Properties

Label 529.4.a.m.1.19
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.60332 q^{2} -3.42880 q^{3} -1.22274 q^{4} +15.6832 q^{5} -8.92624 q^{6} +5.94573 q^{7} -24.0097 q^{8} -15.2434 q^{9} +40.8282 q^{10} +21.8696 q^{11} +4.19253 q^{12} -34.3301 q^{13} +15.4786 q^{14} -53.7743 q^{15} -52.7230 q^{16} -129.408 q^{17} -39.6833 q^{18} +27.9061 q^{19} -19.1764 q^{20} -20.3867 q^{21} +56.9335 q^{22} +82.3244 q^{24} +120.961 q^{25} -89.3721 q^{26} +144.844 q^{27} -7.27009 q^{28} +12.5587 q^{29} -139.992 q^{30} +15.7988 q^{31} +54.8232 q^{32} -74.9864 q^{33} -336.891 q^{34} +93.2477 q^{35} +18.6387 q^{36} +236.142 q^{37} +72.6483 q^{38} +117.711 q^{39} -376.548 q^{40} -377.108 q^{41} -53.0730 q^{42} -474.145 q^{43} -26.7409 q^{44} -239.064 q^{45} -547.089 q^{47} +180.776 q^{48} -307.648 q^{49} +314.900 q^{50} +443.715 q^{51} +41.9768 q^{52} -463.871 q^{53} +377.074 q^{54} +342.984 q^{55} -142.755 q^{56} -95.6842 q^{57} +32.6943 q^{58} -597.203 q^{59} +65.7521 q^{60} -277.251 q^{61} +41.1292 q^{62} -90.6328 q^{63} +564.506 q^{64} -538.404 q^{65} -195.213 q^{66} +171.626 q^{67} +158.233 q^{68} +242.753 q^{70} +227.710 q^{71} +365.989 q^{72} +932.242 q^{73} +614.754 q^{74} -414.751 q^{75} -34.1219 q^{76} +130.031 q^{77} +306.439 q^{78} -234.256 q^{79} -826.862 q^{80} -85.0692 q^{81} -981.731 q^{82} -912.812 q^{83} +24.9276 q^{84} -2029.53 q^{85} -1234.35 q^{86} -43.0612 q^{87} -525.083 q^{88} +689.993 q^{89} -622.359 q^{90} -204.117 q^{91} -54.1708 q^{93} -1424.25 q^{94} +437.655 q^{95} -187.977 q^{96} -86.1031 q^{97} -800.906 q^{98} -333.366 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.60332 0.920411 0.460206 0.887812i \(-0.347776\pi\)
0.460206 + 0.887812i \(0.347776\pi\)
\(3\) −3.42880 −0.659872 −0.329936 0.944003i \(-0.607027\pi\)
−0.329936 + 0.944003i \(0.607027\pi\)
\(4\) −1.22274 −0.152843
\(5\) 15.6832 1.40274 0.701372 0.712796i \(-0.252571\pi\)
0.701372 + 0.712796i \(0.252571\pi\)
\(6\) −8.92624 −0.607354
\(7\) 5.94573 0.321039 0.160520 0.987033i \(-0.448683\pi\)
0.160520 + 0.987033i \(0.448683\pi\)
\(8\) −24.0097 −1.06109
\(9\) −15.2434 −0.564569
\(10\) 40.8282 1.29110
\(11\) 21.8696 0.599449 0.299724 0.954026i \(-0.403105\pi\)
0.299724 + 0.954026i \(0.403105\pi\)
\(12\) 4.19253 0.100857
\(13\) −34.3301 −0.732419 −0.366210 0.930532i \(-0.619345\pi\)
−0.366210 + 0.930532i \(0.619345\pi\)
\(14\) 15.4786 0.295488
\(15\) −53.7743 −0.925631
\(16\) −52.7230 −0.823796
\(17\) −129.408 −1.84624 −0.923122 0.384507i \(-0.874372\pi\)
−0.923122 + 0.384507i \(0.874372\pi\)
\(18\) −39.6833 −0.519636
\(19\) 27.9061 0.336952 0.168476 0.985706i \(-0.446115\pi\)
0.168476 + 0.985706i \(0.446115\pi\)
\(20\) −19.1764 −0.214399
\(21\) −20.3867 −0.211845
\(22\) 56.9335 0.551740
\(23\) 0 0
\(24\) 82.3244 0.700183
\(25\) 120.961 0.967690
\(26\) −89.3721 −0.674127
\(27\) 144.844 1.03242
\(28\) −7.27009 −0.0490685
\(29\) 12.5587 0.0804169 0.0402085 0.999191i \(-0.487198\pi\)
0.0402085 + 0.999191i \(0.487198\pi\)
\(30\) −139.992 −0.851962
\(31\) 15.7988 0.0915336 0.0457668 0.998952i \(-0.485427\pi\)
0.0457668 + 0.998952i \(0.485427\pi\)
\(32\) 54.8232 0.302858
\(33\) −74.9864 −0.395560
\(34\) −336.891 −1.69930
\(35\) 93.2477 0.450336
\(36\) 18.6387 0.0862903
\(37\) 236.142 1.04923 0.524616 0.851339i \(-0.324209\pi\)
0.524616 + 0.851339i \(0.324209\pi\)
\(38\) 72.6483 0.310135
\(39\) 117.711 0.483303
\(40\) −376.548 −1.48844
\(41\) −377.108 −1.43645 −0.718224 0.695812i \(-0.755045\pi\)
−0.718224 + 0.695812i \(0.755045\pi\)
\(42\) −53.0730 −0.194984
\(43\) −474.145 −1.68155 −0.840773 0.541388i \(-0.817899\pi\)
−0.840773 + 0.541388i \(0.817899\pi\)
\(44\) −26.7409 −0.0916214
\(45\) −239.064 −0.791946
\(46\) 0 0
\(47\) −547.089 −1.69790 −0.848948 0.528476i \(-0.822764\pi\)
−0.848948 + 0.528476i \(0.822764\pi\)
\(48\) 180.776 0.543600
\(49\) −307.648 −0.896934
\(50\) 314.900 0.890673
\(51\) 443.715 1.21829
\(52\) 41.9768 0.111945
\(53\) −463.871 −1.20222 −0.601109 0.799167i \(-0.705274\pi\)
−0.601109 + 0.799167i \(0.705274\pi\)
\(54\) 377.074 0.950247
\(55\) 342.984 0.840873
\(56\) −142.755 −0.340651
\(57\) −95.6842 −0.222345
\(58\) 32.6943 0.0740167
\(59\) −597.203 −1.31778 −0.658891 0.752238i \(-0.728974\pi\)
−0.658891 + 0.752238i \(0.728974\pi\)
\(60\) 65.7521 0.141476
\(61\) −277.251 −0.581939 −0.290970 0.956732i \(-0.593978\pi\)
−0.290970 + 0.956732i \(0.593978\pi\)
\(62\) 41.1292 0.0842486
\(63\) −90.6328 −0.181249
\(64\) 564.506 1.10255
\(65\) −538.404 −1.02740
\(66\) −195.213 −0.364078
\(67\) 171.626 0.312947 0.156474 0.987682i \(-0.449987\pi\)
0.156474 + 0.987682i \(0.449987\pi\)
\(68\) 158.233 0.282185
\(69\) 0 0
\(70\) 242.753 0.414494
\(71\) 227.710 0.380623 0.190311 0.981724i \(-0.439050\pi\)
0.190311 + 0.981724i \(0.439050\pi\)
\(72\) 365.989 0.599058
\(73\) 932.242 1.49467 0.747333 0.664449i \(-0.231334\pi\)
0.747333 + 0.664449i \(0.231334\pi\)
\(74\) 614.754 0.965725
\(75\) −414.751 −0.638552
\(76\) −34.1219 −0.0515007
\(77\) 130.031 0.192446
\(78\) 306.439 0.444838
\(79\) −234.256 −0.333618 −0.166809 0.985989i \(-0.553346\pi\)
−0.166809 + 0.985989i \(0.553346\pi\)
\(80\) −826.862 −1.15558
\(81\) −85.0692 −0.116693
\(82\) −981.731 −1.32212
\(83\) −912.812 −1.20716 −0.603579 0.797303i \(-0.706259\pi\)
−0.603579 + 0.797303i \(0.706259\pi\)
\(84\) 24.9276 0.0323789
\(85\) −2029.53 −2.58981
\(86\) −1234.35 −1.54771
\(87\) −43.0612 −0.0530649
\(88\) −525.083 −0.636069
\(89\) 689.993 0.821788 0.410894 0.911683i \(-0.365217\pi\)
0.410894 + 0.911683i \(0.365217\pi\)
\(90\) −622.359 −0.728916
\(91\) −204.117 −0.235135
\(92\) 0 0
\(93\) −54.1708 −0.0604005
\(94\) −1424.25 −1.56276
\(95\) 437.655 0.472658
\(96\) −187.977 −0.199848
\(97\) −86.1031 −0.0901283 −0.0450642 0.998984i \(-0.514349\pi\)
−0.0450642 + 0.998984i \(0.514349\pi\)
\(98\) −800.906 −0.825548
\(99\) −333.366 −0.338430
\(100\) −147.904 −0.147904
\(101\) 484.282 0.477108 0.238554 0.971129i \(-0.423327\pi\)
0.238554 + 0.971129i \(0.423327\pi\)
\(102\) 1155.13 1.12132
\(103\) 126.788 0.121289 0.0606444 0.998159i \(-0.480684\pi\)
0.0606444 + 0.998159i \(0.480684\pi\)
\(104\) 824.255 0.777162
\(105\) −319.727 −0.297164
\(106\) −1207.60 −1.10654
\(107\) 1897.81 1.71465 0.857327 0.514772i \(-0.172123\pi\)
0.857327 + 0.514772i \(0.172123\pi\)
\(108\) −177.107 −0.157797
\(109\) 854.420 0.750813 0.375406 0.926860i \(-0.377503\pi\)
0.375406 + 0.926860i \(0.377503\pi\)
\(110\) 892.897 0.773949
\(111\) −809.684 −0.692359
\(112\) −313.476 −0.264471
\(113\) −568.874 −0.473586 −0.236793 0.971560i \(-0.576096\pi\)
−0.236793 + 0.971560i \(0.576096\pi\)
\(114\) −249.096 −0.204649
\(115\) 0 0
\(116\) −15.3560 −0.0122911
\(117\) 523.306 0.413501
\(118\) −1554.71 −1.21290
\(119\) −769.427 −0.592717
\(120\) 1291.11 0.982178
\(121\) −852.720 −0.640661
\(122\) −721.771 −0.535623
\(123\) 1293.03 0.947871
\(124\) −19.3178 −0.0139903
\(125\) −63.3402 −0.0453225
\(126\) −235.946 −0.166823
\(127\) 1064.51 0.743779 0.371890 0.928277i \(-0.378710\pi\)
0.371890 + 0.928277i \(0.378710\pi\)
\(128\) 1031.00 0.711942
\(129\) 1625.75 1.10960
\(130\) −1401.64 −0.945628
\(131\) 714.292 0.476396 0.238198 0.971217i \(-0.423443\pi\)
0.238198 + 0.971217i \(0.423443\pi\)
\(132\) 91.6891 0.0604584
\(133\) 165.922 0.108175
\(134\) 446.797 0.288040
\(135\) 2271.61 1.44821
\(136\) 3107.06 1.95903
\(137\) −442.264 −0.275804 −0.137902 0.990446i \(-0.544036\pi\)
−0.137902 + 0.990446i \(0.544036\pi\)
\(138\) 0 0
\(139\) −1903.69 −1.16164 −0.580822 0.814030i \(-0.697269\pi\)
−0.580822 + 0.814030i \(0.697269\pi\)
\(140\) −114.018 −0.0688305
\(141\) 1875.86 1.12039
\(142\) 592.802 0.350330
\(143\) −750.786 −0.439048
\(144\) 803.675 0.465090
\(145\) 196.960 0.112804
\(146\) 2426.92 1.37571
\(147\) 1054.86 0.591862
\(148\) −288.741 −0.160367
\(149\) −421.281 −0.231629 −0.115814 0.993271i \(-0.536948\pi\)
−0.115814 + 0.993271i \(0.536948\pi\)
\(150\) −1079.73 −0.587730
\(151\) 883.890 0.476357 0.238179 0.971221i \(-0.423450\pi\)
0.238179 + 0.971221i \(0.423450\pi\)
\(152\) −670.017 −0.357536
\(153\) 1972.62 1.04233
\(154\) 338.511 0.177130
\(155\) 247.775 0.128398
\(156\) −143.930 −0.0738693
\(157\) 2255.69 1.14665 0.573325 0.819328i \(-0.305653\pi\)
0.573325 + 0.819328i \(0.305653\pi\)
\(158\) −609.842 −0.307066
\(159\) 1590.52 0.793311
\(160\) 859.800 0.424832
\(161\) 0 0
\(162\) −221.462 −0.107406
\(163\) 116.912 0.0561794 0.0280897 0.999605i \(-0.491058\pi\)
0.0280897 + 0.999605i \(0.491058\pi\)
\(164\) 461.106 0.219551
\(165\) −1176.02 −0.554869
\(166\) −2376.34 −1.11108
\(167\) 1476.71 0.684261 0.342130 0.939652i \(-0.388852\pi\)
0.342130 + 0.939652i \(0.388852\pi\)
\(168\) 489.478 0.224786
\(169\) −1018.45 −0.463562
\(170\) −5283.52 −2.38369
\(171\) −425.382 −0.190233
\(172\) 579.757 0.257012
\(173\) 474.255 0.208421 0.104211 0.994555i \(-0.466768\pi\)
0.104211 + 0.994555i \(0.466768\pi\)
\(174\) −112.102 −0.0488415
\(175\) 719.203 0.310666
\(176\) −1153.03 −0.493824
\(177\) 2047.69 0.869568
\(178\) 1796.27 0.756383
\(179\) −2236.70 −0.933958 −0.466979 0.884268i \(-0.654658\pi\)
−0.466979 + 0.884268i \(0.654658\pi\)
\(180\) 292.314 0.121043
\(181\) −2842.81 −1.16743 −0.583714 0.811959i \(-0.698401\pi\)
−0.583714 + 0.811959i \(0.698401\pi\)
\(182\) −531.382 −0.216421
\(183\) 950.635 0.384005
\(184\) 0 0
\(185\) 3703.46 1.47180
\(186\) −141.024 −0.0555933
\(187\) −2830.11 −1.10673
\(188\) 668.948 0.259511
\(189\) 861.202 0.331446
\(190\) 1139.35 0.435039
\(191\) 434.402 0.164567 0.0822833 0.996609i \(-0.473779\pi\)
0.0822833 + 0.996609i \(0.473779\pi\)
\(192\) −1935.58 −0.727542
\(193\) 3237.50 1.20746 0.603732 0.797188i \(-0.293680\pi\)
0.603732 + 0.797188i \(0.293680\pi\)
\(194\) −224.154 −0.0829551
\(195\) 1846.08 0.677950
\(196\) 376.175 0.137090
\(197\) 3216.72 1.16336 0.581680 0.813417i \(-0.302395\pi\)
0.581680 + 0.813417i \(0.302395\pi\)
\(198\) −867.858 −0.311495
\(199\) −597.892 −0.212982 −0.106491 0.994314i \(-0.533962\pi\)
−0.106491 + 0.994314i \(0.533962\pi\)
\(200\) −2904.25 −1.02681
\(201\) −588.471 −0.206505
\(202\) 1260.74 0.439136
\(203\) 74.6706 0.0258170
\(204\) −542.549 −0.186206
\(205\) −5914.24 −2.01497
\(206\) 330.068 0.111636
\(207\) 0 0
\(208\) 1809.98 0.603364
\(209\) 610.295 0.201986
\(210\) −832.352 −0.273513
\(211\) −4564.34 −1.48921 −0.744603 0.667508i \(-0.767361\pi\)
−0.744603 + 0.667508i \(0.767361\pi\)
\(212\) 567.195 0.183750
\(213\) −780.772 −0.251162
\(214\) 4940.60 1.57819
\(215\) −7436.09 −2.35878
\(216\) −3477.66 −1.09549
\(217\) 93.9352 0.0293859
\(218\) 2224.33 0.691057
\(219\) −3196.47 −0.986289
\(220\) −419.382 −0.128521
\(221\) 4442.60 1.35222
\(222\) −2107.86 −0.637255
\(223\) 3745.20 1.12465 0.562325 0.826916i \(-0.309907\pi\)
0.562325 + 0.826916i \(0.309907\pi\)
\(224\) 325.964 0.0972293
\(225\) −1843.86 −0.546328
\(226\) −1480.96 −0.435894
\(227\) 3325.66 0.972386 0.486193 0.873852i \(-0.338385\pi\)
0.486193 + 0.873852i \(0.338385\pi\)
\(228\) 116.997 0.0339839
\(229\) −1285.35 −0.370909 −0.185454 0.982653i \(-0.559376\pi\)
−0.185454 + 0.982653i \(0.559376\pi\)
\(230\) 0 0
\(231\) −445.849 −0.126990
\(232\) −301.531 −0.0853296
\(233\) 5568.58 1.56571 0.782854 0.622205i \(-0.213763\pi\)
0.782854 + 0.622205i \(0.213763\pi\)
\(234\) 1362.33 0.380591
\(235\) −8580.08 −2.38171
\(236\) 730.225 0.201413
\(237\) 803.215 0.220145
\(238\) −2003.06 −0.545543
\(239\) 1031.31 0.279120 0.139560 0.990214i \(-0.455431\pi\)
0.139560 + 0.990214i \(0.455431\pi\)
\(240\) 2835.14 0.762532
\(241\) 3263.41 0.872261 0.436130 0.899884i \(-0.356349\pi\)
0.436130 + 0.899884i \(0.356349\pi\)
\(242\) −2219.90 −0.589672
\(243\) −3619.10 −0.955413
\(244\) 339.006 0.0889452
\(245\) −4824.90 −1.25817
\(246\) 3366.16 0.872432
\(247\) −958.017 −0.246790
\(248\) −379.324 −0.0971254
\(249\) 3129.85 0.796570
\(250\) −164.895 −0.0417154
\(251\) −3361.89 −0.845422 −0.422711 0.906265i \(-0.638921\pi\)
−0.422711 + 0.906265i \(0.638921\pi\)
\(252\) 110.821 0.0277025
\(253\) 0 0
\(254\) 2771.26 0.684583
\(255\) 6958.85 1.70894
\(256\) −1832.02 −0.447271
\(257\) 1274.74 0.309401 0.154701 0.987961i \(-0.450559\pi\)
0.154701 + 0.987961i \(0.450559\pi\)
\(258\) 4232.33 1.02129
\(259\) 1404.04 0.336844
\(260\) 658.329 0.157030
\(261\) −191.437 −0.0454009
\(262\) 1859.53 0.438481
\(263\) −5238.38 −1.22818 −0.614092 0.789234i \(-0.710478\pi\)
−0.614092 + 0.789234i \(0.710478\pi\)
\(264\) 1800.40 0.419724
\(265\) −7274.96 −1.68640
\(266\) 431.947 0.0995653
\(267\) −2365.85 −0.542275
\(268\) −209.854 −0.0478317
\(269\) 6289.31 1.42552 0.712762 0.701406i \(-0.247444\pi\)
0.712762 + 0.701406i \(0.247444\pi\)
\(270\) 5913.72 1.33295
\(271\) −491.262 −0.110118 −0.0550591 0.998483i \(-0.517535\pi\)
−0.0550591 + 0.998483i \(0.517535\pi\)
\(272\) 6822.80 1.52093
\(273\) 699.876 0.155159
\(274\) −1151.35 −0.253853
\(275\) 2645.38 0.580081
\(276\) 0 0
\(277\) −4007.70 −0.869312 −0.434656 0.900597i \(-0.643130\pi\)
−0.434656 + 0.900597i \(0.643130\pi\)
\(278\) −4955.90 −1.06919
\(279\) −240.826 −0.0516770
\(280\) −2238.85 −0.477846
\(281\) −1618.61 −0.343623 −0.171811 0.985130i \(-0.554962\pi\)
−0.171811 + 0.985130i \(0.554962\pi\)
\(282\) 4883.45 1.03122
\(283\) −3706.89 −0.778628 −0.389314 0.921105i \(-0.627288\pi\)
−0.389314 + 0.921105i \(0.627288\pi\)
\(284\) −278.431 −0.0581754
\(285\) −1500.63 −0.311893
\(286\) −1954.53 −0.404105
\(287\) −2242.18 −0.461156
\(288\) −835.689 −0.170984
\(289\) 11833.5 2.40862
\(290\) 512.749 0.103826
\(291\) 295.230 0.0594732
\(292\) −1139.89 −0.228449
\(293\) 5022.03 1.00133 0.500666 0.865641i \(-0.333088\pi\)
0.500666 + 0.865641i \(0.333088\pi\)
\(294\) 2746.14 0.544756
\(295\) −9366.02 −1.84851
\(296\) −5669.71 −1.11333
\(297\) 3167.68 0.618880
\(298\) −1096.73 −0.213194
\(299\) 0 0
\(300\) 507.134 0.0975980
\(301\) −2819.14 −0.539842
\(302\) 2301.04 0.438444
\(303\) −1660.51 −0.314830
\(304\) −1471.29 −0.277580
\(305\) −4348.16 −0.816312
\(306\) 5135.35 0.959375
\(307\) 4428.94 0.823365 0.411682 0.911327i \(-0.364941\pi\)
0.411682 + 0.911327i \(0.364941\pi\)
\(308\) −158.994 −0.0294140
\(309\) −434.729 −0.0800351
\(310\) 645.036 0.118179
\(311\) 9184.68 1.67465 0.837324 0.546707i \(-0.184119\pi\)
0.837324 + 0.546707i \(0.184119\pi\)
\(312\) −2826.20 −0.512828
\(313\) 2491.75 0.449975 0.224987 0.974362i \(-0.427766\pi\)
0.224987 + 0.974362i \(0.427766\pi\)
\(314\) 5872.29 1.05539
\(315\) −1421.41 −0.254245
\(316\) 286.434 0.0509911
\(317\) −4985.51 −0.883326 −0.441663 0.897181i \(-0.645611\pi\)
−0.441663 + 0.897181i \(0.645611\pi\)
\(318\) 4140.63 0.730172
\(319\) 274.654 0.0482058
\(320\) 8853.23 1.54660
\(321\) −6507.20 −1.13145
\(322\) 0 0
\(323\) −3611.28 −0.622096
\(324\) 104.018 0.0178357
\(325\) −4152.61 −0.708755
\(326\) 304.359 0.0517082
\(327\) −2929.63 −0.495440
\(328\) 9054.25 1.52420
\(329\) −3252.84 −0.545091
\(330\) −3061.56 −0.510707
\(331\) −6285.44 −1.04374 −0.521872 0.853024i \(-0.674766\pi\)
−0.521872 + 0.853024i \(0.674766\pi\)
\(332\) 1116.13 0.184505
\(333\) −3599.60 −0.592364
\(334\) 3844.35 0.629802
\(335\) 2691.64 0.438985
\(336\) 1074.85 0.174517
\(337\) 3218.22 0.520201 0.260100 0.965582i \(-0.416244\pi\)
0.260100 + 0.965582i \(0.416244\pi\)
\(338\) −2651.34 −0.426668
\(339\) 1950.55 0.312506
\(340\) 2481.59 0.395833
\(341\) 345.513 0.0548697
\(342\) −1107.40 −0.175092
\(343\) −3868.58 −0.608990
\(344\) 11384.1 1.78427
\(345\) 0 0
\(346\) 1234.64 0.191834
\(347\) −7884.61 −1.21979 −0.609897 0.792481i \(-0.708789\pi\)
−0.609897 + 0.792481i \(0.708789\pi\)
\(348\) 52.6527 0.00811058
\(349\) −442.238 −0.0678294 −0.0339147 0.999425i \(-0.510797\pi\)
−0.0339147 + 0.999425i \(0.510797\pi\)
\(350\) 1872.31 0.285941
\(351\) −4972.50 −0.756161
\(352\) 1198.96 0.181548
\(353\) 4656.00 0.702022 0.351011 0.936371i \(-0.385838\pi\)
0.351011 + 0.936371i \(0.385838\pi\)
\(354\) 5330.77 0.800360
\(355\) 3571.21 0.533916
\(356\) −843.684 −0.125604
\(357\) 2638.21 0.391117
\(358\) −5822.83 −0.859626
\(359\) −8680.80 −1.27620 −0.638099 0.769954i \(-0.720279\pi\)
−0.638099 + 0.769954i \(0.720279\pi\)
\(360\) 5739.86 0.840325
\(361\) −6080.25 −0.886463
\(362\) −7400.74 −1.07451
\(363\) 2923.80 0.422754
\(364\) 249.583 0.0359387
\(365\) 14620.5 2.09663
\(366\) 2474.80 0.353443
\(367\) −5699.85 −0.810708 −0.405354 0.914160i \(-0.632852\pi\)
−0.405354 + 0.914160i \(0.632852\pi\)
\(368\) 0 0
\(369\) 5748.39 0.810974
\(370\) 9641.27 1.35466
\(371\) −2758.05 −0.385959
\(372\) 66.2369 0.00923178
\(373\) 7369.50 1.02300 0.511499 0.859284i \(-0.329090\pi\)
0.511499 + 0.859284i \(0.329090\pi\)
\(374\) −7367.68 −1.01865
\(375\) 217.181 0.0299071
\(376\) 13135.4 1.80162
\(377\) −431.141 −0.0588989
\(378\) 2241.98 0.305066
\(379\) 7818.94 1.05972 0.529858 0.848087i \(-0.322245\pi\)
0.529858 + 0.848087i \(0.322245\pi\)
\(380\) −535.139 −0.0722423
\(381\) −3649.99 −0.490799
\(382\) 1130.89 0.151469
\(383\) −7704.70 −1.02792 −0.513958 0.857816i \(-0.671821\pi\)
−0.513958 + 0.857816i \(0.671821\pi\)
\(384\) −3535.10 −0.469791
\(385\) 2039.29 0.269953
\(386\) 8428.24 1.11136
\(387\) 7227.56 0.949348
\(388\) 105.282 0.0137755
\(389\) 4432.04 0.577669 0.288835 0.957379i \(-0.406732\pi\)
0.288835 + 0.957379i \(0.406732\pi\)
\(390\) 4805.92 0.623993
\(391\) 0 0
\(392\) 7386.55 0.951727
\(393\) −2449.16 −0.314361
\(394\) 8374.15 1.07077
\(395\) −3673.87 −0.467981
\(396\) 407.621 0.0517266
\(397\) −9138.14 −1.15524 −0.577620 0.816306i \(-0.696018\pi\)
−0.577620 + 0.816306i \(0.696018\pi\)
\(398\) −1556.50 −0.196031
\(399\) −568.912 −0.0713815
\(400\) −6377.44 −0.797180
\(401\) 4004.40 0.498679 0.249340 0.968416i \(-0.419786\pi\)
0.249340 + 0.968416i \(0.419786\pi\)
\(402\) −1531.98 −0.190070
\(403\) −542.373 −0.0670410
\(404\) −592.152 −0.0729225
\(405\) −1334.15 −0.163690
\(406\) 194.391 0.0237622
\(407\) 5164.34 0.628961
\(408\) −10653.5 −1.29271
\(409\) 1921.28 0.232277 0.116139 0.993233i \(-0.462948\pi\)
0.116139 + 0.993233i \(0.462948\pi\)
\(410\) −15396.6 −1.85460
\(411\) 1516.43 0.181995
\(412\) −155.028 −0.0185381
\(413\) −3550.80 −0.423060
\(414\) 0 0
\(415\) −14315.8 −1.69333
\(416\) −1882.08 −0.221819
\(417\) 6527.35 0.766537
\(418\) 1588.79 0.185910
\(419\) −1310.02 −0.152741 −0.0763707 0.997079i \(-0.524333\pi\)
−0.0763707 + 0.997079i \(0.524333\pi\)
\(420\) 390.944 0.0454193
\(421\) −3328.69 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(422\) −11882.4 −1.37068
\(423\) 8339.47 0.958579
\(424\) 11137.4 1.27566
\(425\) −15653.4 −1.78659
\(426\) −2032.60 −0.231173
\(427\) −1648.46 −0.186825
\(428\) −2320.53 −0.262073
\(429\) 2574.29 0.289715
\(430\) −19358.5 −2.17105
\(431\) −15684.7 −1.75291 −0.876455 0.481484i \(-0.840098\pi\)
−0.876455 + 0.481484i \(0.840098\pi\)
\(432\) −7636.60 −0.850500
\(433\) −9340.59 −1.03667 −0.518337 0.855176i \(-0.673449\pi\)
−0.518337 + 0.855176i \(0.673449\pi\)
\(434\) 244.543 0.0270471
\(435\) −675.335 −0.0744364
\(436\) −1044.73 −0.114756
\(437\) 0 0
\(438\) −8321.42 −0.907791
\(439\) 1975.05 0.214724 0.107362 0.994220i \(-0.465760\pi\)
0.107362 + 0.994220i \(0.465760\pi\)
\(440\) −8234.96 −0.892242
\(441\) 4689.59 0.506381
\(442\) 11565.5 1.24460
\(443\) −13052.2 −1.39984 −0.699921 0.714220i \(-0.746781\pi\)
−0.699921 + 0.714220i \(0.746781\pi\)
\(444\) 990.035 0.105822
\(445\) 10821.3 1.15276
\(446\) 9749.93 1.03514
\(447\) 1444.48 0.152845
\(448\) 3356.40 0.353962
\(449\) 2939.49 0.308960 0.154480 0.987996i \(-0.450630\pi\)
0.154480 + 0.987996i \(0.450630\pi\)
\(450\) −4800.14 −0.502846
\(451\) −8247.20 −0.861077
\(452\) 695.586 0.0723842
\(453\) −3030.68 −0.314335
\(454\) 8657.74 0.894995
\(455\) −3201.20 −0.329834
\(456\) 2297.35 0.235928
\(457\) −4861.32 −0.497600 −0.248800 0.968555i \(-0.580036\pi\)
−0.248800 + 0.968555i \(0.580036\pi\)
\(458\) −3346.17 −0.341389
\(459\) −18744.0 −1.90609
\(460\) 0 0
\(461\) 5249.19 0.530323 0.265162 0.964204i \(-0.414575\pi\)
0.265162 + 0.964204i \(0.414575\pi\)
\(462\) −1160.69 −0.116883
\(463\) −4118.23 −0.413370 −0.206685 0.978407i \(-0.566268\pi\)
−0.206685 + 0.978407i \(0.566268\pi\)
\(464\) −662.132 −0.0662472
\(465\) −849.568 −0.0847264
\(466\) 14496.8 1.44110
\(467\) −14796.9 −1.46620 −0.733102 0.680119i \(-0.761928\pi\)
−0.733102 + 0.680119i \(0.761928\pi\)
\(468\) −639.868 −0.0632006
\(469\) 1020.44 0.100468
\(470\) −22336.7 −2.19216
\(471\) −7734.32 −0.756642
\(472\) 14338.7 1.39829
\(473\) −10369.4 −1.00800
\(474\) 2091.02 0.202624
\(475\) 3375.55 0.326065
\(476\) 940.811 0.0905924
\(477\) 7070.95 0.678735
\(478\) 2684.82 0.256906
\(479\) 4413.40 0.420988 0.210494 0.977595i \(-0.432493\pi\)
0.210494 + 0.977595i \(0.432493\pi\)
\(480\) −2948.08 −0.280335
\(481\) −8106.79 −0.768478
\(482\) 8495.69 0.802839
\(483\) 0 0
\(484\) 1042.66 0.0979204
\(485\) −1350.37 −0.126427
\(486\) −9421.66 −0.879373
\(487\) 14084.6 1.31054 0.655271 0.755394i \(-0.272555\pi\)
0.655271 + 0.755394i \(0.272555\pi\)
\(488\) 6656.71 0.617490
\(489\) −400.867 −0.0370712
\(490\) −12560.7 −1.15803
\(491\) 5563.44 0.511354 0.255677 0.966762i \(-0.417702\pi\)
0.255677 + 0.966762i \(0.417702\pi\)
\(492\) −1581.04 −0.144875
\(493\) −1625.20 −0.148469
\(494\) −2494.02 −0.227149
\(495\) −5228.24 −0.474731
\(496\) −832.958 −0.0754051
\(497\) 1353.90 0.122195
\(498\) 8147.98 0.733172
\(499\) 7594.26 0.681294 0.340647 0.940191i \(-0.389354\pi\)
0.340647 + 0.940191i \(0.389354\pi\)
\(500\) 77.4487 0.00692722
\(501\) −5063.35 −0.451525
\(502\) −8752.07 −0.778136
\(503\) −13930.3 −1.23483 −0.617416 0.786637i \(-0.711820\pi\)
−0.617416 + 0.786637i \(0.711820\pi\)
\(504\) 2176.07 0.192321
\(505\) 7595.07 0.669260
\(506\) 0 0
\(507\) 3492.04 0.305892
\(508\) −1301.62 −0.113681
\(509\) 5608.05 0.488355 0.244177 0.969731i \(-0.421482\pi\)
0.244177 + 0.969731i \(0.421482\pi\)
\(510\) 18116.1 1.57293
\(511\) 5542.86 0.479846
\(512\) −13017.3 −1.12362
\(513\) 4042.02 0.347875
\(514\) 3318.55 0.284777
\(515\) 1988.43 0.170137
\(516\) −1987.87 −0.169595
\(517\) −11964.6 −1.01780
\(518\) 3655.16 0.310035
\(519\) −1626.12 −0.137532
\(520\) 12926.9 1.09016
\(521\) −8852.27 −0.744386 −0.372193 0.928155i \(-0.621394\pi\)
−0.372193 + 0.928155i \(0.621394\pi\)
\(522\) −498.370 −0.0417875
\(523\) −19350.8 −1.61788 −0.808942 0.587889i \(-0.799959\pi\)
−0.808942 + 0.587889i \(0.799959\pi\)
\(524\) −873.394 −0.0728137
\(525\) −2466.00 −0.205000
\(526\) −13637.2 −1.13044
\(527\) −2044.49 −0.168993
\(528\) 3953.51 0.325860
\(529\) 0 0
\(530\) −18939.0 −1.55219
\(531\) 9103.37 0.743979
\(532\) −202.880 −0.0165337
\(533\) 12946.1 1.05208
\(534\) −6159.05 −0.499116
\(535\) 29763.6 2.40522
\(536\) −4120.69 −0.332065
\(537\) 7669.18 0.616293
\(538\) 16373.1 1.31207
\(539\) −6728.15 −0.537666
\(540\) −2777.59 −0.221349
\(541\) −13429.0 −1.06721 −0.533603 0.845735i \(-0.679162\pi\)
−0.533603 + 0.845735i \(0.679162\pi\)
\(542\) −1278.91 −0.101354
\(543\) 9747.42 0.770353
\(544\) −7094.58 −0.559150
\(545\) 13400.0 1.05320
\(546\) 1822.00 0.142810
\(547\) 15088.1 1.17938 0.589689 0.807631i \(-0.299250\pi\)
0.589689 + 0.807631i \(0.299250\pi\)
\(548\) 540.774 0.0421546
\(549\) 4226.23 0.328545
\(550\) 6886.75 0.533913
\(551\) 350.464 0.0270967
\(552\) 0 0
\(553\) −1392.82 −0.107104
\(554\) −10433.3 −0.800125
\(555\) −12698.4 −0.971202
\(556\) 2327.72 0.177549
\(557\) 7951.43 0.604871 0.302435 0.953170i \(-0.402200\pi\)
0.302435 + 0.953170i \(0.402200\pi\)
\(558\) −626.947 −0.0475641
\(559\) 16277.4 1.23160
\(560\) −4916.30 −0.370985
\(561\) 9703.88 0.730300
\(562\) −4213.75 −0.316274
\(563\) −3042.56 −0.227759 −0.113880 0.993495i \(-0.536328\pi\)
−0.113880 + 0.993495i \(0.536328\pi\)
\(564\) −2293.69 −0.171244
\(565\) −8921.74 −0.664320
\(566\) −9650.21 −0.716658
\(567\) −505.798 −0.0374630
\(568\) −5467.26 −0.403875
\(569\) −11726.3 −0.863960 −0.431980 0.901883i \(-0.642185\pi\)
−0.431980 + 0.901883i \(0.642185\pi\)
\(570\) −3906.61 −0.287070
\(571\) −4489.41 −0.329030 −0.164515 0.986375i \(-0.552606\pi\)
−0.164515 + 0.986375i \(0.552606\pi\)
\(572\) 918.017 0.0671053
\(573\) −1489.48 −0.108593
\(574\) −5837.10 −0.424453
\(575\) 0 0
\(576\) −8604.97 −0.622466
\(577\) 20073.7 1.44831 0.724157 0.689635i \(-0.242229\pi\)
0.724157 + 0.689635i \(0.242229\pi\)
\(578\) 30806.5 2.21692
\(579\) −11100.7 −0.796771
\(580\) −240.831 −0.0172413
\(581\) −5427.33 −0.387545
\(582\) 768.577 0.0547398
\(583\) −10144.7 −0.720669
\(584\) −22382.9 −1.58598
\(585\) 8207.08 0.580036
\(586\) 13073.9 0.921637
\(587\) −9497.04 −0.667776 −0.333888 0.942613i \(-0.608361\pi\)
−0.333888 + 0.942613i \(0.608361\pi\)
\(588\) −1289.83 −0.0904618
\(589\) 440.882 0.0308425
\(590\) −24382.7 −1.70139
\(591\) −11029.5 −0.767669
\(592\) −12450.1 −0.864353
\(593\) −12599.4 −0.872502 −0.436251 0.899825i \(-0.643694\pi\)
−0.436251 + 0.899825i \(0.643694\pi\)
\(594\) 8246.47 0.569624
\(595\) −12067.0 −0.831429
\(596\) 515.117 0.0354027
\(597\) 2050.05 0.140541
\(598\) 0 0
\(599\) 5827.00 0.397471 0.198735 0.980053i \(-0.436317\pi\)
0.198735 + 0.980053i \(0.436317\pi\)
\(600\) 9958.07 0.677561
\(601\) −24199.0 −1.64243 −0.821213 0.570622i \(-0.806702\pi\)
−0.821213 + 0.570622i \(0.806702\pi\)
\(602\) −7339.11 −0.496876
\(603\) −2616.16 −0.176680
\(604\) −1080.77 −0.0728077
\(605\) −13373.3 −0.898683
\(606\) −4322.82 −0.289773
\(607\) −2390.33 −0.159836 −0.0799181 0.996801i \(-0.525466\pi\)
−0.0799181 + 0.996801i \(0.525466\pi\)
\(608\) 1529.90 0.102049
\(609\) −256.030 −0.0170359
\(610\) −11319.6 −0.751342
\(611\) 18781.6 1.24357
\(612\) −2412.00 −0.159313
\(613\) 22277.9 1.46786 0.733928 0.679227i \(-0.237685\pi\)
0.733928 + 0.679227i \(0.237685\pi\)
\(614\) 11529.9 0.757835
\(615\) 20278.7 1.32962
\(616\) −3122.00 −0.204203
\(617\) 4096.57 0.267296 0.133648 0.991029i \(-0.457331\pi\)
0.133648 + 0.991029i \(0.457331\pi\)
\(618\) −1131.74 −0.0736652
\(619\) −12215.0 −0.793153 −0.396576 0.918002i \(-0.629802\pi\)
−0.396576 + 0.918002i \(0.629802\pi\)
\(620\) −302.964 −0.0196247
\(621\) 0 0
\(622\) 23910.6 1.54137
\(623\) 4102.51 0.263826
\(624\) −6206.06 −0.398143
\(625\) −16113.5 −1.03127
\(626\) 6486.82 0.414162
\(627\) −2092.58 −0.133285
\(628\) −2758.13 −0.175257
\(629\) −30558.8 −1.93714
\(630\) −3700.38 −0.234010
\(631\) 28283.5 1.78439 0.892195 0.451650i \(-0.149164\pi\)
0.892195 + 0.451650i \(0.149164\pi\)
\(632\) 5624.41 0.353999
\(633\) 15650.2 0.982685
\(634\) −12978.9 −0.813024
\(635\) 16694.9 1.04333
\(636\) −1944.79 −0.121252
\(637\) 10561.6 0.656932
\(638\) 715.011 0.0443692
\(639\) −3471.07 −0.214888
\(640\) 16169.4 0.998672
\(641\) 11965.2 0.737278 0.368639 0.929573i \(-0.379824\pi\)
0.368639 + 0.929573i \(0.379824\pi\)
\(642\) −16940.3 −1.04140
\(643\) −2342.99 −0.143699 −0.0718495 0.997415i \(-0.522890\pi\)
−0.0718495 + 0.997415i \(0.522890\pi\)
\(644\) 0 0
\(645\) 25496.8 1.55649
\(646\) −9401.31 −0.572584
\(647\) 6345.14 0.385553 0.192777 0.981243i \(-0.438251\pi\)
0.192777 + 0.981243i \(0.438251\pi\)
\(648\) 2042.49 0.123822
\(649\) −13060.6 −0.789943
\(650\) −10810.6 −0.652346
\(651\) −322.084 −0.0193909
\(652\) −142.953 −0.00858662
\(653\) −2844.49 −0.170465 −0.0852324 0.996361i \(-0.527163\pi\)
−0.0852324 + 0.996361i \(0.527163\pi\)
\(654\) −7626.76 −0.456009
\(655\) 11202.3 0.668262
\(656\) 19882.2 1.18334
\(657\) −14210.5 −0.843842
\(658\) −8468.17 −0.501708
\(659\) −18420.2 −1.08885 −0.544423 0.838811i \(-0.683251\pi\)
−0.544423 + 0.838811i \(0.683251\pi\)
\(660\) 1437.97 0.0848076
\(661\) −1288.07 −0.0757944 −0.0378972 0.999282i \(-0.512066\pi\)
−0.0378972 + 0.999282i \(0.512066\pi\)
\(662\) −16363.0 −0.960674
\(663\) −15232.8 −0.892295
\(664\) 21916.4 1.28090
\(665\) 2602.18 0.151742
\(666\) −9370.91 −0.545218
\(667\) 0 0
\(668\) −1805.64 −0.104584
\(669\) −12841.5 −0.742125
\(670\) 7007.19 0.404047
\(671\) −6063.36 −0.348843
\(672\) −1117.66 −0.0641589
\(673\) −14596.4 −0.836031 −0.418016 0.908440i \(-0.637274\pi\)
−0.418016 + 0.908440i \(0.637274\pi\)
\(674\) 8378.05 0.478799
\(675\) 17520.5 0.999058
\(676\) 1245.30 0.0708521
\(677\) −5126.00 −0.291002 −0.145501 0.989358i \(-0.546479\pi\)
−0.145501 + 0.989358i \(0.546479\pi\)
\(678\) 5077.91 0.287634
\(679\) −511.946 −0.0289347
\(680\) 48728.5 2.74802
\(681\) −11403.0 −0.641650
\(682\) 899.480 0.0505027
\(683\) −35023.3 −1.96212 −0.981062 0.193692i \(-0.937954\pi\)
−0.981062 + 0.193692i \(0.937954\pi\)
\(684\) 520.133 0.0290757
\(685\) −6936.09 −0.386882
\(686\) −10071.1 −0.560521
\(687\) 4407.19 0.244752
\(688\) 24998.3 1.38525
\(689\) 15924.7 0.880528
\(690\) 0 0
\(691\) −21001.1 −1.15618 −0.578090 0.815973i \(-0.696202\pi\)
−0.578090 + 0.815973i \(0.696202\pi\)
\(692\) −579.891 −0.0318557
\(693\) −1982.11 −0.108649
\(694\) −20526.1 −1.12271
\(695\) −29855.8 −1.62949
\(696\) 1033.89 0.0563066
\(697\) 48800.9 2.65203
\(698\) −1151.29 −0.0624309
\(699\) −19093.5 −1.03317
\(700\) −879.399 −0.0474831
\(701\) 6818.71 0.367388 0.183694 0.982983i \(-0.441194\pi\)
0.183694 + 0.982983i \(0.441194\pi\)
\(702\) −12945.0 −0.695979
\(703\) 6589.81 0.353541
\(704\) 12345.5 0.660923
\(705\) 29419.3 1.57163
\(706\) 12121.0 0.646149
\(707\) 2879.41 0.153170
\(708\) −2503.79 −0.132907
\(709\) 36207.0 1.91789 0.958945 0.283592i \(-0.0915260\pi\)
0.958945 + 0.283592i \(0.0915260\pi\)
\(710\) 9297.00 0.491423
\(711\) 3570.84 0.188350
\(712\) −16566.5 −0.871991
\(713\) 0 0
\(714\) 6868.09 0.359989
\(715\) −11774.7 −0.615872
\(716\) 2734.90 0.142749
\(717\) −3536.15 −0.184184
\(718\) −22598.9 −1.17463
\(719\) 34307.2 1.77947 0.889736 0.456475i \(-0.150888\pi\)
0.889736 + 0.456475i \(0.150888\pi\)
\(720\) 12604.2 0.652402
\(721\) 753.844 0.0389384
\(722\) −15828.8 −0.815911
\(723\) −11189.6 −0.575580
\(724\) 3476.03 0.178433
\(725\) 1519.12 0.0778187
\(726\) 7611.58 0.389108
\(727\) 1831.18 0.0934178 0.0467089 0.998909i \(-0.485127\pi\)
0.0467089 + 0.998909i \(0.485127\pi\)
\(728\) 4900.80 0.249500
\(729\) 14706.0 0.747143
\(730\) 38061.8 1.92977
\(731\) 61358.4 3.10454
\(732\) −1162.38 −0.0586924
\(733\) 8437.85 0.425183 0.212591 0.977141i \(-0.431810\pi\)
0.212591 + 0.977141i \(0.431810\pi\)
\(734\) −14838.5 −0.746185
\(735\) 16543.6 0.830230
\(736\) 0 0
\(737\) 3753.40 0.187596
\(738\) 14964.9 0.746429
\(739\) 6052.18 0.301262 0.150631 0.988590i \(-0.451869\pi\)
0.150631 + 0.988590i \(0.451869\pi\)
\(740\) −4528.37 −0.224954
\(741\) 3284.85 0.162850
\(742\) −7180.08 −0.355241
\(743\) −17865.8 −0.882142 −0.441071 0.897472i \(-0.645401\pi\)
−0.441071 + 0.897472i \(0.645401\pi\)
\(744\) 1300.62 0.0640903
\(745\) −6607.01 −0.324915
\(746\) 19185.1 0.941579
\(747\) 13914.3 0.681524
\(748\) 3460.50 0.169156
\(749\) 11283.8 0.550471
\(750\) 565.390 0.0275268
\(751\) −17492.6 −0.849952 −0.424976 0.905205i \(-0.639718\pi\)
−0.424976 + 0.905205i \(0.639718\pi\)
\(752\) 28844.1 1.39872
\(753\) 11527.2 0.557870
\(754\) −1122.40 −0.0542112
\(755\) 13862.2 0.668207
\(756\) −1053.03 −0.0506591
\(757\) 36349.6 1.74524 0.872621 0.488398i \(-0.162419\pi\)
0.872621 + 0.488398i \(0.162419\pi\)
\(758\) 20355.2 0.975374
\(759\) 0 0
\(760\) −10508.0 −0.501532
\(761\) −22731.3 −1.08280 −0.541398 0.840766i \(-0.682105\pi\)
−0.541398 + 0.840766i \(0.682105\pi\)
\(762\) −9502.07 −0.451737
\(763\) 5080.15 0.241040
\(764\) −531.161 −0.0251528
\(765\) 30936.9 1.46213
\(766\) −20057.8 −0.946105
\(767\) 20502.0 0.965169
\(768\) 6281.63 0.295142
\(769\) −20618.2 −0.966855 −0.483428 0.875384i \(-0.660608\pi\)
−0.483428 + 0.875384i \(0.660608\pi\)
\(770\) 5308.92 0.248468
\(771\) −4370.83 −0.204165
\(772\) −3958.63 −0.184552
\(773\) −24258.7 −1.12875 −0.564376 0.825518i \(-0.690883\pi\)
−0.564376 + 0.825518i \(0.690883\pi\)
\(774\) 18815.6 0.873791
\(775\) 1911.04 0.0885762
\(776\) 2067.31 0.0956342
\(777\) −4814.16 −0.222274
\(778\) 11538.0 0.531693
\(779\) −10523.6 −0.484014
\(780\) −2257.28 −0.103620
\(781\) 4979.93 0.228164
\(782\) 0 0
\(783\) 1819.05 0.0830237
\(784\) 16220.1 0.738891
\(785\) 35376.4 1.60846
\(786\) −6375.94 −0.289341
\(787\) 9995.13 0.452717 0.226358 0.974044i \(-0.427318\pi\)
0.226358 + 0.974044i \(0.427318\pi\)
\(788\) −3933.22 −0.177811
\(789\) 17961.3 0.810445
\(790\) −9564.24 −0.430735
\(791\) −3382.37 −0.152040
\(792\) 8004.03 0.359105
\(793\) 9518.03 0.426223
\(794\) −23789.5 −1.06330
\(795\) 24944.4 1.11281
\(796\) 731.068 0.0325528
\(797\) 1482.34 0.0658812 0.0329406 0.999457i \(-0.489513\pi\)
0.0329406 + 0.999457i \(0.489513\pi\)
\(798\) −1481.06 −0.0657004
\(799\) 70797.9 3.13473
\(800\) 6631.48 0.293073
\(801\) −10517.8 −0.463956
\(802\) 10424.7 0.458990
\(803\) 20387.8 0.895976
\(804\) 719.548 0.0315628
\(805\) 0 0
\(806\) −1411.97 −0.0617053
\(807\) −21564.7 −0.940663
\(808\) −11627.5 −0.506254
\(809\) −36583.1 −1.58985 −0.794927 0.606705i \(-0.792491\pi\)
−0.794927 + 0.606705i \(0.792491\pi\)
\(810\) −3473.23 −0.150663
\(811\) −10066.0 −0.435840 −0.217920 0.975967i \(-0.569927\pi\)
−0.217920 + 0.975967i \(0.569927\pi\)
\(812\) −91.3028 −0.00394594
\(813\) 1684.44 0.0726640
\(814\) 13444.4 0.578903
\(815\) 1833.55 0.0788054
\(816\) −23394.0 −1.00362
\(817\) −13231.5 −0.566600
\(818\) 5001.71 0.213790
\(819\) 3111.43 0.132750
\(820\) 7231.59 0.307973
\(821\) 16365.4 0.695684 0.347842 0.937553i \(-0.386914\pi\)
0.347842 + 0.937553i \(0.386914\pi\)
\(822\) 3947.75 0.167511
\(823\) −21157.8 −0.896128 −0.448064 0.894001i \(-0.647886\pi\)
−0.448064 + 0.894001i \(0.647886\pi\)
\(824\) −3044.13 −0.128698
\(825\) −9070.45 −0.382779
\(826\) −9243.86 −0.389389
\(827\) −7331.71 −0.308281 −0.154141 0.988049i \(-0.549261\pi\)
−0.154141 + 0.988049i \(0.549261\pi\)
\(828\) 0 0
\(829\) 3353.85 0.140511 0.0702557 0.997529i \(-0.477618\pi\)
0.0702557 + 0.997529i \(0.477618\pi\)
\(830\) −37268.5 −1.55856
\(831\) 13741.6 0.573635
\(832\) −19379.5 −0.807529
\(833\) 39812.3 1.65596
\(834\) 16992.8 0.705529
\(835\) 23159.5 0.959843
\(836\) −746.233 −0.0308720
\(837\) 2288.35 0.0945007
\(838\) −3410.40 −0.140585
\(839\) 47363.4 1.94895 0.974474 0.224502i \(-0.0720754\pi\)
0.974474 + 0.224502i \(0.0720754\pi\)
\(840\) 7676.57 0.315317
\(841\) −24231.3 −0.993533
\(842\) −8665.65 −0.354677
\(843\) 5549.87 0.226747
\(844\) 5581.01 0.227614
\(845\) −15972.4 −0.650259
\(846\) 21710.3 0.882287
\(847\) −5070.04 −0.205677
\(848\) 24456.7 0.990383
\(849\) 12710.2 0.513795
\(850\) −40750.8 −1.64440
\(851\) 0 0
\(852\) 954.682 0.0383883
\(853\) 19153.0 0.768800 0.384400 0.923167i \(-0.374408\pi\)
0.384400 + 0.923167i \(0.374408\pi\)
\(854\) −4291.45 −0.171956
\(855\) −6671.33 −0.266848
\(856\) −45565.8 −1.81940
\(857\) −6136.91 −0.244612 −0.122306 0.992492i \(-0.539029\pi\)
−0.122306 + 0.992492i \(0.539029\pi\)
\(858\) 6701.69 0.266657
\(859\) −30060.1 −1.19399 −0.596995 0.802245i \(-0.703639\pi\)
−0.596995 + 0.802245i \(0.703639\pi\)
\(860\) 9092.42 0.360522
\(861\) 7687.98 0.304304
\(862\) −40832.2 −1.61340
\(863\) 42666.1 1.68293 0.841466 0.540309i \(-0.181693\pi\)
0.841466 + 0.540309i \(0.181693\pi\)
\(864\) 7940.80 0.312675
\(865\) 7437.81 0.292362
\(866\) −24316.5 −0.954167
\(867\) −40574.8 −1.58938
\(868\) −114.858 −0.00449142
\(869\) −5123.08 −0.199987
\(870\) −1758.11 −0.0685122
\(871\) −5891.94 −0.229209
\(872\) −20514.4 −0.796680
\(873\) 1312.50 0.0508836
\(874\) 0 0
\(875\) −376.603 −0.0145503
\(876\) 3908.45 0.150747
\(877\) 3581.50 0.137901 0.0689503 0.997620i \(-0.478035\pi\)
0.0689503 + 0.997620i \(0.478035\pi\)
\(878\) 5141.68 0.197635
\(879\) −17219.5 −0.660751
\(880\) −18083.2 −0.692708
\(881\) −26861.6 −1.02723 −0.513616 0.858020i \(-0.671694\pi\)
−0.513616 + 0.858020i \(0.671694\pi\)
\(882\) 12208.5 0.466079
\(883\) 11078.7 0.422227 0.211114 0.977462i \(-0.432291\pi\)
0.211114 + 0.977462i \(0.432291\pi\)
\(884\) −5432.16 −0.206678
\(885\) 32114.2 1.21978
\(886\) −33979.1 −1.28843
\(887\) 4079.22 0.154416 0.0772078 0.997015i \(-0.475399\pi\)
0.0772078 + 0.997015i \(0.475399\pi\)
\(888\) 19440.3 0.734655
\(889\) 6329.28 0.238782
\(890\) 28171.2 1.06101
\(891\) −1860.43 −0.0699515
\(892\) −4579.41 −0.171895
\(893\) −15267.1 −0.572110
\(894\) 3760.45 0.140680
\(895\) −35078.5 −1.31010
\(896\) 6130.06 0.228561
\(897\) 0 0
\(898\) 7652.41 0.284370
\(899\) 198.412 0.00736086
\(900\) 2254.56 0.0835022
\(901\) 60028.8 2.21959
\(902\) −21470.1 −0.792545
\(903\) 9666.24 0.356226
\(904\) 13658.5 0.502517
\(905\) −44584.2 −1.63760
\(906\) −7889.81 −0.289317
\(907\) −5619.99 −0.205743 −0.102871 0.994695i \(-0.532803\pi\)
−0.102871 + 0.994695i \(0.532803\pi\)
\(908\) −4066.42 −0.148622
\(909\) −7382.09 −0.269360
\(910\) −8333.74 −0.303583
\(911\) −15003.0 −0.545635 −0.272817 0.962066i \(-0.587955\pi\)
−0.272817 + 0.962066i \(0.587955\pi\)
\(912\) 5044.75 0.183167
\(913\) −19962.8 −0.723630
\(914\) −12655.6 −0.457997
\(915\) 14909.0 0.538661
\(916\) 1571.65 0.0566907
\(917\) 4246.98 0.152942
\(918\) −48796.6 −1.75439
\(919\) 11481.3 0.412114 0.206057 0.978540i \(-0.433937\pi\)
0.206057 + 0.978540i \(0.433937\pi\)
\(920\) 0 0
\(921\) −15185.9 −0.543316
\(922\) 13665.3 0.488116
\(923\) −7817.31 −0.278775
\(924\) 545.158 0.0194095
\(925\) 28564.1 1.01533
\(926\) −10721.1 −0.380471
\(927\) −1932.67 −0.0684759
\(928\) 688.507 0.0243549
\(929\) −44831.9 −1.58330 −0.791651 0.610974i \(-0.790778\pi\)
−0.791651 + 0.610974i \(0.790778\pi\)
\(930\) −2211.70 −0.0779832
\(931\) −8585.25 −0.302224
\(932\) −6808.94 −0.239307
\(933\) −31492.4 −1.10505
\(934\) −38520.9 −1.34951
\(935\) −44385.1 −1.55246
\(936\) −12564.4 −0.438762
\(937\) −922.732 −0.0321711 −0.0160856 0.999871i \(-0.505120\pi\)
−0.0160856 + 0.999871i \(0.505120\pi\)
\(938\) 2656.53 0.0924721
\(939\) −8543.70 −0.296926
\(940\) 10491.2 0.364028
\(941\) −7858.15 −0.272230 −0.136115 0.990693i \(-0.543462\pi\)
−0.136115 + 0.990693i \(0.543462\pi\)
\(942\) −20134.9 −0.696422
\(943\) 0 0
\(944\) 31486.3 1.08558
\(945\) 13506.4 0.464933
\(946\) −26994.8 −0.927775
\(947\) 9843.50 0.337773 0.168886 0.985636i \(-0.445983\pi\)
0.168886 + 0.985636i \(0.445983\pi\)
\(948\) −982.124 −0.0336476
\(949\) −32003.9 −1.09472
\(950\) 8787.63 0.300114
\(951\) 17094.3 0.582882
\(952\) 18473.7 0.628925
\(953\) −38484.7 −1.30812 −0.654062 0.756441i \(-0.726936\pi\)
−0.654062 + 0.756441i \(0.726936\pi\)
\(954\) 18407.9 0.624716
\(955\) 6812.79 0.230845
\(956\) −1261.02 −0.0426615
\(957\) −941.732 −0.0318097
\(958\) 11489.5 0.387483
\(959\) −2629.58 −0.0885438
\(960\) −30355.9 −1.02056
\(961\) −29541.4 −0.991622
\(962\) −21104.5 −0.707316
\(963\) −28929.0 −0.968041
\(964\) −3990.31 −0.133319
\(965\) 50774.2 1.69376
\(966\) 0 0
\(967\) 27609.5 0.918161 0.459081 0.888395i \(-0.348179\pi\)
0.459081 + 0.888395i \(0.348179\pi\)
\(968\) 20473.6 0.679799
\(969\) 12382.3 0.410504
\(970\) −3515.44 −0.116365
\(971\) 14590.6 0.482219 0.241109 0.970498i \(-0.422489\pi\)
0.241109 + 0.970498i \(0.422489\pi\)
\(972\) 4425.22 0.146028
\(973\) −11318.8 −0.372933
\(974\) 36666.6 1.20624
\(975\) 14238.4 0.467687
\(976\) 14617.5 0.479399
\(977\) −36031.7 −1.17990 −0.589948 0.807442i \(-0.700852\pi\)
−0.589948 + 0.807442i \(0.700852\pi\)
\(978\) −1043.58 −0.0341208
\(979\) 15089.9 0.492620
\(980\) 5899.60 0.192302
\(981\) −13024.2 −0.423885
\(982\) 14483.4 0.470656
\(983\) −60342.6 −1.95791 −0.978957 0.204069i \(-0.934583\pi\)
−0.978957 + 0.204069i \(0.934583\pi\)
\(984\) −31045.2 −1.00578
\(985\) 50448.4 1.63190
\(986\) −4230.91 −0.136653
\(987\) 11153.3 0.359690
\(988\) 1171.41 0.0377201
\(989\) 0 0
\(990\) −13610.8 −0.436948
\(991\) −19939.8 −0.639162 −0.319581 0.947559i \(-0.603542\pi\)
−0.319581 + 0.947559i \(0.603542\pi\)
\(992\) 866.139 0.0277217
\(993\) 21551.5 0.688738
\(994\) 3524.64 0.112469
\(995\) −9376.84 −0.298760
\(996\) −3826.99 −0.121750
\(997\) −38178.9 −1.21278 −0.606388 0.795169i \(-0.707382\pi\)
−0.606388 + 0.795169i \(0.707382\pi\)
\(998\) 19770.3 0.627071
\(999\) 34203.8 1.08324
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.19 25
23.15 odd 22 23.4.c.a.18.2 yes 50
23.20 odd 22 23.4.c.a.9.2 50
23.22 odd 2 529.4.a.n.1.19 25
69.20 even 22 207.4.i.a.55.4 50
69.38 even 22 207.4.i.a.64.4 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.9.2 50 23.20 odd 22
23.4.c.a.18.2 yes 50 23.15 odd 22
207.4.i.a.55.4 50 69.20 even 22
207.4.i.a.64.4 50 69.38 even 22
529.4.a.m.1.19 25 1.1 even 1 trivial
529.4.a.n.1.19 25 23.22 odd 2