0822253
\(791\) 2018.00 0.0907103
\(792\) 24478.0 1.09822
\(793\) −9436.30 −0.422563
\(794\) −33612.4 −1.50234
\(795\) 19543.5 0.871872
\(796\) −62667.8 −2.79045
\(797\) 499.417 0.0221961 0.0110980 0.999938i \(-0.496467\pi\)
0.0110980 + 0.999938i \(0.496467\pi\)
\(798\) −67902.8 −3.01219
\(799\) −6123.91 −0.271150
\(800\) 13923.6 0.615340
\(801\) −4341.48 −0.191509
\(802\) −31080.3 −1.36843
\(803\) −2216.24 −0.0973965
\(804\) −7046.32 −0.309085
\(805\) 0 0
\(806\) −8164.32 −0.356794
\(807\) 45173.7 1.97049
\(808\) −32891.9 −1.43210
\(809\) 4401.92 0.191302 0.0956510 0.995415i \(-0.469507\pi\)
0.0956510 + 0.995415i \(0.469507\pi\)
\(810\) −13328.3 −0.578157
\(811\) −22761.6 −0.985535 −0.492767 0.870161i \(-0.664015\pi\)
−0.492767 + 0.870161i \(0.664015\pi\)
\(812\) −15926.7 −0.688322
\(813\) 39278.7 1.69442
\(814\) 22181.3 0.955102
\(815\) 2216.23 0.0952531
\(816\) −25553.6 −1.09627
\(817\) −36953.9 −1.58244
\(818\) −20584.7 −0.879863
\(819\) −19798.0 −0.844686
\(820\) −30054.6 −1.27994
\(821\) −1327.81 −0.0564446 −0.0282223 0.999602i \(-0.508985\pi\)
−0.0282223 + 0.999602i \(0.508985\pi\)
\(822\) 71365.5 3.02817
\(823\) 17466.7 0.739794 0.369897 0.929073i \(-0.379393\pi\)
0.369897 + 0.929073i \(0.379393\pi\)
\(824\) 40905.7 1.72939
\(825\) −7746.93 −0.326925
\(826\) 82498.6 3.47517
\(827\) −22186.9 −0.932907 −0.466454 0.884546i \(-0.654469\pi\)
−0.466454 + 0.884546i \(0.654469\pi\)
\(828\) 0 0
\(829\) −15342.3 −0.642776 −0.321388 0.946948i \(-0.604149\pi\)
−0.321388 + 0.946948i \(0.604149\pi\)
\(830\) 13968.7 0.584169
\(831\) 54369.6 2.26963
\(832\) 1402.77 0.0584521
\(833\) 3696.07 0.153735
\(834\) 49832.0 2.06899
\(835\) −15987.8 −0.662611
\(836\) 12146.2 0.502494
\(837\) 18320.8 0.756582
\(838\) −70970.4 −2.92558
\(839\) −4921.91 −0.202531 −0.101265 0.994859i \(-0.532289\pi\)
−0.101265 + 0.994859i \(0.532289\pi\)
\(840\) 56833.8 2.33447
\(841\) −22712.0 −0.931241
\(842\) 47405.4 1.94026
\(843\) 27494.2 1.12331
\(844\) −65005.8 −2.65118
\(845\) −11192.9 −0.455676
\(846\) 58313.5 2.36981
\(847\) −27058.1 −1.09767
\(848\) −40430.9 −1.63727
\(849\) −58106.3 −2.34888
\(850\) 12134.5 0.489658
\(851\) 0 0
\(852\) −27835.4 −1.11928
\(853\) −16030.9 −0.643478 −0.321739 0.946828i \(-0.604267\pi\)
−0.321739 + 0.946828i \(0.604267\pi\)
\(854\) −58455.5 −2.34228
\(855\) −20838.5 −0.833523
\(856\) 39782.1 1.58846
\(857\) −20059.2 −0.799544 −0.399772 0.916615i \(-0.630911\pi\)
−0.399772 + 0.916615i \(0.630911\pi\)
\(858\) 7899.87 0.314332
\(859\) −37544.3 −1.49126 −0.745631 0.666359i \(-0.767852\pi\)
−0.745631 + 0.666359i \(0.767852\pi\)
\(860\) 56354.0 2.23448
\(861\) 54718.9 2.16587
\(862\) 5275.14 0.208436
\(863\) 41927.6 1.65380 0.826901 0.562347i \(-0.190101\pi\)
0.826901 + 0.562347i \(0.190101\pi\)
\(864\) 31861.4 1.25457
\(865\) −1406.19 −0.0552740
\(866\) 52573.0 2.06294
\(867\) 36882.9 1.44476
\(868\) −34852.4 −1.36286
\(869\) −594.601 −0.0232111
\(870\) −10903.1 −0.424886
\(871\) −811.944 −0.0315863
\(872\) −69089.6 −2.68311
\(873\) 31245.8 1.21135
\(874\) 0 0
\(875\) −28072.1 −1.08458
\(876\) −35016.3 −1.35056
\(877\) 40008.5 1.54047 0.770235 0.637760i \(-0.220139\pi\)
0.770235 + 0.637760i \(0.220139\pi\)
\(878\) 59420.1 2.28398
\(879\) 31214.5 1.19777
\(880\) −6396.20 −0.245018
\(881\) 7729.05 0.295571 0.147786 0.989019i \(-0.452785\pi\)
0.147786 + 0.989019i \(0.452785\pi\)
\(882\) −35195.0 −1.34362
\(883\) −28093.5 −1.07069 −0.535346 0.844633i \(-0.679819\pi\)
−0.535346 + 0.844633i \(0.679819\pi\)
\(884\) −8527.06 −0.324430
\(885\) 38918.8 1.47824
\(886\) −23630.4 −0.896026
\(887\) 28627.9 1.08369 0.541843 0.840480i \(-0.317727\pi\)
0.541843 + 0.840480i \(0.317727\pi\)
\(888\) 192351. 7.26901
\(889\) 6354.18 0.239722
\(890\) 2616.57 0.0985480
\(891\) −4340.63 −0.163206
\(892\) 34490.5 1.29465
\(893\) 15881.4 0.595128
\(894\) 116473. 4.35731
\(895\) 17117.7 0.639310
\(896\) 36034.4 1.34356
\(897\) 0 0
\(898\) 16162.9 0.600626
\(899\) 3669.71 0.136142
\(900\) −79625.0 −2.94907
\(901\) −9969.53 −0.368627
\(902\) −14203.7 −0.524315
\(903\) −102601. −3.78112
\(904\) −4542.50 −0.167125
\(905\) 8353.12 0.306814
\(906\) −95898.8 −3.51658
\(907\) −304.419 −0.0111445 −0.00557225 0.999984i \(-0.501774\pi\)
−0.00557225 + 0.999984i \(0.501774\pi\)
\(908\) −99277.6 −3.62846
\(909\) 33484.3 1.22179
\(910\) 11932.1 0.434664
\(911\) 8806.61 0.320281 0.160141 0.987094i \(-0.448805\pi\)
0.160141 + 0.987094i \(0.448805\pi\)
\(912\) 66269.1 2.40613
\(913\) 4549.20 0.164903
\(914\) −33211.8 −1.20191
\(915\) −27576.5 −0.996339
\(916\) 36524.0 1.31745
\(917\) −35715.6 −1.28619
\(918\) 27767.4 0.998324
\(919\) −35206.4 −1.26371 −0.631856 0.775086i \(-0.717706\pi\)
−0.631856 + 0.775086i \(0.717706\pi\)
\(920\) 0 0
\(921\) 49010.5 1.75347
\(922\) −82915.7 −2.96169
\(923\) −3207.46 −0.114382
\(924\) 33723.4 1.20067
\(925\) −39601.7 −1.40767
\(926\) −18333.9 −0.650635
\(927\) −41642.4 −1.47542
\(928\) 6381.93 0.225751
\(929\) 4935.90 0.174318 0.0871591 0.996194i \(-0.472221\pi\)
0.0871591 + 0.996194i \(0.472221\pi\)
\(930\) −23859.3 −0.841266
\(931\) −9585.15 −0.337423
\(932\) 45838.6 1.61104
\(933\) 31886.8 1.11889
\(934\) −97884.4 −3.42920
\(935\) −1577.19 −0.0551653
\(936\) 44565.0 1.55625
\(937\) −39880.3 −1.39043 −0.695214 0.718803i \(-0.744691\pi\)
−0.695214 + 0.718803i \(0.744691\pi\)
\(938\) −5029.79 −0.175084
\(939\) −24769.6 −0.860838
\(940\) −24218.8 −0.840351
\(941\) 11194.0 0.387794 0.193897 0.981022i \(-0.437887\pi\)
0.193897 + 0.981022i \(0.437887\pi\)
\(942\) 3291.67 0.113852
\(943\) 0 0
\(944\) −80513.8 −2.77596
\(945\) −26775.7 −0.921706
\(946\) 26632.8 0.915335
\(947\) −45511.6 −1.56170 −0.780849 0.624720i \(-0.785213\pi\)
−0.780849 + 0.624720i \(0.785213\pi\)
\(948\) −9394.63 −0.321860
\(949\) −4034.91 −0.138018
\(950\) −31468.8 −1.07472
\(951\) 53581.0 1.82701
\(952\) −28992.0 −0.987013
\(953\) −1929.88 −0.0655982 −0.0327991 0.999462i \(-0.510442\pi\)
−0.0327991 + 0.999462i \(0.510442\pi\)
\(954\) 94932.4 3.22175
\(955\) −17583.9 −0.595812
\(956\) 65056.3 2.20091
\(957\) −3550.84 −0.119940
\(958\) 65676.7 2.21494
\(959\) 35104.6 1.18205
\(960\) 4099.42 0.137821
\(961\) −21760.6 −0.730442
\(962\) 40383.5 1.35345
\(963\) −40498.5 −1.35519
\(964\) −47465.1 −1.58584
\(965\) −13508.3 −0.450620
\(966\) 0 0
\(967\) −12637.5 −0.420264 −0.210132 0.977673i \(-0.567389\pi\)
−0.210132 + 0.977673i \(0.567389\pi\)
\(968\) 60907.4 2.02235
\(969\) 16340.8 0.541735
\(970\) −18831.6 −0.623345
\(971\) −938.353 −0.0310126 −0.0155063 0.999880i \(-0.504936\pi\)
−0.0155063 + 0.999880i \(0.504936\pi\)
\(972\) 29302.1 0.966939
\(973\) 24512.3 0.807635
\(974\) 34892.5 1.14787
\(975\) −14104.2 −0.463276
\(976\) 57049.2 1.87100
\(977\) −50467.6 −1.65261 −0.826306 0.563221i \(-0.809562\pi\)
−0.826306 + 0.563221i \(0.809562\pi\)
\(978\) 16548.6 0.541069
\(979\) 852.143 0.0278188
\(980\) 14617.2 0.476458
\(981\) 70333.8 2.28908
\(982\) 60800.0 1.97577
\(983\) 6973.78 0.226276 0.113138 0.993579i \(-0.463910\pi\)
0.113138 + 0.993579i \(0.463910\pi\)
\(984\) −123172. −3.99041
\(985\) −3276.49 −0.105987
\(986\) 5561.89 0.179642
\(987\) 44094.0 1.42201
\(988\) 22113.5 0.712070
\(989\) 0 0
\(990\) 15018.4 0.482137
\(991\) −13400.3 −0.429541 −0.214770 0.976665i \(-0.568900\pi\)
−0.214770 + 0.976665i \(0.568900\pi\)
\(992\) 13965.6 0.446983
\(993\) −62351.0 −1.99260
\(994\) −19869.4 −0.634023
\(995\) −21103.1 −0.672374
\(996\) 71876.8 2.28665
\(997\) 37713.3 1.19799 0.598993 0.800754i \(-0.295568\pi\)
0.598993 + 0.800754i \(0.295568\pi\)
\(998\) 94978.3 3.01251
\(999\) −90620.8 −2.86999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.2 25
23.11 odd 22 23.4.c.a.6.1 yes 50
23.21 odd 22 23.4.c.a.4.1 50
23.22 odd 2 529.4.a.n.1.2 25
69.11 even 22 207.4.i.a.190.5 50
69.44 even 22 207.4.i.a.73.5 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.4.1 50 23.21 odd 22
23.4.c.a.6.1 yes 50 23.11 odd 22
207.4.i.a.73.5 50 69.44 even 22
207.4.i.a.190.5 50 69.11 even 22
529.4.a.m.1.2 25 1.1 even 1 trivial
529.4.a.n.1.2 25 23.22 odd 2